用户名: 密码: 验证码:
钢纤维微膨胀钢管混凝土拉弯力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土桁架梁式结构是一种新型组合结构,其具有承载力高、刚度大、自重轻、跨越能力强,施工方便,节省水泥与混凝土用量等系列优点,技术经济优势明显,应用前景广阔。在该结构体系中,弦杆主要处于压弯与拉弯等复杂应力状态,对核心混凝土力学性能要求较高。钢纤维能显著提高混凝土抗弯拉强度,以钢纤维增强自密实微膨胀混凝土填充其弦杆,能充分发挥结构整体力学性能优势。本文在交通部科研项目“中等跨度钢管混凝土桁架连续梁桥成套技术研究”(2009318000105)资助下,以世界首座全管桁结构连续梁桥——干海子大桥工程为依托,研究了钢纤维微膨胀钢管混凝土组成、结构与性能及其拉弯力学行为,研究成果在依托工程进行了应用。具体研究工作与主要结论如下:
     提出了钢纤维微膨胀钢管混凝土的设计与制备方法,研究了膨胀剂与钢纤维复合对混凝土工作性能与力学性能的影响,探明了钢管密闭条件下钢纤维微膨胀混凝土的体积变形规律;研究钢纤维微膨胀钢管混凝土的抗冻技术措施,探明了钢管约束对钢纤维微膨胀混凝土抗冻性增强机理。制备出满足干海子大桥主梁弦杆力学性能与施工要求的C60钢纤维微膨胀自密实钢管混凝土,检测结果表明管内混凝土密实填充,结构服役状态良好。
     基于推出试验,对钢纤维微膨胀钢管混凝土荷载-滑移关系曲线进行了全过程分析,探讨了核心混凝土与管壁的界面粘结力退化模式,研究了含钢率、界面粘结长度与混凝土中钢纤维掺量对其界面粘结强度影响规律,提出了其界面粘结强度计算方法。研究表明:钢纤维限制混凝土膨胀变形,降低界面粘结强度,但较相同强度等级无自应力的普通钢管混凝土界面粘结强度约提高1-3倍;含钢率是界面粘结强度主要影响因素,含钢率越高,约束作用越强,界面粘结强度越高;界面长度对界面粘结强度影响不明显。
     研究了含钢率、核心混凝土中钢纤维掺量等对钢纤维微膨胀钢管混凝土轴拉承载力、变形形态与破坏特征影响规律,分析了钢管混凝土与空钢管轴拉力学性能差异。结果表明:混凝土的填充有效阻止了钢管径向收缩,截面径向刚度显著增强,轴拉承载力较空钢管约提高15%-37%,且含钢率越低,提高幅度越大;钢纤维阻止核心混凝土裂缝延伸与扩展,减少贯通缝的形成,混凝土对钢管的约束增强;钢纤维微膨胀钢管混凝土构件初裂荷载与屈服荷载均随钢纤维掺量增加而提高,初裂荷载提高幅度较大,而屈服荷载提高幅度较小。提出了钢纤维微膨胀钢管混凝土轴拉承载力计算方法,计算值与试验结果基本吻合。
     研究了含钢率与核心混凝土中钢纤维掺量等对钢纤维微膨胀钢管混凝土受弯承载力、变形形态、应变分布与破坏特征的影响规律。结果表明:混凝土的填充使构件破坏模式由钢管受压区塑性失效转变为鼓屈破坏,承载力较空钢管构件提高约80%~290%,且含钢率越低提高幅度越大;钢管混凝土构件受压区应力集中较空钢管构件明显改善,截面变形基本符合平截面假定。核心混凝土中掺加钢纤维后,整体工作性能增强,屈服荷载随钢纤维掺量增加而提高。推导了钢纤维微膨胀钢管混凝土抗弯承载力计算公式,计算值与试验结果较好吻合。本文提出的钢管混凝土轴拉与抗弯承载力计算公式可为钢管混凝土桁架梁式结构的设计提供参考依据。
     研究了钢管桁架梁弦管灌注钢纤维微膨胀混凝土对结构抗弯承载力、挠度变形、应变分布与破坏模式的影响规律。研究表明:钢管桁架梁弦管灌注混凝土后,弦杆截面应变分布均匀,结构整体抗弯工作性能增强,抗弯刚度与承载力显著提高。空钢管桁架主要因节点处弦管塑性失效而破坏,结构整体弯曲变形较小。弦管灌注混凝土后,弦管含钢率高、支主管壁厚比较小,结构主要因腹杆屈曲而失效,整体弯曲变形明显;弦管含钢率低、支主管壁厚比较大,结构主要因下弦节点处弦管发生冲剪破坏而失效,结构整体弯曲变形较小;桁架梁抗弯承载力仍由节点强度控制。
Concrete filled steel tube (CFST) truss girder structure is a new type of composite structure, which has a series of advantages such as high bearing capacity, great stiffness, light weight, large spanning ability, convenient construction, and less usage of cement and concrete. Therefore, its technical and economic advantages are obvious and the application prospect is broad. Mechanical properties of concrete-filled in chord are extremely important in the structure, because of the complex stress state of tension-bending and compression-bending. Due to the fact that steel fiber can significantly improve the flexural strength of concrete, chord filling with steel fiber reinforced micro-expansive concrete (SEC) gives full play to the overall mechanical performance advantage. The paper was supported by the research project of the Ministry of Communications " Study on the technology of middle span CFST truss continuous beam bridge "(2009318000105), and relied on the first all-tube truss structure continuous beam bridge in the world—Ganhaizi Bridge, in which the composition, structure and properties of steel fiber reinforced micro-expansive concrete filled steel tube(SE-CFST) were studied, and the research results were applied in the project. Specific research work and the main conclusions are as follows:
