用户名: 密码: 验证码:
图像超分辨率重建关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像超分辨率处理技术是指利用多帧关于同一场景的有相互位移的低分辨率降质图像来重建高分辨率高质量图像的技术。图像超分辨率处理技术可突破图像采集设备的分辨率限制,充分利用多帧图像之间的互补信息,实现像素级的图像信息融合。图像超分辨率处理和成像技术在遥感、军事、高清晰度电视、医学成像、公共安全等领域有很广泛的应用前景。
     图像超分辨率重建算法可以分为两大类,即频域算法和空间域算法。频域算法只能对全局位移的图像序列进行处理;空间域算法使用通用的观察模型,具有更好的适应性和重建效果,是目前的主要研究方向。空间域算法包括迭代反投影方法,最大后验概率方法(MAP),凸集投影法(POCS),混合MAP/POCS方法以及自适应滤波方法等。本文全面介绍了图像超分辨率重建的研究现状,针对参考帧重建,运动估计、利用运动估计信息共轭梯度法加权重建图像,重建图像的质量评价三个方面作了深入地研究。
     本文探讨了传统的数字图像内插算法,研究了使用全相位内插算法来重建参考帧,并根据数字图像在边缘轮廓局部特点:跨越边缘方向的灰度值变化比较尖锐,沿边缘方向的灰度值变化比较平滑;提出了改进的全相位内插算法来重建参考帧。
     运动估计是超分辨率图像重建的一项核心技术,在图像重建过程中的作用是把观察帧投影到参考帧上,运动估计的准确性对重建效果有决定性的影响,关键是如何准确地获得半像素运动信息。本文提出了基于帧差的运动估计方法,该方法与传统块匹配运动估计(BMA)相比,搜索结果准确,尤其提高了边缘区域的搜索准确性,符合图像重建算法的要求。块匹配运动估计方法和光流法运动估计方法各有优缺点,本文将二者相结合加权,用共轭梯度法进行图像超分辨率重建。
     超分辨率重建图像的评价,目前没有统一的方法。本文针对超分辨率重建图像的特点,提出了基于边缘基元和边缘局部相似度的评价方法,边缘区域是图像超分辨率重建的重点,对人眼观察图像起到重要作用,本文研究了考虑人眼观看感受,加强边缘的超分辨率重建方法。同时,文中对各算法做了仿真实验,得到了较理想的结果。
Image super resolution (SR) processing is the technology to reconstruct high resolution and high quality images from a group of warped, blurred and noised low resolution (LR) images about the same scene. It breaks through the resolution limit of image acquisition equipment, uses complement information in multi-frame and can achieve data fusion on pixel level. Image SR processing has proved to be useful in many practical applications, such as remote sensing, military detection, HDTV, medical imaging, machine vision and public security, etc.
     Super resolution algorithms include frequency-domain approach and spatial-domain approach. Frequency domain approach can only deal with image sequences that only translational motions are allowed. Spatial methods which are the major research directions have better adaptability and performance by using general observation models. Spatial methods include the iterative back-projection (IBP) method, stochastic method (MAP), projection on convex set (POCS) method, hybrid reconstruction method and adaptive filter method, etc. This paper introduces research of image super resolution reconstruction technologies all-around and studies three areas in-depth: reference frame reconstruction; motion estimation and conjugate gradient image reconstruction that used motion-estimated information; quality assessment of image reconstruction.
     Traditional image interpolation algorithms are study in this paper. For reference frame reconstruction, all-phase interpolation algorithms are put forward. Base on two factors of an edge profile: the gray value across the edge orientation is sharp and the gray value along the edge orientation is smooth, this paper proposes modified all-phase interpolation algorithm.
     Motion estimation is an important technique in super resolution problems, in SR reconstruction motion estimation is used to project the observation frames onto the reference frame. The accuracy of motion estimation has great effect to the reconstruction results. The key to the SR image reconstruction is the accurate knowledge of the sub-pixel motion information of the neighbor frames, this paper put forward motion estimation algorithm base on frame differences. Compared with traditional block matching algorithm (BMA), the results of this algorithm are accuracy especially in edge area. Considering the benefit and defect of BMA and optical flow method, this paper studies combined method, gets weight information, and uses conjugate gradient to reconstruct SR image.
     At present, there’s no uniform assessment method on the quality of SR reconstruction image. Considering the characteristics of SR image, the assessment method based on edge block and the relative of LR image edge is proposed. Edge areas are important in SR reconstruction, especially for human being’s visual system. Edge emphasized method is studied based on the human visual sensation. In this paper, these algorithms are emulated and the results are better.
