用户名: 密码: 验证码:
勃利霉素对卵菌抑制作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵菌包含许多严重危害农作物的病原菌,例如大豆疫霉、马铃薯晚疫病菌等。大豆疫霉引起的大豆疫霉根腐病是一种危害极为严重的世界性大豆病害之一。卵菌病害的防治主要采用化学杀菌剂,甲霜灵(Metalay)作为防治卵菌病害的特效药,目前抗性问题日益严重。因此,研发出更为有效的的生物源杀卵菌剂已是刻不容缓。由链霉菌产生的大环内酯类化合物勃利霉素高效抑制大豆疫霉菌丝生长。勃利霉素对大豆疫霉抑制作用的分子机制还有待深入研究。本研究利用苏氨酸体外添加实验初步确定了勃利霉素对大豆疫霉抑制作用的分子靶标为大豆疫霉的苏氨酰-tRNA合成酶(ThrRS),并通过体外酶活测定、荧光光谱分析和停留光谱等全面分析了勃利霉素对大豆疫霉苏氨酰-tRNA合成酶的抑制作用机理。除此之外,利用生物信息学分析进一步预测了勃利霉素可能对大豆疫霉细胞周期蛋白依赖性蛋白激酶具有抑制作用。结果如下:
     (1)在含勃利霉素的大豆疫霉CA培养基中添加苏氨酸,可以明显缓解勃利霉素对大豆疫霉优势小种1菌丝生长的抑制作用,苏氨酸与勃利霉素对大豆疫霉菌丝生长抑制作用之间存在剂量关系,即随着苏氨酸的浓度增加,勃利霉素对大豆疫霉菌丝生长抑制作用减弱,这种现象在其它对照氨基酸中没有观察到,因此可以根据苏氨酸与勃利霉素对大豆疫霉菌丝生长抑制作用之间的剂量效应初步确定勃利霉素对大豆疫霉抑制作用的靶标为苏氨酰-tRNA合成酶。
     (2)利用生物信息学分析在大豆疫霉基因组内确定其细胞质苏氨酰-tRNA合成酶为勃利霉素作用靶标。利用PCR基因克隆技术获得大豆疫霉优势小种1的细胞质苏氨酰-tRNA合成酶基因,利用基因工程技术将其克隆到pET32a表达载体,并在大肠杆菌BL21(DE3)中实现了体外表达。利用低温诱导和镍柱纯化获得了可溶性的大豆疫霉细胞质苏氨酰-tRNA合成酶。
     (3)建立非放射性方法测定苏氨酰-tRNA合成酶催化苏氨酸活化反应的催化活性:通过离心去除结合到凝胶上的反应生成物ThrRS·Thr~AMP复合物,反应液上清的底物苏氨酸利用氨基酸衍生法和高效液相色谱技术进行检测,由此计算苏氨酸活化反应中生成物的量来测定勃利霉素对大豆疫霉细胞质苏氨酰-tRNA合成酶的酶活性的抑制的IC50。勃利霉素对大豆疫霉细胞质苏氨酰-tRNA合成酶的酶活性的抑制常数为K(app)i为10μM,IC50为8μM,实验测定所用的酶浓度为4μM。由此可见,勃利霉素对大豆疫霉的抑制作用是由抑制大豆疫霉细胞质苏氨酰-tRNA合成酶催化反应引起的。
     (4)为进一步明确勃利霉素对大豆疫霉细胞质苏氨酰-tRNA合成酶的抑制作用机制,利用光谱技术研究勃利霉素与大豆疫霉细胞质苏氨酰-tRNA合成酶的相互作用,揭示其结合特性。结果表明勃利霉素对大豆疫霉细胞质苏氨酰-tRNA合成酶的荧光猝灭为静态猝灭,其在大豆疫霉细胞质苏氨酰-tRNA合成酶上只有一个结合位点。两者有较强的结合亲和性,结合常数(bindingconstant) KA为2.552×10~5M~(-1)。热力学常数ΔG <0,ΔH=85.024kJ mol~(-1),ΔS=0.372kJmol~(-1)K~(-1),这说明勃利霉素与大豆疫霉细胞质苏氨酰-tRNA合成酶的结合反应是一个自发的过程,主要作用力是疏水作用力。根据F rster非辐射能量转移理论,勃利霉素与大豆疫霉细胞质苏氨酰-tRNA合成酶的结合距离为6.39nm。因此,勃利霉素通过与大豆疫霉细胞质苏氨酰-tRNA合成酶形成复合体发挥其抑制作用。
     (5)利用圆二色光谱法研究勃利霉素与大豆疫霉细胞质苏氨酰-tRNA合成酶结合前后,蛋白质微环境及构型的改变。结果表明,勃利霉素与苏氨酰-tRNA合成酶结合导致α-螺旋含量升高,β-折叠含量下降,两者同时发生变化。苏氨酰-tRNA合成酶属于α+β蛋白,由此可知,勃利霉素在与苏氨酰-tRNA合成酶形成复合体的过程中,对其二级结构有较大影响,可能结合在其催化活性位点区域。为进一步确定勃利霉素在大豆疫霉细胞质苏氨酰-tRNA合成酶结合位点与底物结合位点的关系,利用圆二色滴定检测勃利霉素在底物存在下对大豆疫霉细胞质苏氨酰-tRNA合成酶二级结构的影响。结果表明,底物的结合位点与勃利霉素的结合位点并不重叠,勃利霉素是大豆疫霉细胞质苏氨酰-tRNA合成酶非竞争性抑制剂。
     (6)利用停留光谱进一步对勃利霉素与疫霉细胞质苏氨酰-tRNA合成酶结合的前稳态动力学特征进行了分析。结果表明,勃利霉素与大豆疫霉苏氨酰-tRNA合成酶快速结合动力学参数kon为4.381×10~6M~(-1)s~(-1),Kd为22.8nM,勃利霉素与马铃薯晚疫菌苏氨酰-tRNA合成酶kon为4.612×10~6M~(-1)s~(-1),Kd为21.7nM,接近于勃利霉素对大肠杆菌快速结合动力学参数值(k6on=5×10M-1s-1,Kd<20nM)。底物存在情况下,勃利霉素与大豆疫霉细胞质苏氨酰-tRNA合成酶快速结合仍检测到明显的荧光猝灭作用,进一步说明底物与勃利霉素在大豆疫霉细胞质苏氨酰-tRNA合成酶具有不同的结合位点,勃利霉素为大豆疫霉苏氨酰-tRNA合成酶的非竞争性抑制剂。