     The design and preparation method of SE-CFST was put forward. And the impact of expansive agent and steel fiber on working performances and mechanical properties of concrete are studied. While the volume deformation laws of SEC under the confined conditions of steel tube were also ascertained. Moreover, the antifreeze technologies of SE-CFST were discussed, and the frost resistance enhancement mechanism of steel tube confined to SEC was studied. C60steel fiber reinforced micro-expansive and self-compacting concrete was prepared to meet the mechanical properties and construction requirements of Ganhaizi Bridge, and the test results showed that the concrete in tube reached the dense packing state and the structure service were in good condition.
     Based on the push-out test, load-slip curves of SE-CFST were analyzed, the degradation model of interface bond strength between core concrete and tube wall was studied, the steel ratio, interfacial bond length and the impact of steel fiber content on interfacial bond strength were investigated, and the interfacial bond strength calculation method was put forward. The results showed that:the expansion and deformation of concrete were limited by steel fiber, which reduced the interfacial bond strength of SE-CFST. But, its interfacial bond strength raises about1-3times than of the ordinary CFST. Steel ratio was the main influencing factor of the interfacial bond strength; the higher steel ratio, the stronger the constraint effect, and the higher the interfacial bond strength. And the length of the interface had little impact on the interfacial bond strength.
     The influence law of the steel ratio and steel fiber content on the bearing capacity, deformation form and failure characteristics of SE-CFST under axial tension load have been discussed. And axial tensile performance differences between SE-CFST and hollow steel tube were investigated. The results showed that, radial shrinkage of the steel tube was effective limited by core concrete, radial stiffness of cross section of CFST was significantly intensified, axial tensile capacity increased about15%-37%than that of hollow tube; and the lower the steel ratio, the stronger the increase. Internal cracks propagation and extension of core concrete were prevented by steel fiber. Therefore, the number of through seam was reduced, and constraint of concrete on the steel tube enhanced. Initial cracking load of SE-CFST increased relatively with the increase of steel fiber content, however, yield load improved not obvious. The simplified calculation method for axial tensile capacity of SE-CFST member was proposed, comparisons between the predicted results and test ones were carried out, and good agreements were achieved.