引文
[1] Sung Cheol Park, Min Kyn Park, Moon Gi Kang. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine,2003,(5):21-36.
    [2] Borman S, Stevenson R. Spatial resolution enhancement of low resolution image sequences: A comprehensive review with directions for future research.Technical Report, University of Notre Dame,1998.
    [3] S.Chaudhuri.Ed., Super-resolution Imaging. Norwell,MA:Kluwer,2001.
    [4] M. G. Kang, S. Chaudhuri. Special issue on Super-resolution Image Reconstruction. IEEE Signal Processing Mag., vol. 20, Mar. 2003.
    [5] N. K. Bose, R. H. Chan, and M. K. Ng, Special Issue on High Resolution Image Reconstruction. International Journal of Imaging Systems and Technology, Aug. 2004,vol. 14, no. 2-3.
    [6] M. Ng, T. Chan, M. G. Kang, P. Milanfar, Special Issue on Super-resolution Imaging: Analysis, Algorithms, and Applications. EURASIP Journal on Applied Signal Processing, vol.2006, 2006.
    [7] Fryer J, and McIntosh K. Enhancement of Image Resolution in Digital Photogrammtry. Photogrammetric Engineering and Remote Sensing,2001,67 (6):741- 749.
    [8] M. Ng, E. Lam, C.S. Tong. Special Issue on SuperresolutionImaging: Theory, Algorithms and Applications, Multidimensional Systems and Signal Processing, Sep. 2007,vol.18.
    [9] R. C. Hardie, R. R. Schultz, K. E. Barner, Special Issue on Super-Resolution Enhancement of Digital Video, EURASIP Journal on Applied Signal Processing, 2007.
    [10] A. K. Katsaggelosand R. Molina, Special Issue on Super Resolution, The Computer Journal, 2007.
    [11] R.Y. Tsai and T.S. Huang, Multiframe Image Resoration and Registration, Chapter 7,in Advances in Computer Vision and Image Processing, JAI Press Inc., 1984.
    [12] S. P. Kim, N. K. Bose, and H. M. Valenzuela, Recursive reconstruction of highresolution image from noisy undersampled multiframes, IEEE Trans. ASSP, 38(6): 1990. 1013–1027.
    [13]M. I. Sezan and H. Stark, Tomographic Image Reconstruction from Incomplete View Data by Convex Projections and Direct Fourier Inversion, IEEE Transactions on Medical Imaging, June 1984. vol. MI-3, no. 2: 91–98.
    [14]P. Oskoui.Fard and H. Stark, Tomographic image reconstruction using the theory of convex projections, IEEE Transactions on Medical Imaging, Mar. 1988. vol. 7, no. 1:45–58.
    [15]H. Stark and P. Oskoui, High-resolution image recovery from image-plane arrays, using convex projections, Journal of the Optical Society of America A, 1989. vol. 6, no. 11:1715–1726.
    [16]A. M. Tekalp, M. K. Ozkan, and M. I. Sezan, High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration, in Proceedings of the IEEE International Conference onAcousics, Speech and Signal Processing, San Francisco, CA, 1992, vol. III:169–172.
    [17]Schultz R R, Stevenson R L. A Bayesian approach to image expansion for improved definition. IEEE Trans on Image Processing, 1994, 3(5): 233-242.
    [18]M. Irani, S. Peleg, Improving resolution by image registration, CVGIP: Graphical Models and Image Processing, May 1991,vol.53, no. 3: 231–239.
    [19]J.L.Harris. Diffraction and resolving power. J.Opt.Soc.Am., July 1964, 54: 931-936.
    [20]I.J.Schoenberg. Cardinal Interpolation and spline functions. J.Approx.Theory. 1969.2: 167-206.
    [21]R.E.Crochiere, L.R.Rabiner. Interpolation and decimation of digital singals-A tutorial review. Proc.IEEE. Mar.1981.69(3): 330-331.
    [22]M.Unser, A.Aldroubi, M.Eden. Enlargement or reduction of digital images with minimum loss of information. IEEE Transactions on Image Processing, Mar.1995, 4(3):247-258.
    [23]D. Rajan, S. Chaudhuri, Generalized interpolation and its application in super-resolution imaging, Image and Vision Computing, Nov. 2001. vol.19:957–969.