     (7)多序列比对分析揭示,大豆疫霉细胞质苏氨酰-tRNA合成酶与大肠杆菌苏氨酰-tRNA合成酶具有较高的相似性,大豆疫霉细胞质苏氨酰-tRNA合成酶勃利霉素结合的疏水区(Ser-410,His-412, Cys-437, Pro-438, Leu-593, Phe-597)与预测的大肠杆菌苏氨酰-tRNA合成酶勃利霉素结合区是保守的。利用CASTp-pocket/cavity预测程序预测大豆疫霉细胞质苏氨酰-tRNA合成酶的勃利霉素可能的结合口袋表明,大豆疫霉细胞质苏氨酰-tRNA合成酶与大肠杆菌苏氨酰-tRNA合成酶勃利霉素口袋的氨基酸组成类似,在口袋的体积和面积上有一定差异,大豆疫霉细胞质苏氨酰-tRNA合成酶的勃利霉素结合口袋稍大,可能有利于勃利霉素的结合,提高了大豆疫霉对勃利霉素的敏感性。
     (8)作为细胞周期抑制剂,勃利霉素可能对大豆疫霉的细胞周期相关蛋白具有抑制作用。利用序列比对分析、系统进化分析和保守区域分析等预测了与酵母细胞周期蛋白依赖性蛋白激酶Cdc28高度同源的大豆疫霉细胞周期蛋白依赖性蛋白激酶psCdc2,为进一步深入研究勃利霉素对大豆疫霉细胞周期相关蛋白的抑制作用机理奠定了基础。
     综上所述,本研究从分子水平上阐明了勃利霉素对大豆疫霉菌丝生长抑制作用的机理,并全面分析了勃利霉素与大豆疫霉细胞质苏氨酰-tRNA合成酶的结合特性、抑制类型和两者结合的对酶构型变化的影响,并对勃利霉素在大豆疫霉细胞质苏氨酰-tRNA合成酶的结合位点进行了预测。我们提出了勃利霉素可能对大豆疫霉细胞周期蛋白有抑制作用,预测了其作用靶标。研究所取得的结果为将勃利霉素开发为新型抗卵菌剂提供了理论基础,对于卵菌病害的防治具有重要意义。
Oomycete includes many destructive pathogens of plants, such as Phytophthora sojae Kaufm.&Gerd., Phytophthora infestans (Mont.) de Bary and so on. Phytophthora root rot, caused by P. sojae, isone of the most devastating diseases of soybean(Glycine max (L.) Merr.) in the world. The main meansof the control of oomycete disease was chemical fungicide, and metalay was used widespread, butresistance to fungicides in plant pathogens had become an outstanding problem in chemical control ofoomycete diseases. So, it is urgent need to developing a novel agricultural antifungal agent againstoomycete. Macrolide antibiotics borrelidin produced by streptomycete has high and specific anti-fungalactivity against P. sojae. Molecular mechanism of antifungal of borrelidin against P. sojae need furtherresearch. This research primarily revealed cytoplasm threonyl-tRNA synthetase (ThrRS) of P. sojae astarget of borrelidin by threonine addition experiment, and the antifungal activity of borrelidin against P.sojae mediated by inhibition of ThrRS was analyzed by measure of enzyme activity, fluorescencespectroscopy, circular dichroism (CD) and stopped-flow transient kinetic analysis. Beyond that, wepredicted cycle-dependent kinase of P. sojae by bioinformatics method, which is probable to beinhibited by borrelidin. The results were as follows:
