用户名: 密码: 验证码:
高功率光纤激光器输出特性优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率光纤激光器作为新一代固体激光,以其阈值低、效率高、光束质量好、散热性能好、结构紧凑等优点,广泛应用于光通信、医疗、工业和军事等领域。目前,连续光纤激光器的输出已达到万瓦量级,脉冲光纤激光器的输出已达到兆瓦量级。然而,随着输出功率的不断提升,如何优化光纤激光系统的性能成为高功率光纤激光器总体设计和工程研制的重要问题。本论文在前人工作基础上,系统研究了高功率连续和锁模脉冲光纤激光器系统的优化问题,并提供了设计准则。取得的主要成果有:
     第一,改进了一种适用于求解连续双包层光纤激光器传输模型的打靶算法。连续双包层光纤激光器的传输模型属于二元微分方程,通常仅知道其初始泵浦功率,因此无法直接用打靶法求解。根据传输模型两边值之间的关系,将原有传输方程转化为已知两边界值的二元微分方程的边值问题,由此可用打靶法求解。这种改进的打靶法可对连续双包层光纤激光器的传输模型进行简单、快速、准确的求解。
     第二,提出了一种适用于求解连续双包层光纤激光器传输模型的线性迭代打靶算法。在常规连续双包层光纤激光器的传输模型中,信号激光的初始和末端值成比例关系,当初始信号功率不满足边界条件时,可以直接利用该比例关系和已得到的输出端功率值的乘积作为下一个信号功率的初始值,直到满足条件为止。在相同精度下,该线性迭代打靶算法比原基于牛顿—拉夫逊迭代的打靶法(或改进的打靶法)更简单,且运算量提高2-4倍。
     第三,提出了一种适用于连续光纤激光器的光纤最佳长度准则,分析了散射损耗、掺杂离子浓度等参数对光纤最佳长度和输出特性的影响,为建立优化的高功率连续激光输出提供了理论依据。为了使系统得到高性能输出,要求光纤工作在最佳长度。但以往关于光纤最佳长度的分析是在忽略散射损耗和泵浦反射等近似条件下进行的,本文从光纤最佳长度的物理概念出发,建立了更广泛的光纤最佳长度模型,且该模型在系统存在泵浦反射和散射损耗时仍适用。
     第四,基于非线性偏振旋转被动锁模光纤激光器,理论和实验研究了负色散下腔体结构参数对脉冲输出特性的影响,得到了偏振控制、腔长等参数对脉冲输出特性的影响规律,为建立高功率高能量脉冲输出提供了依据。实验发现在长腔负色散系统中,偏振状态的改变不仅能产生双脉冲、三脉冲等多态孤子,还得到无孤子分裂的基态孤子。该基态孤子比多态孤子脉冲能量和峰值功率大,且其脉冲宽度和输出平均功率(或脉冲能量)随泵浦功率线性增加。腔长增长,基态重复频率降低,脉冲宽度、脉冲能量和峰值功率增大。腔内色散系数增加,输出脉宽变窄,平均功率、脉冲能量和峰值功率提高。另外,偏振状态和腔长的变化会引起中心波长的移动。
As a new generation of solid state laser, high power fiber lasers have been widely used in optical communications, medicine, industry and martial because of its low threshold, high efficiency, good beam quality and compactness. At present, the output power of continuous wave high-power fiber laser has been increased to the ten thousand watts level, and that of pulse fiber laser has reached the megawatt level. However, with the rising output power, how to optimize the overall fiber laser system is an important issue for laser system design. In this thesis, based on the previous works, we have systematically studied the optimization problems of high power continuous wave and mode-locked pulse fiber lasers, and have provided design criterion. The innovative achievements are summarized as follows:
     Firstly, an improved shooting algorithm is proposed for continuous wave double-clad fiber lasers. The propagation model of continuous wave double-clad fiber laser, which only knows the pump power and the relation of the laser powers at the two ends, belongs to binary differential equation, so the shooting method cannot be directly used. Based on the relation of the laser power values at the two ends, the original equations can be transferred into boundary value problem of the known two-end values, and can be resolved by the shooting algorithm. The improved shooting algorithm can be fairly simple, quick and efficient.
     Secondly, a shooting algorithm based on the new linear iteration process is proposed for solving the propagation equation of continuous wave double-clad fiber laser. In general, the initial laser power is proportional to the terminal laser power for continuous double-clad fiber laser. And when the guessed initial laser power does not satisfy the boundary condition, the next guessed initial laser power can be directly corrected based on the relation between the initial and terminal laser power until the conditions are satisfied. The new iteration process of the shooting algorithm is quite simple. Under the same precision, its operational speed can improved2to4times compared with the classical or improved shooting method.
     Thirdly, a new criterion of the fiber optimum length for continuous fiber laser is proposed, and the effects of cavity parameters, such as laser scattering loss and ion concentration on the fiber optimum length and output characteristics is analyzed, which provides the theoretical basis for improving the performace of high-power fiber laser. In order to improve the output performance, the system should be work under the optimum fiber length. In the previous work, the optimum fiber length is analyzed without regard to laser scattering loss and the pump reflector in the output-end. In our work, a more extended model for the optimum fiber length based on its physical concept is built up, which is applicable with laser scattering loss and pump reflector.