    [24] Kaltenbacher E,Hardie R C. High resolution infrared reconstruction using multiple, low resolution, aliased frames.SPIE,1996,2751:702~709.
    [25] R. R. Schultz, R. L. Stevenson. Improved definition image expansion, Proc. 1992 Internataonal Conference on Acoustics, Speech, and Szgnal Processing,San Francisco,CA, Mar. 23-26, 1992, pp. 171-173.
    [26] R. R. Schultz, R. L. Stevenson, Extraction of high-resolution frames from video sequences, IEEE Trans. Image Processing, June 1996, vol. 5, pp.996–1011.
    [27]R.R. Schultz, Meng L. Subpixel Motion Estimation for Super-Resolution Image Sequence Enhancement. Journal of Visual Communication and Image Representation, March 1998,Volume 9, Number 1:38-50(13).
    [28] Hardie R C,Barnard K J,Armstrong E E. Joint MAP registration and high-resolution image estimation using a sequence of undersampled images. IEEE.Trans.Image Process,1997.6(12):1621-1633.
    [29]Hardie R C,Cain S,Barnard K J,et al. High resolution image reconstruction from a sequence of rotated and translated infrared images.SPIE,1997.3063:113-124.
    [30]Jing Tian, Kai-Kuang Ma, A MCMC approach for Bayesian super-resolution image reconstruction,in Proc. IEEE Int. Conf. on Image Processing. Genoa, Italy, Sept. 2005, pp. 45-48.
    [31]Jing Tian, Kai-Kuang Ma, Markov chain Monte carlosuper-resolution image reconstruction with simultaneous adaptation of the prior image model,in Proc. Pacific-Rim Conf. on Multimedia. Nov. 2006, pp. 287-294.
    [32]Jing Tian, Kai-Kuang Ma, Markov chain Monte Carlo super-resolution image reconstruction with artifacts suppression,in Proc. IEEE Asia-Pacific Conf. on Circuits and Systems. Singapore, Dec. 2006, pp. 940-943.
    [33]Jing Tian, Kai-Kuang Ma, Super-resolution imaging using Grid computing,in Proc. IEEE Int. Symp. on Cluster Computing and the Grid. Rio de Janeiro, Brazil, May 2007, pp. 293-300.
    [34] H. Shen, L. Zhang, B. Huang, and P. Li, “A MAP approach for joint motion estimation, segmentation, and super resolution,”IEEE Trans. on Image Processing, Feb. 2007. vol. 16:479–490.
    [35] S. Farsiu, D. Robinson, M. Elad, P. Milanfar, Fast and robust multi-frame super-resolution,IEEE Trans. Image Processing, Oct. 2004. vol. 13:1327–1344.
    [36] Youla D C,Webb H. Image restoration by the method of convex projections part I-theory. IEEE Trans. Medical Imaging, 1982, MI-1(1):81-94.
    [37] Patti A J,Sezan M I,Tekalp A M. High resolution standards conversion of low resolution video. Proc.IEEE Int.Conf.Acoustics,Speech,and Signal Processing(ICASSP),Detroit,MI.,1995.2:2197-2200.
    [38] Patti A J,Sezan M I,Tekalp A M. Superresolution video reconstruction witharbitrary sampling lattices and nonzero aperture time. IEEE Trans.Image Process,1997.6(8):1064-1076.
    [39]Stern Adrian,Kempner Elad,Shukrun Avi. Restoration and resolution enhancement of a single image from a vibration distorted image sequence.SPIE, 1999;(3808) :224-233.
    [40] Li Hong, Roberto Sannino, Jarkko Kari. Multistage block-matching motion estimation for superresolution video reconstruction. VCIP 2002: 1052-1060.
    [41] C Ford,D M Etter. Wavelet basis reconstruction of nonuniformly sampled data. IEEE Transactions on Image Processing,1997; 6(12):1646-1658.
    [42] Nguyen N, Milanfar P. A Wavelet Based Interpolation Restoration Method for Superresolution. Invited Paper, Circuits, Systems, and Signal Processing, Special Issue on Advanced Signal and Image Reconstruction, 2000,19(4):321-338.
    [43]B. Gunturk, Y. Altunbasak, R. M. Mersereau, Super-resolution reconstruction of compressed video using transform-domain statistics,IEEE Trans. on Image Processing, Jan. 2004. vol. 13, no. 1:33-43.