     The effect of steel ratio and steel fiber content on the flexural capacity, deformation form, strain distribution and failure characteristics of SE-CFST members under bending load were studied. The results showed that, the failure mode of steel tube transformed from plastic collapse into convex destruction, because of the filling of concrete. Flexural capacity of CFST component enhanced about80%~290%than that of hollow tube component, and the lower the steel ratio, the greater the enhancement. Stress concentration of compression zone of CFST specimen receded obviously compared to that of hollow steel tube, and the deformation of cross section conforms to the plane section assumption, basically.
     The mixing of steel fiber in core concrete was effective in improving the work performances and increased the yield load. The calculation formula for flexural capacity of SE-CFST member was deduced, and its results have a better approach to the test values. The formulas proposed in this paper for calculating the capacity of SE-CFST members subject to axial tension and bending load can provide reference for the design of CFST truss girder.
     The influences of the steel fiber reinforced micro-expansive concrete filled in the chord of steel tube truss girder on the capacity, deflection deformation, strain distribution and failure mode were researched. The results showed that the uniformity of its cross section strain distribution significantly improved, due to the filling of concrete in chord. And the overall work performances of the truss girder greatly enhanced, bending stiffness and capacity distinctively increased. Damage of hollow steel tube truss girder was mainly due to the plastic failure at nodes, and the flexure deformation of the structure is not obvious. However, when the chord filled with concrete, the damage of the specimen was as follows:if a higher steel ratio and a lower thickness ratio of web to chord were obtained, its destruction was owned to webs buckling, while the overall bending deformation was significant. Otherwise, when it comes to a lower steel ratio and a higher thickness ratio of web to chord, the failure of specimen mainly due to the punching failure at bottom chord node, and the whole bending deformation was unconspicuous. The bending capacity of CFST truss girder still depended on the strength of the chord node.
引文
[1]胡曙光,丁庆军.钢管混凝土[M].北京:人民交通出版社,2007
    [2]龚洛书.轻集料混凝土技术的发展与展望[J].混凝土,2002(2):13-15
    [3]吴中伟,廉惠珍.高性能混凝土[M].北京:中国铁道出版社,1999
    [4]陈肇元,朱金锉,吴佩刚.高强混凝土及其应用[M].北京:清华大学出版社,1996
    [5]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2007
    [6]钟善桐.钢管混凝土结构[M].哈尔滨:黑龙江科技出版社,1994
    [7]钟善桐.高层钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社,1999
    [8]韩林海.钢管混凝土结构——理论与实践[M].北京:科学出版社,2007
    [9]查晓雄.空心和实心钢管混凝土结构[M].北京:科技出版社,2011
    [10]韩林海,杨有福.现代钢管混凝土结构技术[M].北京:中国建筑工业出版社,2004
    [11]陈宝春.钢管混凝土拱桥设计与施工[M].北京:人民交通出版社,1999.
    [12]陈宝春.钢管混凝土拱桥[M].北京:人民交通出版社,2007
    [13]S P. Schneider. Axially Loaded Concrete-Filled Steel Tubes[J]. Journal of Structural Engineering, ASCE,1998,124(10):1125~1138
    [14]Johnson R P. Some research on composite structures in the U. K.1960-1985[C]. Proc. of an Engineering Foundation Confer. on Steel-Concrete Composite Structures, ASCE. Irsee, 1996.15~25.
    [15]Roik E H K. Review of the development of composite structures in Germany[C]. Proc. of an Engineering Foundation Confer. on Steel-Concrete Composite Structures, ASCE. Irsee, 1996.55~74.
    [16]Wakabayashi M. Recent development and research in composite and mixed building structures in Japan[C]. Proc. of the 4th ASCCS Inter. Confer. Kosice, Slovakia,1994. 237~242.