     Finally, the effects of the cavity parameters on the soliton pulse characteristics in negative dispersion region have been analyzed theoretically and experimentally which provides the basis for improving the output power and energy of the pulse fiber laser based on nonlinear polarization rotation passively mode-locked fiber laser. The experiment results show that in the long-cavity negative dispersion mode-locked fiber laser, increasing the pump power not only can change the pulse output state, such as two-pulse and three-pulse, but also can got the fundamental soliton of wave-breaking-free in which the pulse energy and peak power are the maximum and are increased with the increasing pump power under the certain state of polarization controller. Increasing cavity length of the fiber laser, the pulse can be got with the lower fundamental repetition rate, the larger pulse width, the increasing pulse average power and pulse energy. With increasing the overall group velocity dispersion, the pulse width is decreased, and pulse average power, energy and peak power can be greatly improved. Another, the changes in polarization state and cavity length causes the shift of its central wavelength.
引文
[1]Maiman T. Stimulated optical radiation in ruby. Nature,1960,187:493-494
    [2]Uerle D B. Laser processing and chemistry: recent developments. Applied Surface Science,2002,186(1-4):1-6
    [3]Mester E, Mester A F. The biomedical effects of laser application. Lasers in Surgery and Medicine,1985,5(1):31-39
    [4]Egorov A Y, Bernklau D, Borchert B, et al. Growth of high quality InGaAsN heterostructures and their laser application.Journal of Crystal Growth,2001, 227(3):545-552
    [5]Partovi A, Peale D, Wuttig M, et al. High-power laser light source for near-field optics and its application to high-density optical data storage. Applied Physics Letters,1999,75(11):1515-1517
    [6]Pini R, Salimbeni R, Vannini M, et al. Laser dentistry:a new application of excimer laser in root canal therapy. Lasers in Surgery and Medicine,1989,9(4): 352-357
    [7]Zenteno L. High-power double-clad fiber lasers. Journal of Lightwave Technology,1993,11(9):1435-1446
    [8]Limpert J, Roser F, Schreiber T, et al. High-power ultrafast fiber laser systems. IEEE Journal of Selected Topics in Quantum Electronics,2006,12(2):233-244
    [9]Jackson S D, Sabella A, Lancaster D G. Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm. IEEE Journal of Selected Topics in Quantum Electronics,2007,13(3):567-572
    [10]Rossi B. Commercial fiber lasers take on industrial markets. Laser Focus World, 1997,33(5):143-149
    [11]Galvanauskas A. High power fiber lasers. Optics and Photonics News,2004, 15(7):42-47
    [12]Ueda K, Liu A. Future of high-power fiber lasers. Laser Physics,1998,8(3): 774-781
    [13]Ke C J. High-power double-clad fiber laser. Optics and Optoelectronic Technology,2003,1(5):43-46
    [14]Even P, Pureur D. High-power double-clad fiber lasers:a review. In: Proceedings of SPIE.2002,4638
    [15]Ueda K. Optical cavity and future style of high-power fiber lasers. In: Proceedings of SPIE.1998,3267
    [16]Hideur A, Chartier T, Brunel M, et al. Mode-lock, Q-switch and C W operation of an Yb-doped double-clad fiber ring laser. Optics Communications,2001, 198(3):141-146
    [17]Alvarez-Chavez J, Offerhaus H, Nilsson J, et al. High-energy, high-power ytterbium-doped Q-switched fiber laser. Optics Letters,2000,25(1):37-39
    [18]Huang J, Liang H, Su K, et al. High power passively Q-switched ytterbium fiber laser with Cr4+:YAG as a saturable absorber. Optics Express,2007,15(2): 473-479
    [19]Limpert J, Deguil-Robin N, Petit S, et al. High power Q-switched Yb-doped photonic crystal fiber laser producing sub-10 ns pulses. Applied Physics B: Lasers and Optics,2005,81(1):19-21
    [20]Kir'yanov A, Barmenkov Y O. Self-Q-switched Ytterbium-doped all-fiber laser. Laser Physics Letters,2006,3(10):498-502
    [21]Chong A, Renninger W H, Wise F W. All-normal-dispersion femtosecond fiber laser with pulse energy above 20nJ. Optics Letters,2007,32(16):2408-2410
    [22]Fermann M, Harter D, Minelly J, et al. Cladding-pumped passively mode-locked fiber laser generating femtosecond and picosecond pulses. Optics Letters,1996,21(13):967-969
    [23]Lou Q H, Zhou J, Zhu J Q, et al. Recent progress of high-power fiber lasers. Infrared and Laser Engineering,2006,35(2):135-138