    [44] C. A. Segall, R. Molina, A. K. Katsaggelos, and J. Mateos, Bayesian resolution enhancement of compressed video, IEEE Trans. on Image Processing, Jul. 2004. vol. 13:898-911.
    [45] S. Farsiu, M. Elad, P. Milanfar, Multi-frame demosaicingand super-resolution of color images, IEEE Trans. on Image Processing, Jan. 2006. vol. 15:141-159.
    [46]黄贤武,王加俊. 数字图像处理与压缩编码技术. 电子科技大学出版社. 2000.12: 188-210.
    [47]R.C.Gonzalez,R.E.Woods. Digital Image Processing. Addison-wesley. Reading, MA.1992.
    [48]A.M.Tekalp, G.Pavlovic, Digital Restoration of image scaned from photographic paper. Journal of Electronic Imaging, 1993,2(1):19-27.
    [49] 李弼程,等编著.智能图像处理技术.北京:电子工业出版社,2004.
    [50] 邹谋炎.反卷积和信号复原.北京.国防工业出版社,2001.
    [51] White Richard L.Image Restoration Usatg the Damped Richardson-Lucy Method.In:Astronomical Data Analysis Software and Systems 3 .ASP Conference Series·Vo1.6l,l994.
    [52] Papoulis A. Signal Analysis. McGraw-Hill Book Company,1977.
    [53] Kenneth R. Castkeman 著,朱志刚、石定机等译,数字图像处理,电子工业出版社.
    [54]R.L.Lagendijk, J.Biemond. Iterative Identification and Restoration of Images. Kluwer Academic Publishers, London, 1991.
    [55] Irani M, Peleg S. Motion Analysis for Image Enhancement: Resolution, Occlusion, and Transparency. Journal of Visual Communication and Image Representation, 1993, 4(4):324-335.
    [56]Luca Poletto, Piergiorgio Nicolosi. Enhancing the spatiall resoluteion of a two-dimensional discrete array detector. Optical Engineering, October 1999,38(10): 1748-1757.
    [57]Philip, J.B.Koeck. Ins and outs of digital electron microscopy. Microscopy Research and Technique. 2000,49: 217-223.
    [58]Sharon Peled, Yehezkcl Yeshurun. Superresolution in MRI: Application to human white matter fiber tract visualization by diffusion tensor imaging. Magnetic Resonance in Medicine.2001,45: 29-35.
    [59] R. Chan, T. Chan, L. Shenand Z. Shen, “Wavelet algorithms for high-resolution image reconstruction,”SIAM Journal on Scientific Computing, 2003 vol. 24, no. 4:1408-1432.
    [60]N.K.Bose, S.Lertrattanapanich, M.B. Chappalli, Superresolution with second generation wavelets, Signal Processing: Image Communication, Aug. 2004. vol. 19, no. 5:387-391.
    [61] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, Learning low-level vision,International Journal of Computer Vision, Jan. 2000, vol. 40, pp. 25–47.
    [62] A. Hertamann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin. Image analogies, in Proc. Siggraph, 2001.
    [63] K. S. Ni and T. Q. Nguyen. Image superresolutionusing support vector regression. IEEE Trans. on Image Processing, Jun. 2007, vol. 16, pp. 1596–1610.
    [64] Rafael C. Gonzalez, Richard E. Woods 著,阮秋琦,阮宇智译,数字图像处理(第二版),北京:电子工业出版社,2005.
    [65]勒中鑫,数字图像信息处理,北京:国防工业出版社,2003.
    [66]朱秀昌,刘峰,胡栋,数字图像处理与图像通信,北京:北京邮电大学出版社,2002.
    [67]王兆华,H. Amiri,用二维重叠数字滤波器再生亚 Nyquist 取样 PLA 信号,天津大学学报,1983,1:47-64.
    [68]侯正信,三种二维重叠数字滤波器的构造,天津大学学报,1985,1:29-49.
    [69]王兆华,二维列率重叠数字滤波器,电子学报,1985,13(6):13-18.
    [70]王兆华,H. Amiri,二维低通重叠数字滤波器的研究,通信学报,1986,1(6):84-88.
    [71]王兆华,亚 Nyquist 取样 PAL 信号的二维重构,通信学报,1987,8(1):93-97.
    [72]侯正信,利用边缘特征的离散余弦子带图像编码,信号处理,CCSP’99,1999:387-390.
    [73]侯正信, 离散余弦列率滤波器的设计及应用, 天津大学学报,1999,32(3):324-328.
    [74]侯正信,全相位列率滤波器的设计与实现,CCSP2001,2001,132-135.