    [17]张联燕,李泽生,程懋芳.钢管混凝土空间桁架组合梁式结构[M].北京:人民交通出版社,1999
    [18]吴国政等.钢管混凝土空间桁架组合梁式结构在桥梁工程中的应用[J].黑龙江交通科技,2000(3):42-43
    [19]NAKAMLLRA S, MOMIYAMA Y, HOSAKA T, et al. New Technologies of Steel Concrete Composite Bridges[J]. Journal of Constructional Steel Research,2002,58(1): 99-130
    [20]张贵忠.万州大桥钢管混凝土桁架技术研究[-D].成都:西南交通大学硕士学位论文,2004
    [21]臧华,涂永明.钢管混凝土在桥梁工程中的应用与前景[J].中国市政工程,2010,(4):34-36
    [22]姜如.钢管及钢管混凝土组合桁架梁桥静动力行为分析[D].成都:西南交通大学硕士学位论文,2006
    [23]陈勇.新型钢管混凝土连续刚构桥的结构形式研究[D].重庆:重庆交通大学硕士学位论文,2009
    [24]叶跃忠.混凝土脱粘对钢管混凝土中、低柱性能的影响[J].铁道建筑,2001(10):2-5
    [25]涂光亚,颜东煌,邵旭东.脱黏对桁架式钢管混凝土拱桥受力性能的影响[J].中国公路学报,2007,20(6):61-66
    [26]薛君轩,吴中伟.膨胀和自应力水泥及其应用[M].北京:中国建筑工业出版社,1985
    [27]王湛,钟善桐.自应力钢管混凝土显微结构分析及宏观性能[J].哈尔滨建筑工程学院学报,1991,24(SI):69-73
    [28]王湛,赵霄龙,巴恒静.约束膨胀混凝土显微结构分析[J].哈尔滨建筑大学学报,1999,32(2):54-57
    [29]王湛.钢管膨胀混凝土工作机理及性能的研究[D].哈尔滨:哈尔滨建筑工程学院博士学问论文,1993
    [30]李悦,丁庆军等.钢管膨胀混凝土力学性能及其膨胀模式的研究[J].武汉工业大学学报,2000,22(6):25-28
    [31]李悦,胡曙光等.钢管膨胀混凝土的研究及其应用[J].山东建材学院学报,2000,14(3):189-192
    [32]宋兵.核心混凝土的收缩及其对钢管高强混凝土轴压构件力学性能的影响[D].汕头:汕头大学硕士学位论文,2001
    [33]宋兵,王湛.高强混凝土自收缩对钢管混凝土轴压力学性能的影响[J].建筑科学与工程学报,2007,24(2):59-62
    [34]吕林女,等.高强微膨胀钢管混凝土的界面过渡区结构[J].华中科技大学学报,2003,31(11):89-91
    [35]冯斌.钢管混凝土中核心混凝土的温度、收缩与徐变模型研究[D].福州:福州大学硕士学位论文,2004
    [36]韩林海,杨有福,李水进等,钢管高性能混凝土的水化热和收缩性能研究[J].土木程学报,2006,39(3):1-9
    [37]罗冰,沈成武,郑舟军.钢管混凝土膨胀率试验与测定分析[J].交通科技,2005(6):86-88
    [38]陈梦成,袁方,许开成.钢管微膨胀混凝土的水化热与限制膨胀性能分析[J].铁道建筑,2010(8):133-136
    [39]G. Campione, L. La Mendola, L. Sanpaolesi, etc. Behavior of fiber reinforced concrete-filled tubular columns in compression[J]. Materials and Structures,2002(35): 332-337
    [40]S. Ramana Gopal, P. Devadas Manoharan. Experimental behaviour of eccentrically loaded slender circular hollow steel columns in-filled with fibre reinforced concrete[J]. Journal of Constructional Steel Research,2006,62(5):513-520.
    [41]S. Ramana Gopal, P. Devadas Manoharan. Tests on fibre reinforced concrete filled steel tubular columns. Steel and Composite Structures,2004(4):37-48.