    [24]Hudson D. Mode-locked fiber lasers:development and application: [dissertation]. US:Univ. of Colorado,2009
    [25]Dzhibladze M, Esiashvili Z, Teplitskie S, et al. Mode locking in a fiber laser. Soviet Journal of Quantum Electronics,1983,13:245-247
    [26]Shih C. The study on the application of ring passive mode-locking fiber lasers: [dissertation]. Taipei:N ational Taiwan Univ,2007
    [27]Ball G A, Morey W. Continuously tunable single-mode erbium fiber laser. Optics Letters,1992,17(6):420-422
    [28]Mirov S, Fedorov V, Graham K, et al. Erbium fiber laser-pumped continuous-wave microchip Cr+:ZnS and Cr+:ZnSe lasers. Optics Letters, 2002,27(11):909-911
    [29]Ball G, Morey W, Glenn W. Standing-wave monomode erbiμm fiber laser. IEEE Journal of Photonics Technology Letters,2002,3(7):613-615
    [30]Barnes W, Morkel P, Reekie L, et al. High-quantum-efficiency Er3+ fiber lasers pumped at 980 nm. Optics Letters,1989,14(18):1002-1004
    [31]Iwatsuki K. Er-doped superfluorescent fiber laser pumped by 1.48 μm laser diode. IEEE Journal of Photonics Technology Letters,2002,2(4):237-238
    [32]Sahu J, Jeong Y, Richardson D, et al. A 103 W erbium-ytterbium co-doped large-core fiber laser. Optics Communications,2003,227(1-3):159-163
    [33]Li L, Morrell M, Qiu T, et al. Short cladding-pumped Er/Yb phosphate fiber laser with 1.5W output power. Applied Physics Letters,2004,85(14): 2721-2723
    [34]Chow J, Town G, Eggleton B, et al. Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters. IEEE Journal of Photonics Technology Letters,2002,8(1):60-62
    [35]Liu X, Yang X, Lu F, et al. Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber. Optics Express,2005,13(1):142-147
    [36]Mizrahi V, DiGiovanni D, Atkins R, et al. Stable single-mode erbium fiber-grating laser for digital communication. IEEE Journal of Lightwave Technology,2002,11(12):2021-2025
    [37]Kringlebotn J, Archambault J, Reekie L, et al. Er3+:Yb3+-codoped fiber distributed-feedback laser. Optics Letters,1994,19(24):2101-2103
    [38]Kurkov A, Paramonov V, Medvedkov O. Ytterbium fiber laser emitting at 1160 nm. Laser Physics Letters,2006,3(10):503-506
    [39]Jeong Y, Sahu J, Payne D, et al. Ytterbium-doped large-core fiber laser with 1.36kW continuous-wave output power. Optics Express,2004,12(25): 6088-6092
    [40]Jeong Y, Nilsson J, Sahu J, et al. Single-mode plane-polarized ytterbium-doped large-core fiber laser with 633-W continuous-wave output power. Optics Letter, 2005,30(9):955-957
    [41]Dvoyrin V V, Mashinsky V M, Dianov E. Yb-Bi pulsed fiber lasers. Optics Letters,2007,32(5):451-453
    [42]Clarkson W, Barnes N, Turner P, et al. High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090nm. Optics Letters, 2002,27(22):1989-1991
    [43]Sanders S, Waarts R, Mehuys D, et al. Laser diode pumped 106 mW blue upconversion fiber laser. Applied Physics Letters,1995,67(13):1815-1817
    [44]Richards B, Tsang Y, Binks D, et al. Efficient 2 μm Tm 3+-doped tellurite fiber laser. Optics Letters,2008,33(4):402-404
    [45]Golding P, Jackson S D, Tsai P K, et al. Efficient high power operation of a Tm-doped silica fiber laser pumped at 1.319 nm. Optics Communications,2000, 175(1-3):179-183
    [46]Taniguchi A, Kuwayama T, Shirakawa A, et al.1212 nm pumping of 2μm Tm-Ho-codoped silica fiber laser. Applied Physics Letters,2002,81(20): 3723-3725
    [47]Snitzer E. Optical maser action of Nd3 in a barium crown glass. Physical Review Letters,1961,7(12):444-446
    [48]Snitzer E. Cylindrical dielectric waveguide modes. Journal of Optical Social American A,1961,51(5):491-498
    [49]Koester C J, Snitzer E. Amplification in a fiber laser. Applied Optics,1964, 3(10):1182-1186
    [50]Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies. Proceedings of the Institution of Electrical Engineers,1966,113(7): 1151-1158
    [51]Stone J, Burrus C. Neodymium-doped fiber lasers-Room temperature CW operation with an injection laser pump. Applied Optics,1974,13:1256-1258
    [52]Stone J. Measurement of Rayleigh scattering in liquids using optical fibers. Applied Optics,1973,12(8):1824-1827
    [53]Poole S, Reekie L, Mears R, et al. Neodymium-doped silica single-mode fibre lasers. Electronics Letter,1985,21(17):738-740