     (1) The growth inhibition of P. sojae race1caused by borrelidin could be attenuated by threoninein borrelidin containing CA medium, and there is a dose-dependent manner between threonine andantifungal activity of borrelidin against P. sojae, namely, antifungal activity of borrelidin against P.sojae became weak with the increasing of the concentration of threonine, and the attenuation in adose-dependent manner was specific for threonine, and other amino acids as control did not influencethe inhibitory effect of borrelidin. These results clearly indicated the involvement of ThrRS inantifungal activity of borrelidin against P. sojae, and ThrRS may be the potential target of borrelidin.
     (2) The cytoplasm ThrRS of P. sojae was indentified in the genome of P. sojae by bioinformaticsmethod as the target of borrelidin. The cytoplasm ThrRS of P. sojae(psTRS) was gained by PCRamplication method, and was cloned into the pET32a expression vector using gene engineeringtechnology, then the recombinant pET32a expression vector was transformed into Escherichia coliBL21(DE3) which were induced at the low temperature, and P. sojae ThrRS protein was purified bynickel-nitrilotriacetic acid-agarose chromatography.
     (3) A non-radioactive method was established to detect the activity of ThrRS in the catalyticreaction of threonine activation: After the reaction products ThrRS·Thr~AMP complex binding toagarose were removed by centrifugation, substrate threonine in the supernatant of the reaction liquidwas determined by the amino acid derivative method and the high-performance liquid chromatographytechnique(HPLC), and the amount of the reaction products was calculated to measure IC50of theinhibition of the enzymatic activity of ThrRS by borrelidin in vitro.The results showed that borrelidin can significantly inhibit the cytoplasm ThrRS(4μM) enzymatic activity with a K(app)iand IC50value of10μM and8μM, respectively, confirming the assumption that the growth inhibition of P. sojae wascaused by the decreased enzymatic activity of cytoplasm ThrRS associated with borrelidin.