    [42]Serkan Tokgoz and Cengiz Dundar. Experimental study on steel tubular columns in-filled with plain and steel fibre reinforced concrete [J]. Thin-Walled Structures,48 (2010): 414-422
    [43]Zhong Tao, Lin-Hai Han and Dong-Ye Wang. Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concretefJ]. Thin-Walled Structures 46 (2008) 1113-1128.
    [44]Zhong Tao, Lin-Hai Han and Dong-Ye Wang. Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns[J]. Thin-Walled Structures 45 (2007) 517-527
    [45]Zhong Tao, BrianUy, Lin-HaiHan Zhi-BinWang. Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression[J]. Thin-Walled Structures 47 (2009) 1544-1556.
    [46]陈娟.钢管钢纤维混凝土结构的性能研究[J].四川建筑科学研究,2011,37(2):67-69
    [47]陈娟.钢管钢纤维高强混凝土柱的基本力学性能研究[D].武汉:武汉大学博士学位论文,2008.
    [48]Morishita Y, Tomii M, Yoshimura K. Experimental studies on bond strength in concrete filled circular steel tubular columns subjected to axial loads. Transactions of Japan Concrete Institute,1979a:351-358.
    [49]Morishita Y, Tomii M, Yoshimura K. Experimental studies on bond strength in concrete filled square and octagonal steel tubular columns subjected to axial loads. Transactions of Japan Concrete Institute,1979b:359-336.
    [50]Morishita Y. Tomii M. Experimental studies on bond strength between square steel tube and encased concrete core under cyclic shearing force and constant axial force[J]. Transactions of Japan Concrete Institute,1982, Vol(4):363-370
    [51]Tomii M, Morishita Y, Yoshimura K. A method of improving bond strength between steel tube and concrete core cast in circular steel tubular columns. Transactions of Japan Concrete Institute,1980a(2):319-326.
    [52]Tomii M, Morishita Y, Yoshimura K. A method of improving bond strength between steel tube and concrete core cast in square and octagonal steel tubular columns. Transactions of Japan Concrete Institute,1980b(2):327-334.
    [53]Virdi K S, Dowling P J. Bond strength in concrete filled steel tubes. IABSE Proceedings P-33/80,1980:125-139
    [54]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度(上)[J].建筑科学,1996(3):22-28
    [55]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度(下)[J].建筑科学,1996(4):19-23
    [56]Roeder C W, Cameron B, Brown C B. Composite action in concrete filled tubes [J]. Journal of Structual Engneering,1999,125 (5):477-484
    [57]康希良.钢管混凝土柱组合力学性能及粘结滑移性能研究[D].西安:西安建筑科技大学博士学位论文,2008
    [58]刘永健,池建军.钢管混凝土界面抗剪粘结强度的推出试验[J].工业建筑,2006,36(4):78-80
    [59]刘永健,刘君平,池建军.钢管混凝土界面抗剪粘结滑移力学性能试验[J].广西大学学报(自然科学版),2010,35(1):17-23
    [60]Chang X, Huaug C K,Jiaug D C, Song Y C. Push-out test of prestressing concrete filled circular steel tube columns by means of expansive cement[J].Construction and Building Material,2009,23:491-497.
    [61]陈学嘉,袁方.钢管微膨胀混凝土界面粘结性能的试验研究[J].四川建筑科学研究,2011,37(4):9-12
    [62]谭克锋,蒲心诚.钢管超高强混凝土力学性能的研究[J].东南大学学报,1999,29(7):127-131
    [63]韩林海,钟善桐.钢管混凝土压弯扭构件工作机理研究[J].建筑结构学报.1995,16(4):32—39
    [64]P. K. Neogi, H. K. San, and J. C. Chapman. Concrete Filled Tubular Steel Columns under Eccentrically Loading. The Structural Engineer.1969,47(5):187-195
    [65]Zhang YC, Xu C, Lu XZ. Experimental study of hysteretic behavior for concrete-filled square thin-walled steel tubular columns[J]. Journal of Constructional Steel Research 2007,63(3):317~25.