    [54]Mears R. High gain rare-earth doped fiber amplifier operation at 1.55μm. Electronics Letter,1986,23:1026-1028
    [55]Mears R, Reekie L, Poole S, et al. Low threshold tunable cw and Q-Switched fibre laser operating at 1.5 μm. Electronics Letter,1986,22:159-163
    [56]Reekie L, Jauncey I M, Poole S B, et al. Diod-laser-pumped operation of an Er3+ -doped single-mode fibre laser. Electronics Letter,1987,23(20):1076-1078
    [57]Schweizer T, Samson B, Moore R, et al. Rare-earth doped chalcogenide glass fibre laser. Electronics Letters,2002,33(5):414-416
    [58]Urquhart P, Review of rare earth doped fiber lasers and amplifiers. IEEE Journal of Optoeletronics,1988,1:49-53
    [59]Paschotta R, Nilsson J, Tropper A C, et al. Ytterbium-doped fiber amplifiers. IEEE Journal of Quantum Electronics,2002,33(7):1049-1056
    [60]Pask H, Carman R, Hanna D. Ytterbium-doped silica fiber lasers: versatile sources for the 1.2μm region. IEEE Journal of Selected Topics in Quantum Electronics,1995,1(1):2-3
    [61]Snitzer E, Po H, Hakimi F, et al. Double cald, offset core Nd fiber laser. In: Optical Fiber Sensors Conference.1988,1:PD5
    [62]Zurn M, Voigt J, Brinkmeyer E, et al. Line narrowing and spectral hole burning in single-mode Nd3+-fiber lasers. Optics Letters,1987,12(5):316-318
    [63]Po H, Cao J, Laliberte B, et al. High power neodymium-doped single transverse mode fibre laser. Electronics Letters,2008,29(17):1500-1501
    [64]Zellmer H, Willamowski U, Tunnermann A, et al. High-power cw neodymium-doped fiber laser operating at 9.2 W with high beam quality. Optics Letters,1995,20(6):578-580
    [65]Mears R, Reekie L, Poole S, et al. Neodymium-doped silica single-mode fibre lasers. Electronics Letters,2007,21(17):738-740
    [66]Glas P, Fisher D. Cladding pumped large-mode-area Nd-doped holey fiber laser. Optics Express,2002,10(6):286-290
    [67]Po H, Cao J D, Laliberte B M, et al. High power neodymium-doped single transverse mode fiber laser. Electronics Letters,1993,29(17):1500-1501
    [68]Pask H, Archambault J, Hanna D, et al. Operation of cladding-pumped Yb3+-doped silica fibre lasers in 1μm region. Electronics Letters,1994,30(11): 863-865
    [69]Furusawa K, Malinowski A, Price J, et al. Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding. Optics Express,2001,9(13): 714-720
    [70]Limpert J, Schreiber T, Nolte S, et al. High-power air-clad large-mode-area photonic crystal fiber laser. Optics Express,2003,11(7):818-823
    [71]Feng X, Liu Y, Fu S, et al. Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating. IEEE Journal of Photonics Technology Letters,2004,16(3):762-764
    [72]Jeong Y, Sahu J, Payne D, et al. Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power. Electronics Letters,2004,40(8):470-472
    [73]Nilsson J, Clarkson W, Selvas R, et al. High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers. Optical Fiber Technology, 2004,10(1):5-30
    [74]Kringlebotn J, Archambault J, Reekie L, et al. Er3+:Yb3+-codoped fiber distributed-feedback laser. Optics Letters,1994,19(24):2101-2103
    [75]Hideur A, Chartier T, zkul C, et al. All-fiber tunable ytterbium-doped double-clad fiber ring laser. Optics Letters,2001,26(14):1054-1056
    [76]Cheo P and King G. Clad-pumped Yb:Er codoped fiber lasers. IEEE journal of Photonics Technology Letters,2002,13(3):188-190
    [77]Selvas R, Sahu J, Fu L, et al. High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980 nm. Optics Letters,2003, 28(13):1093-1095
    [78]Inniss D, DiGiovanni D, Strasser T, et al. Ultrahigh-power single-mode fiber lasers from 1.065 to 1.472 μm using Yb-doped cladding-pumped and cascaded Raman lasers. In:Conf. Laser and Electro-Optics. Baltimore,1997, CPD31-3
    [79]友清译.高功率光纤激光器.激光和光电子学进展,1998,1:40-43
    [80]Dominic V, MacCormack S, Waarts R, et al.110 W fibre laser. Electronics Letters,2002,35(14):1158-1160
    [81]Valentin G, William K. Fiber laser grow in power. Laser Focus World.2002, 38(8):83-87
    [82]Nilsson J, Sahu J K, Jeong Y, et al. High-power fiber lasers:new developments. In:Proceedings of SPIE. San Jose,2003,50:4971
    [83]Gapont D. Quasi-single-mode fiber laser nears 2kW output with high-quality beam. Laser Focus World,2005,41(6):9-11
    [84]Hecht J. The highest single-mode powers of Yb-doped fiber Lasers achieved 2 kW cw output. Lasers and Electro-Optics Europe,2005,12-17
    [85]宁鼎,王文涛,阮灵等.掺Yb3+双包层石英光纤的研制及其激光特性.中国激光,2000,27(11):987-991