     (4) In order to confirm the inhibition effect of borrelidin on cytoplasm ThrRS of P. sojae andinvestigate the interaction between them, fluorescence spectroscopy was employed to study the bindingproperty of borrelidin to cytoplasm ThrRS of P. sojae. The results showed that borrelidin caused a staticquenching of intrinsic fluorescence of cytoplasm ThrRS, and there was one primary borrelidin bindingsite on ThrRS. Borrelidin has a strong binding affinity for cytoplasm ThrRS with the binding constantKA2.552×10~5M~(-1). Thermodynamic analysis by van’t Hoff equation found enthalpy change (ΔH) andentropy change (ΔS) were85.024kJ mol~(-1)and0.372kJ mol~(-1)K~(-1), respectively, which indicated that thehydrophobic forces played important roles in the binding of borrelidin and cytoplasm ThrRS. Thedistance r=6.39nm between donor (ThrRS) and acceptor (borrelidin) was estimated based on theF rster theory of non-radiative energy transfer. So, the antifungal activity of borrelidin against P. sojaewas mediated by inhibition of cytoplasm ThrRS via the formation of ThrRS-borrelidin complex.
     (5) The change of the microenvironment and conformation of cytoplasm ThrRS in the bindingreaction was studied by circular dichroism (CD). The results demonstrated that the binding of borrelidincould induce the conformational changes of cytoplasm ThrRS with increased content of α-helicity anddecreased content of β-sheet, and α-helicity and β-sheet of cytoplasm ThrRS both changed after theformation of complex of ThrRS-borrelidin. Because the folding of ThrRS is an alpha and beta protein (α+β), the binding of borrelidin had a great impact on the secondary structure of cytoplasm ThrRS, andwe proposed that borrelidin binds in the catalytic region of cytoplasm ThrRS. To further determine therelationship between borrelidin binding site and substrate binding sites on cytoplasm ThrRS of P. sojae,the CD titration was used to investigate the effect of borrelidin binding on secondary structure of ThrRSin the present of substrate. The results indicated that borrelidin has not overlapping binding sites withthe enzyme substrates, and borrelidin is a noncompetitive inhibitor of cytoplasm ThrRS of P. sojae withrespect to threonine and ATP.
     (6) Presteady-state kinetic analysis of the binding process of borrelidin and ThrRS was carried outby stopped-flow. The stopped-flow results showed that borrelidin binds to cytoplasm ThrRS of P. sojaewith kon,4.381×10~6M~(-1)s~(-1), and Kd22.8nM, cytoplasm ThrRS of P. infestans with kon,4.612×106M~(-1)s~(-1), and Kd21.7nM, which were similar to E. coli ThrRS(kon=5×10~6M~(-1)s~(-1),Kd<20nM). In the presentof substrate, the enzyme fluorescence is still quenched by borrelidin, which indicated that borrelidin hasa different binding site from subatrate binding site, as expected for a noncompetitive inhibitor of P.sojae ThrRS.
     (7) Multiple sequence alignment analysis revealed P. sojae ThrRS and E. coli ThrRS had highsimilarity, the hydrophobic cluster of cytoplasm ThrRS of P. sojae (Ser-410, His-412, Cys-437, Pro-438,Leu-593, Phe-597) is conserved with that of E. coli ThrRS. The binding pocket of borrelidin incytoplasm ThrRS of P. sojae predicted by CASTp-pocket/cavity program showed that amino acidcomposition of the binding pocket of borrelidin in cytoplasm ThrRS of P. sojae and E. coli ThrRS wassimilar, and there are some differences in the volume and area of the pocket. The binding pocket ofborrelidin in cytoplasm ThrRS of P. sojae was some bigger than that of E. coli ThrRS, which may bebeneficial to improve the sensitivity of P. sojae to borrelidin.
     (8) As inhibitor of cell cycle, we proposed that borrelidin inhibit the cell cycle relative protein. Thecycle-dependent kinase of P. sojae psCdc2was identified to homology with the cycle-dependent kinaseof E. coli Cdc28by BLAST, phylogenetic analysis and conserved regions search, which provided thebasis for further study of inhibition of borrelidin to cycle-dependent kinase.