    [66]查晓雄,仓友清等.钢管-FRP-海砂混凝土柱轴心受压性能研究[J].建筑结构,2010,40(SI):351-354
    [67]蔡绍怀,焦占拴.钢管混凝土短柱的基本性能和强度计算[J].建筑结构学报,1984(06):13-29
    [68]蔡绍怀,顾万黎.钢管混凝土长柱的性能和强度计算[J].建筑结构学报,1985(01):32-40
    [69]韩林海,游经团等,往复荷载作用下矩形钢管混凝土构件力学性能的研究[J],土木工程学报,2004,37(11):11-22
    [70]尧国皇,韩林海.钢管混凝土轴压与纯弯荷载-变形关系曲线实用计算方法研究[J],中国公路学报,2004,17(4):50-54
    [71]Morishita Y. Tomii MExperimental studies on bond strength betwveen square steel tube and encased concrete core under cyclic shearing force and constant axial force[J]. Transactions of Japan Concrete Institute,1982, Vol(4):363~370
    [72]Nakanishi K. Kitada T. Nakai H. Experimental study on ultimate strength and ductiliy of concrete filled steel columns under strong earthquakes. Journal of Constructional Steel Research.1999.51(3):297~319
    [73]潘友光.圆钢管混凝土轴心力作用下本构关系的研究及应用[D].哈尔滨:哈尔滨建筑工程学院博士学位论文,1989
    [74]潘友光,钟善桐.钢管混凝土轴心受拉本构关系[J].哈尔滨建筑工程学院
    [75]张素梅.钢管混凝土构件在轴心拉力作用下的性能[c].哈尔滨建筑工程学院学报,1991,24(增刊):27-32
    [76]Lin-Hai Han, Shan-Hu He, Fei-Yu Liao. Performance and calculations of concrete filled steel tubes under axial tension[J]. Journal of Constructional Steel Research 67 (2011) 1699~1709
    [77]何珊瑚,牟廷敏.钢管混凝土轴拉承载力计算方法探讨[J].哈尔滨工业大学学报,2011,43(Sup2):12-14
    [78]Lu Y Q, Kennedy·D J L. The flexural behaviour of concrete-filled hollow structural sections[J]. Canadian Journal of Civil Engineering.1994.421 (1):111-130.
    [79]Elchalakani M., Zhao X L, Grzebieta, R. Concrete-filled circular steel tubes subjected to pure bending[J]. Journal of Constructional Steel Research,2001.57 (11):1141-1168.
    [80]Shun-ichi Nakamura P. E, Tetsuya Hosaka. Bending Behavior of Steel Pipe Girders Filled with Ultralight Mortar[J]. Journal of Bridge Engineering, Vol.9, No.3, May/June 2004, P297-303
    [81]Jae-Yoon Kang, Eun-Suk Choi, Won-Jong Chin and Jung-Woo Lee. Flexural Behavior of Concrete-Filled Steel Tube Members and Its Application[J]. Steel Structures 7 (2007) 319-324
    [82]Y. Deng, C.Y. Tuan, Q. Zhou, Y. Xiao. Flexural strength analysis of non-post-tensioned and post-tensioned concrete-filled circular steel tubes[J]. Journal of Constructional Steel Research,67 (2011):192-202
    [83]黄莎莎等.离心钢管混凝土受弯性能的试验研究[J].电力建设,1990,11(7):4-6
    [84]钱稼茹,王刚等.钢管高强混凝土构件截面弯矩-曲率全曲线研究[J].工业建筑2004,38(4):70-72
    [85]吴颖星,于清.钢管约束高性能混凝土纯弯力学性能实验研究[J].哈尔滨工业大学学报,2005,37(增刊):276-279
    [86]丁发兴等.圆钢管自密实混凝土纯弯力学性能[J].交通运输工程学报,2006,6(1):63-68
    [87]Ding Faxing, Luo Yating, etc. Pure bending behavior of lightweight aggregate concrete filled circular steel tubes [J]. Advanced Materials Research,2012, Vol (374-377), p2239-2244
    [88]丁发兴,张鹏等.圆钢管混凝土截面轴力-弯矩-曲率关系实用计算方法[J].哈尔滨工业大学学报,2009,41(12):133-137
    [89]黄宏等.圆钢管混凝土抗弯承载力的计算[J].华东交通大学学报,2008,25(1):1-3
    [90]卢辉,韩林海.圆钢管混凝土抗弯刚度计算方法探讨[J].工业建筑,2004,34(1):1-5
    [91]卢辉.世界各国规程钢管混凝土构件抗弯承载力及抗弯刚度的对比[J].福建建筑,2005,92(2):127-130
    [92]Packer J A, Henderson J E, Cao J J.空心管结构连接设计指南[M].曹俊杰(译),北京:科学出版社,1997.