    [75]侯正信,王兆华,杨喜,全相位 DFT 数字滤波器的设计与实现,电子学报,2003,31(4):539-542.
    [76]王兆华,侯正信,苏飞,全相位 FFT 频谱分析,通信学报,2003,24(11A):16-19.
    [77]侯正信,陈平,徐妮妮,全相位 DFT 数字滤波器的一种等价结构,信号处理,2004,20(3):272-276.
    [78]侯正信,徐妮妮,加窗全相位 DFT 数字滤波器,天津大学学报,2005,38(5):448-454.
    [79]徐妮妮,侯正信,全相位半带滤波器及其应用,天津大学学报,2005,38(3):206-211.
    [80]侯正信,郭迎春,基于二维 APDCSF 的列率子带特征编码方法,光电子.激光,2005,16(9):1112-1117.
    [81]章毓晋. 图像工程(中册):图像分析(第 2 版). 北京:清华大学出版社.2005.
    [82]Kayargadde V, Martens J B. Estimation of edge parameters and image blur using polynomial transforms. CVGIP-GMIP, 1994, 56(6): 442-461.
    [83]Canny J. A computational approach to edge detection. IEEE-PAMI, 1986, 8: 679-698.
    [84]A. Zomet, A. Rav-Acha and S. Peleg, Robust Super Resolution. Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii, December 2001. 204-210.
    [85]Yao Wang. 视频处理与通信[M]. 侯正信等译. 北京:电子工业出版社,2003.
    [86]Stiller, C., and J. Konrad. Estimation motion in image sequences. IEEE signal processing Magazine. July 1999. 16:70-91.
    [87]Wang Y., and O. Lee. Active mesh-a feature seeking and tracking image sequence representation scheme. IEEE Trans. Image Process. Sept. 1994, 3:610-624.
    [88]Altunbasak, Y., and A.M. Tekalp. Closed-form connectivity preserving solutions for motion compensation using 2D meshes. IEEE Trans. Image Process. Sept. 1997,6:1255-1269.
    [89]Altunbasak, Y., and A.M. Tekalp. Occlusion-adaptive, content-based mesh design and forward tracking. IEEE Trans. Image Process. Sept. 1997, 6:1270-1280.
    [90]Duda, R. O., and P.E. Hart. Pattern Classification and Scene Analysis. New York: John Wiley & Sons, 1973.
    [91]Wang, Y., X.M. Hsieh, J.H. Hu, and O. Lee. Region segmentation based on active mesh representation of motion: comparison of parallel and sequential approaches. IEEE Int. Conf. on Image Proc.(ICIP’95) , Washington, DC,Oct. 1995,185-188.
    [92]Hsu, S., P. Anandan, and S.Peleg. Accurate computation of optical flow using layered motion representations. In IEEE Int. Conf. Patt. Recog. Jerusalem, Israel, Oct. 1994, 743-746.
    [93]Xiaoming Li and Cesar Gonzales. A locally quadratic model of the motion estimation error criterion function and its application to subpixel interpolations. IEEE Trans. Circuits and Sys. for Video Tech. Feb.1996, Vol.6, NO.1, pp:118-122.
    [94]Bierling, M., Displacement estimation by hierarchical block matching. In SPIE Conf., Visual Comm. Image Processing, Nov. 1998, SPIE-1001: 942-951.
    [95]Horn B K P, Schunck B G. Determining optical flow. Artificial Intelligence, 1981,17:185-203.
    [96]Black M J, Jepson A D. Estimation optical flow in segmented images using variable-order parametric models with local deformations. IEEE Trans Pattern Analysis and Matchine Intelligence, 1996, 18(10):972-986.
    [97] Adelson E H, Bergen J R. The extraction of spatiotemporal energy in human and machine vision. In: Proceedings-Workshop on Motion:Representation and Analysis. Charleston:IEEE Computer Society, 1986. 151-156.
    [98]Kearney J K, Thompson W B. Optical flow estimation: An error analysis of gradient-based methods with local optimization. IEEE Trans Pattern Analysis and Machine Intelligence, 1987,9(2):229-244.
    [99]Simoncelli E P, Adelson E H. Probability distributions of optical flow. In:Proc IEEE Conf Computer Vision and Pattern Recognition.NJ USA:IEEE Piscataway, 1991.310-315.
    [100]Sim D G, Park R H. Robust reweighted MAP motion estimation. IEEE Trans Pattern Analysis and Machine Intelligence, 1998,20(4):353-365.