     In summary, These studies provide insight into the molecular mechanism of antifungal activity ofborrelidin against P. sojae, and the interaction of borrelidin and cytoplasm ThrRS, inhibitor type andconformational changes of cytoplasm ThrRS was comprehensively analyzed, meanwhile, the borrelidinbinding site and pocket in cytoplasm ThrRS of P. sojae were predicted. Moreover, we proposed thatborrelidin may inhibit cell cycle relative protein of P. sojae, the target gene was predicted. The resultsobtained here provide a theoretical foundation for the development of borrelidin as a novelanti-oomycete agent, and was a great significance for the prevention and control of oomyce diseases.
引文
[1]郑小波.疫霉菌及其研究技术[M].北京:中国农业出版社,1997:1-29.
    [2] ERWIN D C, RIBERRO O K. Phytophthora diseases worldwide[M]. St Paul:APS Press,1996:200-562.
    [3]程衬衬,淮稳霞,姚艳霞,等.栎树猝死病菌国外研究进展[J].中国森林病虫,2012,31(1):27-32.
    [4] BALDAUF S L, ROGER A J, WENK-SIEFERT I, et al. A kingdom-level phylogeny ofeukaryotes based on combined protein data[J]. Science,2000,290(5493):972-977.
    [5]王晓鸣,SCHMITTHENNER A F,马书君.黑龙江省大豆疫霉根腐病调查与病原分离[J].植物保护,1998,24(3):9-11.
    [6]许修宏,吕慧颖,曲娟娟,等.大豆疫霉根腐病菌分离方法及发病地区初步调查[J].大豆科学,2002,21(2):147-150.
    [7]张立付.安徽省大豆疫病菌的分离、鉴定及致病型研究[D].安徽农业大学,2010.
    [8]王华,李国英,战勇,等.新疆大豆根腐疫病鉴定初报[J].新疆农业科学,2006,43(2):106-108.
    [9]陈申宽,闫任沛,王秋荣,等.呼伦贝尔盟大豆疫霉根腐病的发生及防治技术研究[J].内蒙古民族大学学报:自然科学版,2002,17(3):223-227.
    [10]陈庆河,翁启勇,王源超,等.福建省大豆疫病病原鉴定及其核糖体DNA-ITS序列分析[J].植物病理学报,2004,34(2):112-116.
    [11]隋喆,黄静,马振川,等.吉林、辽宁大豆品种(系)对大豆疫病的抗病基因鉴定[J].中国油料作物学报,2010,32(1):94-98.
    [12]范瑛阁,曹远银.微生物源农药的研究进展[J].安徽农业科学,2005,33(07):1266-1268.
    [13] PARRA G, RISRAINO J B. Resistance to mefenoxam and metalaxyl among field isolatesof Phytophthora capsici causing Phytophthora blight of bell pepper[J]. Plant Dis.,2001,85(10):1069-1075.
    [14]周成萍,曾会才.1株对辣椒疫霉具高抑菌活性放线菌WZ60的田间防治试验[J].热带作物学报,2008,29(1):106-108.
    [15]秦小萍,王振中,林壁润.万隆霉素抗菌活性成分的分离鉴定[J].中国农业科学,2008,41(10):3104-3109.
    [16] SAMAC D A, WILLERT A M. Effect of antibiotic-producing streptomyces onnodulation and leaf spot in alfalfa[J]. Applied Soil Ecology,2003,22(3):55-56.
    [17] JOO G J. Production of an anti-fungal substance for biological control of Phytophthoracapsici causing Phytophthora blight in red-peppers by Streptomyces halstedi[J]. Biotechnol. Lett.,2005,27(3):201-205.
    [18]阿里玛斯,黄丽丽,涂璇,等.内生放线菌gCLA4对辣椒疫病的防治研究[J].西北农业学报,2007,16(5):256-261.