    [93]PACKER J A. Concrete-filled HSS connections [J]. Journal of Structural Engineering, 1995,12 (3):458-467
    [94]刘永健,刘君平等.主管内填混凝土矩形和圆形钢管桁架受弯性能对比试验研究[J].建筑结构学报,2010,31(4):86-92
    [95]刘永健,周绪红等.矩形钢管混凝土横向局部承压强度的试验研究[J].建筑结构学报,2003,24(2):42-48
    [96]刘永健,周绪红,肖龙.矩形钢管混凝土桁架受压节点承载力[J].建筑结构,2004,34(1):24-26
    [97]刘水健,刘君平等.主管内填充混凝土矩形钢管桁架受力性能试验研究[J].建筑结构学报,2009,30(6):107-112
    [98]刘君平.主管内填混凝土矩形钢管桁架受力机理及设计方法研究[D].西安:长安大学博士学位论文,2009
    [99]齐红育,董骊宁,高迎利.矩形钢管混凝土桁架与圆形钢管混凝土桁架受力性能对比分析[J].混凝土,2008,226(6):24-28
    [100]黄文金,陈宝春.钢管混凝土桁梁受弯试验研究[J].建筑科学与工程学报,2006,23(1):29N33
    [101]陈宝春,黄文金.圆管截面桁梁极限承载力试验研究[J].建筑结构学报,2007,28(3):31N36
    [102]黄文金,陈宝春.腹杆形式对钢管混凝土桁梁受力性能影响的研究[J].建筑结构学报,2009,30(1):55-61
    [103]柳旭东.空腹灌浆圆钢管桁架-混凝土组合梁受力性能研究及应用[D].哈尔滨:哈尔滨工业大学博士学位论文,2007
    [104]郑文忠,柳旭东,张博一等.灌浆圆钢管压陷极限承载力试验研究[J].建筑结构学报,2008,29(2):85-91
    [105]郑文忠,柳旭东,张博一.灌浆圆钢管桁架混凝土组合梁试验研究[J].建筑结构学报,2009,30(1):15-22
    [106]游宝坤,吴万春等.U型混凝土膨胀剂[J].硅酸盐学报,1990,18(2):110-115
    [107]范玲玲.钢纤维混凝土韧性试验研究[D].石家庄:河北大学硕士学位论文,2002
    [108]王晓伟.异形钢纤维与混凝土粘结机理及其增韧效应研究[D].天津:河北工业大学硕士学位论文,2003.
    [109]田稳苓.钢纤维膨胀混凝土增强机理及其应用研究[D].大连:大连理工大学博士学位论文,1998
    [110]张松波,尚福林,周晨光.浅议负温混凝土的冻结强度与结构强度[J].低温建筑技术,2001(1):36.