    [86]宁鼎,傅成鹏.掺Yb3+双包层光纤激光器的实验研究.光子学报,2001,30(4):442-445
    [87]宁鼎,李乙钢,董新永.矩形内包层掺Yb3+石英光纤的研制及其抽运性能.光学学报,2001,21(12):1417-1420
    [88]周军娄,祺洪,李铁军等.4.9 W掺Yb3+双包层光纤激光器及其输出特性研究.光学学报,2003,23(4):476-479
    [89]吕福云,樊亚仙,王洪杰.高斜率效率6.5W双包层掺Yb3+光纤激光器.中国激光,2002,A29(10):13-17
    [90]宁志勇,宁提纲,简水生.196W功率输出的高功率包层泵浦光纤激光器.光通信研究,2005,6(32):50-53
    [91]楼祺洪,周军,朱健强等.国产双包层掺镱光纤实现440W的连续高功率 激光输出.中国激光,2005,32(001):20-20
    [92]李晨,闫平,陈刚等.采用国产掺镱双包层光纤的光纤激光器连续输出功率突破700W.中国激光,2006,33(6):738
    [93]李伟,武自淳,陈曦等.大功率光纤激光器输出功率突破1kW.强激光与粒子束,2006,18(6):890
    [94]赵鸿,周寿恒,朱辰等.大功率光纤激光器输出功率超过1.2 kW.激光与红外,2006,36(10):930
    [95]楼祺洪,何兵,薛宇豪等.1.75 kW国产掺Yb双包层光纤激光器.中国激光,2009,(5):1277
    [96]C. Miao-hai. Research Progress of High-power Fiber Lasers. Laser and Infrared, 2007,37(7):589-592
    [97]姬寒珊.高功率光纤激光器及其在激光武器中的应用前景分析.地面防空武器,2005,3(315):29-32
    [98]Jeong Y, Sahu J, Baek S, et al. Cladding-pumped ytterbium-doped large-core fiber laser with 610 W of output power. Optics Communications,2004,234(1-6): 315-319
    [99]Y1-Jarkko K, Selvas R, Soh D, et al. A 3.5 W 977 nm cladding-pumped jacketed air-clad ytterbium-doped fiber laser. Advanced Solid-state Photonics, 2003,83(103):2440-2444
    [100]Offerhaus H, Broderick N, Richardson D, et al. High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber. Optics Letters,1998,23(21):1683-1685
    [101]Laroche M, Chardon A, Nilsson J, et al. Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser. Optics Letters,2002,27(22): 1980-1982
    [102]Paschotta R, Hring R, Gini E, et al. Passively Q-switched 0.1-mJ fiber laser system at 1.53μm. Optics Letters,1999,24(6):388-390
    [103]Huang D W, Liu W F, Yang C. Q-switched all-fiber laser with an acoustically modulated fiber attenuator. IEEE Journal of Photonics Technology Letters, 2002,12(9):1153-1155
    [104]Piper A, Malinowski A, Furusawa K, et al. High-power, high-brightness, mJ Q-switched ytterbium-doped fibre laser. Electronics Letters,2004,40(15): 928-929
    [105]Spence D, Kean P N and Sibbett W.60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Optics Letters,1991,16(1):42-44
    [106]Tamura K, Haus H, Ippen E. Self-starting additive pulse mode-locked erbium fibre ring laser. Electronics Letters,2008,28(24):2226-2228
    [107]Sharp R, Spock D, Pan N, et al.190-fs passively mode-locked thulium fiber laser with a low threshold. Optics Letters,1996,21(12):881-883
    [108]Kafka J, Baer T, Hall D W. Mode-locked erbium-doped fiber laser with soliton pulse shaping. Optics Letters,1989,14(22):1269-1271
    [109]Wang F, Rozhin A, Scardaci V, et al. Wideband-tuneable, nanotube mode-locked, fibre laser. Nature Nanotechnology,2008,3(12):738-742
    [110]Duling I. All-fiber ring soliton laser mode locked with a nonlinear mirror. Optics Letters,1991,16(8):539-541
    [111]Fan Y X, Lu F Y, Hu S L, et al.105 kW peak-power double-clad fiber laser. IEEE Journal of Photonics Technology Letters,2003,15(5):652-654
    [112]Desouza E, Soccolich C, Pleibel W, et al. Saturable absorber modelocked polarisation maintaining erbium-doped fibre laser. Electronics Letters,2008, 29(5):447-449
    [113]Richardson D, Laming R, Payne D, et al. Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch. Electronics Letters,2008,27(6):542-544
    [114]Tamura K, Ippen E, Haus H, et al.77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Optics Letters,1993,18(13):1080-1082
    [115]Dzhibladze M, Esiashvili Z, Teplitskie S, et al. Mode locking in a fiber laser. IEEE Journal of Soviet Journal of Quantum Electronics,1983,13:245
    [116]Tamura K, Ippen E P, Haus H A, et al.77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Optics Letter,1993,18(13): 1080-1082
    [117]Barnett B C, Rahman L, Islam M N, et al. High-power erbium-doped fiber laser mode locked by a semiconductor saturable absorber. Optics Letter,1995,20(5): 471-473
    [118]Hideur A, Chartier T, Brunel M, et al. Generation of high energy femtosecond pulses from a side-pumped Yb-doped double-clad fiber laser. Applied Physics Letters.2001,79(21):3389-3391
    [119]Abedin K S, Gopinath J T, Jiang L A, et al. Self-stabilized passive, harmonically mode-locked stretched-pulse erbium fiber ring laser. Optics Letter, 2002,27(20):1758-1760
    [120]Ortac B, Hideur A, Chartier T, et al. Generation of bound states of three ultrashort pulses with a passively mode-locked high-power Yb-doped double-clad fiber laser. IEEE Journal of Photonics Technology Letters,2004, 16(5):1274-1276