    [101]Fogel S V. Estimation of velocity vectors fields from time varying image sequences. CVGIP: Image Understanding, 1991,53:253-287.
    [102]Nagel H H,Enkelmann W.An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans on Pattern Analysis and Machine Intelligence,1986,8(5):565-593.
    [103]Enkelmann W.investigations of multigrid algorithms for the estimation of optical flow fields in image sequences.Comp.Vis.Graph Image Proc.1988,43:150-177.
    [104]沈剑华编. 数值计算基础(第二版). 上海:同济大学出版社. 2004.
    [105]王楠楠,李桂苓. 符合人眼视觉特性的视频质量评价模型. 中国图象图形学报:A 辑. 2001,6(6):523-527.
    [106]CCIR Rec. 500-5. Method for the subjective assessment of the quality of television pictures, Recommendations of the ITU, Telecommunications Standardization Sector, 1990.
    [107]Lim B JO. Distortion Criterion of the Human Viewer. IEEE Trans On Sys Man Cyber, 1979, 9 (12): 778-793.
    [108]Zhou Wang, Alan C. Why is image quality assessment so difficult, Proc. IEEE Int. Conf. Acoustics, Speech, & Multimedia and Expo, May 2002.
    [109]Antoon M, van Dijk. Subjective quality assessment of compressed image, Signal Processing, 1997, 58: 235-252.
    [110]俞斯乐,侯正信等著. 电视原理(第六版). 北京:国防工业出版社.2005.
    [111]Karunaseka S A.A distortion measure for blocking artifacts image based on human visual sensitivity, IEEE Trans. Image Processing, 1995, 4 (6): 713-724.
    [112]T. Eude, H. Cherifi. On quality metrics for low bitrate coding, SPIE Visual Communication and Image Processing, 1997, 3016: 70-81.
    [113]G.Daugman. Two-dimensional spectral analysis of the cortical receptive field profiles, Vision Research, 1980, 20:847-856.
    [114]R. F. Hess, R. I. Snowden. Temporal properties of human visual filters: number, shapes, and spatial covariation, Vision Research, 1992, 32(1):47-59
    [115]P. C. Teo, D. J. Heeger. Perceptual image distortion, Proc. IEEE Int. Conf. Image Proc., Nov. 1994.
    [116]G. E. Legge,J.M. Foley. Contrast masing in human vision, JOSA, 1980, 70(12): 1458-1471.
    [117]S.Comes, B.Macq. Human visual quality criterion, SPIE Visual Communication and Image Processing, 1990, 1360:27-30.
    [118]N.Jayant. Signal compression: technology targets and research directions,IEEE J. Select. Areas Communications, June 1992, vol. 10, pp.314-323.
    [119]N. layant, l. Johnston, R. Safranek. Signal compression based on model of human perception, Proceedings of the IEEE, Oct. 1993. vol. 81, pp.1385-1422.
    [120]C. H. Chou, Y. C. Li, A perceptually tuned subband image coder based on the measure of Just-Noticeable-Distortion profile, IEEE Trans. Circuits and Systems for Video Technology, Dec,1995. vol.5, no. 6, pp. 467-476.
    [121]R. J.Safranek, J. D. Johnston, A perceptually tuned subband image coder with image dependent quantization and post-quantization data compression, IEEE International Conference on Acoustics, Speech and Signal Processing, 1989. vol3: 1945-1948.
    [122]B. Girod, Psychovisual aspects of image communication. Signal Processing, Sept. 1992. 28(3): 239-251.
    [123] B. Girod, H. Almer, L. Bengsson, B. Christonsson, P. Weiss. A subjective evaluation of noise shaping quantization for adaptive intra interframe DPCM coding of color television signals, IEEE Trans. Communications, Mar. 1988. 36(3): 332-346.
    [124]A. B. Watson, DCT quantization matrices visually optimize for individual images, Human Vision, Visual Processing and Digital Display IV, Proc.SPIE, 1993. 1913: 202-216.
    [125]Christian J. van den Branden Lambrecht. Color moving pictures quality metric. Proc. IEEE Int. Conf. Image Proc. 1996, vol1: 885-888.
    [126]Par Lindh, C. J. van den Branden Lambrecht, Efficient Spatio Temporal Decomposition for Perceptual Processing of Video Sequences. Proc. IEEE Int. Conf. Image Proc. 1996, vol3: 331-334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700