    [111]朱建立.混凝土防冻剂的原理及应用[J].石家庄铁道学院学报,2008,15(SI):44-46
    [112]杨英姿,巴恒静.负温防冻剂混凝土的界面显微结构与性能[J].硅酸盐学报,2007,25(8):1125~1130
    [113]ZHIGNIEW Rusin. A mechanison of expansion of concrete aggregate due to frost action [J]. Cem Concr Res,1991,21:614-624
    [114]KAMAL Henri Khayet. Frost durability of concrete containing viscosity-modifying admixture [J]. ACI Mater J,1995,92:625-33
    [115]谢晓鹏,杨广军,管巧艳,高丹盈.钢纤维对混凝土抗冻性能影响的试验研究[J].混凝土,2008(8):73-75
    [116]程云虹,王宏伟等 纤维增强混凝土抗冻性试验研究[J].公路,2012(3):179-181
    [117]JUHAN Aavsik. SATISH Chandra. Influence of organic admixture and testing method on freeze-thaw resistance of concrete [J]. ACI Mater J,1995,92:10-14
    [118]Osamu KATSURA, Eiji KAMADA. Strength Development of high Strength Concrete Under Low Temperature JCI-C32[M].1993.
    [119]杨英姿,高小建,邓宏卫,巴恒静.自然变负温养护和恒负温养护对混凝土强度的影响[J].低温建筑技术,2009(4):1-4
    [120]沙克,李家和.掺防冻剂和膨胀剂的混凝土性能及微观结构研究[J].混凝土世界,2011(20):78-81
    [121]王栋民,左彦峰,龙俊余,李俏等.膨胀混凝土在负温条件下膨胀与强度性能及其作用机理[J].膨胀剂与膨胀混凝土,2008(1):12-14
    [122]文婧,李家和,朱卫中.负温条件下防冻组分对HCSA膨胀剂性能影响[J].低温建筑技术,2008(3):8-10.
    [123]文婧,李家和,朱卫中.低温下早强组分和防冻组分对HCSA膨胀剂性能影响研究[J].膨胀剂与膨胀混凝土,2008(2):40-43
    [124]中华人民共和国国家标准GB 50119-2003.混凝土外加剂应用技术规范.北京:中国建筑工业出版社,2003
    [125]孙伟,张召舟,高建明.钢纤维微膨胀混凝土特性的研究[J].混凝土与水泥制品,1994(5):14-17
    [126]田稳苓,李世春等.钢纤维膨胀混凝土力学性能试验研究[J].建筑材料学报,2000,3(3):223-228
    [127]钟善桐.钢管混凝土中钢管与混凝土的共同工作[J].哈尔滨建筑大学学报,2001,34(1):6-10
    [128]杨桂通.弹塑性力学[M].北京:高等教育出版业,1980.
    [129]Hibbitt, Karlson, Sorenson. ABAQUS Version 6.4:Theory Manual, Users'Manual, Verification Manual and Example problems Manual. Hibbitt, Karlson and Sorenson Inc., 2003.
    [130]Hibbitt, Karlsson, Sorensen, INC. ABAQUS/Standard有限元软件入门指南[M].(庄茁等译),北京:清华大学出版社,1998.
    [131]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社,1993.
    [132]AISC(ANSI)360-10. Specification for Structural Steel Buildings[S]. American Institute of Steel Construction(AISC), Chicago, U.S.A,2010.
    [133]British Standards Institutions. BS5400, Part 5, Steel-concrete and composite bridges. London, U. K.2005.
    [134]Eurocode 4. Design of composite steel and concrete structures, Part 1-1:General rules and rules for buildings (together with United Kingdom National Application Document). DD ENV 1994-1-1:2004, British Standards Institution, London W1A2BS.2004.
    [135]中华人民共和国电力行业标准DL/T5085-1999.钢-混凝土组合结构设计规程.北京:中国电力出版社,1999.
    [136]福建省工程建设地方标准.DBJ/T13-51-2003.钢管混凝土结构技术规程.福建省建设厅,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700