    [121]Polynkin P, Polynkin A, Panasenko D, et al. All-fiber passively mode-locked laser oscillator at 1.5μm with watts-level average output power and high repetition rate. Optics Letters,2006,31(5):592-594
    [122]Rozhin A G, Sakakibara Y, Namiki S, et al. Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker. Applied Physics Letters,2006,88(5):051118-051113
    [123]Chong A, Renninger W H, Wise F W. All-normal-dispersion femtosecond fiber laser with pulse energy above 20nJ. Optics Letters,2007,32(16):2408-2410
    [124]Orta B, Schmidt O, Schreiber T, et al. High-energy femtosecond Yb-doped dispersion compensation free fiber laser. Optics Express,2007,15(17): 10725-10732
    [125]Chong A, Renninger W H, Wise F W. Environmentally stable all-normal-dispersion femtosecond fiber laser. Optics Letters,2008,33(10):1071-1073
    [126]Orta B, Lecaplain C, Hideur A, et al. Passively mode-locked single-polarization microstructure fiber laser. Optics Express,2008,16(3):2122-2128
    [127]Olsson R K, Andersen T V, Leick L, et al. Femtosecond all-polarization-maintaining fiber laser operating at 1028 nm. In:Proceedings of SPIE.2008,7022
    [128]Morse J L, Sickler J, Chen J, et al. High repetition rate, high average power, femtosecond erbium fiber ring laser. In:Conference on Lasers and Electro-Optics/International Quantum Electronics Conference.2009, CML1
    [129]Orta B, Baumgartl M, Limpert J, et al. Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers. Optics Letter,2009,34(10): 1585-1587
    [130]Sun Z, Hasan T, Wang F, et al. Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes. Nano Research,2010,3(6):404-411
    [131]Kobtsev S, Kukarin S and Fedotov Y. Mode-locked Yb-fiber laser with saturable absorber based on carbon nanotubes. Laser Physics,2011,21(2): 283-286
    [132]刘东峰,杜戈果,陈国夫.自起振被动锁模掺Er3+光纤环形腔孤子激光器的实验研究.中国科学:A辑,1999,29(7):656-661
    [133]王肇颖,王永强,李智勇.基于色散不对称光纤环形镜的锁模光纤激光器. 光学学报,2004,24(5):645-650
    [134]赵德双,刘勇智,王秉中.高能量飞秒脉冲掺Er3+光纤激光器.光电子激光,2005,16(8):922-925
    [135]宋方,徐文成,陈伟成等.78 fs被动锁模掺Er3+光纤激光器.中国激光,2007,34(9):1174-1177
    [136]宋有建,胡明列,谢辰等.输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器.物理学报,2010,59(10):7105-7110
    [137]Takara H, Kawanishi S, Saruwatari M, et al. Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er3+ -doped fibre lasers with an all-polarisation maintaining ring cavity. Electronics Letters,2008, 28(22):2095-2096
    [138]Duling I N, Goldberg L and Weller J F. High-power, mode-locked Nd:fibre laser pumped by an injection-locked diode array. Electronics Letters,1988, 24(21):1333-1335
    [139]Hanna D C, Kazer A, Phillips M W, et al. Active mode-locking of an Yb:Er fibre laser. Electronics Letters,1989,25(2):95-96
    [140]Gong-Ru L and Chiu I H.110-pJ and 410-fs pulse at 10 GHz generated by single-stage external fiber compression of optically injection-mode-locked semiconductor optical amplifier fiber laser. IEEE Journal of Photonics Technology Letters,2006,18(9):1010-1012
    [141]Yoshida M, Kasai K and Nakazawa M. Mode-hop-free, optical frequency tunable 40-GHz mode-locked fiber laser. IEEE Journal of Quantum Electronics, 2007,43(8):704-708
    [142]Cuadrado-Laborde C, Diez A, Delgado-Pinar M, et al. Mode locking of an all-fiber laser by acousto-optic superlattice modulation. Optics Letter,2009, 34(7):1111-1113
    [143]Cuadrado-Laborde C, Diez A, Cruz J, et al. Experimental study of an all-fiber laser actively mode-locked by standing-wave acousto-optic modulation. Applied Physics B:Lasers and Optics,2010,99(1):95-99
    [144]李玉华,娄彩云.拍频自反馈锁模光纤环形激光器.中国激光,1998,25(3):213-216
    [145]于晋龙,马晓红,王林等.2.5GHz主动再生锁模光纤激光器.光电子激光,1999,10(4):293-295
    [146]娄采云,李玉华和高以智.自稳定工作的10GHz主动锁模光纤激光器.光电子激光,2000,11(3):224-226
    [147]胡智勇,丁永奎,贾东方.复合腔抑制主动锁模光纤激光器超模噪声的理论与实验研究.天津大学学报:自然科学与工程技术版,2003,36(005):645-647
    [148]彭璨,姚敏玉,张洪明等.10GHz主动锁模光纤激光器.中国激光,2003,30(2):101-104
    [149]宋方,徐文成,申民常等.主动锁模飞秒光纤激光器.中国激光,2008,35(3):347-350
    [150]Davey R P, Langford N and Ferguson A I. Interacting solutions in erbium fibre laser. Electronics Letters,1991,27(14):1257-1259
    [151]Ilday F O and Wise E. High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror. In:Laser and Electro-Optics and Laser Science Conference.2002,1:518-519
    [152]Lipson A and Orenstein M. Repetition rate enhancement and mode shaping in dual-cavity stretched pulse fiber laser. IEEE Journal of Photonics Technology Letters,2006,18(8):920-922
    [153]Boncristiano E, Saito L and Souza E De.396 fs pulse from an asynchronous mode-locked erbiμm fiber laser with 2.5 12 GHz repetition rate. Microwave and Optical Technology Letters,2008,50(11):2994-2996
    [154]Song Y W, Yamashita S and Maruyama S. Single-walled carbon nanotubes for high-energy optical pulse formation. Applied Physics Letters,2008,92(2): 21115-21113
    [155]王林,李景镇,徐平.有理数谐波主被动锁模掺铒光纤激光器.光学学报,2001,21(5):567-570
    [156]王肇颖,余震虹,高培良等.8字形主被动锁模掺Er3+光纤激光器.光学学报,2003,23(11):1341-1345
    [157]何理,杨伯君,于丽等.基于Sagnac干涉仪的混合锁模光纤激光器.光子学报,2007,36(1):5-8
    [158]蔡岳,杨暐建,周春等.基于金属/介质混合反射镜的高调制深度半导体可饱和吸收镜锁模的飞秒光纤激光器.光学学报,2009,29(11):3121-3123
    [159]Munthe-Kaas H. The state of the art in numerical analysis. London:Academic Press,1977
    [160]Biegler L T and Grossmann I E. Retrospective on optimization. Computers and Chemical Engineering,2004,28(8):1169-1192
    [161]Jacobs D. The state of the art in numerical analysis. London:Academic Press, 1977
    [162]Ja Y. On the aproximate formulae and the exact method to compute wavefront reflectivity in degenerate four-wave mixing. Applied Physics B:Lasers and Optics,1984,33(3):161-165
    [163]Zhou J, Chen J, Li X, et al. A novel algorithm for a multi-cavity Raman fiber laser. Optics Express,2006,14(8):3427-3432
    [164]Lentini M and Pereyra V. A variable order finite difference method for nonlinear multipoint boundary value problems. Mathematics of Computation, 1974,28(128):281-284
    [165]Ja Y. Numerical study of energy transfer between a beam and its internal reflection component in a nonlinear medium. Applied Physics B:Lasers and Optics,1984,33(1):51-56
    [166]Jackson S D, King T A. Theoretical modeling of Tm-doped silica fiber lasers. IEEE Journal of Lightwave Technology,2002,17(5):948-956
    [167]Kelson I, Hardy A. Strongly pumped fiber lasers. IEEE journal of Quantum Electronics,1998,34(9):1570-1577
    [168]Cash J, Karp A. A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Transactions on Mathematical Software (TOMS),1990,16(3):201-222
    [169]Russell R, Shampine L. Numerical methods for singular boundary value problems. SIAM Journal on Numerical Analysis,1975,12(1):13-36
    [170]Roberts S, Shipman J. Multipoint solution of two-point boundary-value problems. Journal of Optimization Theory and Applications,1971,7(4): 301-318
    [171]Noor A. An efficient algorithm for solving fifth-order boundary value problems. Mathematical and Computer Modelling,2007,45(7-8):954-964
    [172]Liu X, Zhang M. An effective method for two-point boundary value problems in Raman amplifier propagation equations. Optics Communications,2004, 235(1-3):75-82
    [173]Ja Y. Using the seventh-order numerical method to solve first-order nonlinear coupled-wave equations for degenerate two-wave and four-wave mixing. Applied Physics B:Lasers and Optics,1984,35(4):217-225
    [174]Liu X, Zhang H, Guo Y. A novel method for Raman amplifier propagation equations. IEEE Journal of Photonics Technology Letters,2003,15(3):392-394
    [175]Liu X, Lee B. Effective shooting algorithm and its application to fiber amplifiers. Optics Express,2003,11(12):1452-1461
    [176]Liu X, Lee B, A fast and stable method for Raman amplifier propagation equations. Optics Express.2003,11(18):2163-2176
    [177]Liu X. Effective methods for Raman amplifier propagation equations. Optical Engineering,2004,43(10):2220-2226
    [178]Lastman G. A shooting method for solving two-point boundary-value problems arising from non-singular bang-bang optimal control problems. International Journal of Control,1978,27(4):513-524
    [179]Ja Y. Comment on using the shooting method to solve boundary-value problems involving nonlinear coupled-wave equations. Part I. Degenerate two-wave mixing. Optical and Quantum Electronics,1984,16(6):551-557
    [180]Ja Y. Using the shooting method to solve boundary-value problems involving nonlinear coupled-wave equations. Optical and Quantum Electronics,1983, 15(6):529-538
    [181]Ha S. A nonlinear shooting method for two-point boundary value problems. Computers and Mathematics with Applications,2001,42(10-11):1411-1420
    [182]Guo X. A novel method for Raman amplifier propagation equations. IEEE Journal of Photonics Technology Letters,2003,15 (3):392-394
    [183]Lali-Dastjerdi Z, Kroushavi F and Rahmani M H. An efficient shooting method for fiber amplifiers and lasers. Optics and Laser Technology,2008,40(8): 1041-1046
    [184]Kelson I, Hardy A. Strongly pumped fiber lasers. IEEE Journal of Quantum Electronics,2002,34(9):1570-1577
    [185]Kelson I, Hardy A. Optimization of strongly pumped fiber lasers. Journal of Lightwave Technology,1999,17(5):891
    [186]Sheng B Z, Shang Z, Jie X, et al. Improved ring cavity double-clad Tm3+-doped fiber laser. Semiconductor Optoelectronics,2008,29(1):34-40
    [187]Eichhorn M. Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers. IEEE Journal of Quantum Electronics,2005,41(12):1574-1581
    [188]贾东方,余震鸿等译,G.P.Agrawal著,非线性光纤光学原理及应用.北京:电子工业出版社,2002
    [189]Hu G, Shan C, Deng X, et al. Threshold characteristics of linear cavity Yb3+-doped double-clad fiber laser. Optics and Laser Technology,2005,37(1): 3-7
    [190]Kim N S, Hamada T, Prabhu M, et al. Numerical analysis and experimental results of output performance for Nd-doped double-clad fiber lasers. Optics Communications,2000,180(4-6):329-337
    [191]Hardy A, Oron R. Signal amplification in strongly pumped fiber amplifiers. IEEE Journal of Quantum Electronics,2002,33(3):307-313
    [192]Bertoni A and Reali G. A model for the optimization of double-clad fiber laser operation. Applied Physics B:Lasers and Optics,1998,66(5):547-554
    [193]Hanna D, Percival R, Perry I, et al. An Ytterbium-doped monomode fibre laser: broadly tunable operation from 1.010μm to 1.162 μm and three-level operation at 974 nm. Journal of Modern Optics,1990,37(4):517-525
    [194]Magne S, Druetta M, Goure J, et al. An ytterbium-doped monomode fiber laser: amplified spontaneous emission, modeling of the gain and tunability in an external cavity. Journal of Luminescence,1994,60(61):647-650
    [195]Paschotta R, Nilsson J, Barber P, et al. Lifetime quenching in Yb-doped fibres. Optics Communications,1997,136(5-6):375-378
    [196]陈吉欣.掺镱双包层光纤激光器研究:[电子科技大学博士学位论文].四川:四川大学,2006
    [197]Xiao L, Yan P, Gong M, et al. An approximate analytic solution of strongly pumped Yb-doped double-clad fiber lasers without neglecting the scattering loss. Optics Communications,2004,230(4-6):401-410
    [198]Dorring J, Yan L, Satorius D A, et al. Injection locking of an additive-pulse mode-locked fiber laser. IEEE Journal of Photonics Technology Letters,2002, 14(11):1497-1499
    [199]Haus H A. Mode-locking of lasers. IEEE Journal of Selected Topics in Quantum Electronics,2002,6(6):1173-1185
    [200]赵德双.高性能锁模光纤激光器:[电子科技大学博士学位论文].陕西:电子科技大学,2005
    [201]Tang D, Zhao L, Zhao B, et al. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Physical Review A, 2005,72(4):43816
    [202]Kobtsev S, Kukarin S and Fedotov Y. Ultra-low repetition rate mode-locked fiber laser with high-energy pulses. Optics Express,2008,16(26):21936-21941
    [203]Kobtsev S, Kukarin S, Smirnov S, et al. High-energy mode-locked all-fiber laser with ultralong resonator. Laser Physics,2010,20(2):351-356
    [204]Chen L, Zhang M, Zhou C, et al. Ultra-low repetition rate linear-cavity erbium-doped fibre laser modelocked with semiconductor saturable absorber mirror. Electronics Letters,2009,45(14):731-733
    [205]Nyushkov B, Denisov V, Kobtsev S, et al. Generation of 1.7μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ringcavity. Laser Physics Letters,2010,7(9):661-665
    [206]Senoo Y, Nishizawa N, Sakakibara Y, et al. Ultralow-repetition-rate, high-energy, polarization-maintaining, Er-doped, ultrashort-pulse fiber laser using single-wall-carbon-nanotube saturable absorber. Optics Express,2010, 18(20):20673-20680
    [207]Senoo Y, Nishizawa N, Sakakibara Y, et al.154 kHz, ultra-low repetition rate, high-energy pulse, polarization maintaining, Er-doped fiber laser using single wall carbon nanotube polyimide file. In:Laser and Electro-Optics and Laser Science Conference.2010,16:1-2
    [208]Zhang M, Chen L, Zhou C, et al. Mode-locked ytterbium-doped linear-cavity fiber laser operated at low repetition rate. Laser Physics Letters,2009,6(9): 657-660
    [209]Li X, Liu X, Hu X, et al. Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime. Optics Letter,2010,35(19):3249-3251

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700