    [19]疏秀林,安德荣.瑞拉菌素产生菌S-5120菌株防治黄瓜霜霉病害的研究初报[J].西北植物学报,2004,24(11):2118-2122.
    [20]刘乐涛,曹远银,肖淑芹.辣椒疫病拮抗菌的筛选及其防治效果研究[J].沈阳农业大学学报,2008,39(3):313-317.
    [21] PARK H J, LEE J Y, HWANG I S, et al. Isolation and antifungal and antioomyceteactivities of staurosporine from Streptomyces roseoflavus strain LS-A24[J]. J Agric. Food Chem.,2006,54(8):3041-3046.
    [22]贾雨,贾丽苑,黄建新.放线菌对植物病害的防治作用及应用[J].西安文理学院学报:自然科学版,2012,15(3):6-10.
    [23] BERGER J, JAMPOLSKY L M, GOLDBERG M W. Borrelidin, a new antibiotic withanti-borrelia activity and penicillin enhancement properties[J]. Arch. Biochem.,1949,22:476-478.
    [24] OLANO C, MOSS J S, BRANA A F, et al. Biosynthesis of the angiogenesis inhibitorborrelidin by Streptomyces parvulus Tü4055: Cluster analysis and assignment of functions [J].Chemistry&Biology,2004,11,8797.
    [25] KELLER S W. Composition of the antibiotic borrelidin[J]. Helv. Chim. Acta.,1967,(50):731-753.
    [26] DICKINSON L, GRIFFITHS A J, MASON C G, et al. Anti-viral activity of twoantibiotics isolated from a species of Streptomyces[J]. Nature,1965,206(981):265-268.
    [27] DORGRRLOH M, KRETSEHMER A, SCHMIDT R R, et al. Borreldin insecticide andherbicide and its preparation by fermentation[P]. Ger Offen. DE3607287A1,1988.
    [28] WAKABAYASHI T, KAGEYAMA R, NARUSE N, et al. Borrelidin is an angiogenesisinhibitor; disruption of angiogenic capillary vessels in a rat aorta matrix culture model[J]. JAntibiot (Tokyo),1997,50(8):671-676.
    [29] OTOGURO K, UI H, ISHIYAMA A, et al. In vitro and in vivo antimalarial activities of anon-glycosidic18-membered macrolide antibiotic, borrelidin, against drug-resistant strains ofPlasmodia[J]. J Antibiot (Tokyo),2003,56(8):727-729.
    [30] HABIBI D, OGLOFF N, JALILI R B, et al. Borrelidin, a small moleculenitrile-containing macrolide inhibitor of threonyl-tRNA synthetase, is a potent inducer of apoptosisin acute lymphoblastic leukemia[J]. Invest. New Drugs,2012,30:1361-1370.
    [31] SHIANG M, KUO M Y, CHU K C, et al. Strain of Streptomyces, and relevant usesthereof. US patent[P]6,193,964B1,2001.
    [32]孙延忠,曾洪梅,李国庆.抗生素对微生物作用的研究[J].微生物学杂志,2003,23(3):44-47.
    [33] SHIOMI K, HATAE K, HATANO H, et al. A new antibiotic, Antimyhcin A9, producedby Streptomyces sp. K01-0031[J]. J Antibiot (Tokyo),2005,58(1):74-78.
    [34]张鹏,姜兴印,房锋,等.纳他霉素对灰葡萄孢不同生育阶段菌体的毒力及其生物学性状的影响[J].农药学学报,2008,10(2):205-210.
    [35]蒋细良,朱昌雄,姬军红,等.中生菌素对水稻白叶枯病的防治机制[J].中国生物防治,2003,19(02):69-71.
    [36] JI Z, WANG M, ZHANG J, et al. Two new Members of streptothricin class antibioticsfrom Streptomyces qinlingensis sp. nov[J]. J Antibiot (Tokyo),2007,60(2):739-744.
    [37]孙延忠,曾洪梅,石义萍,等.武夷菌素对番茄灰霉病的作用方式[J].植物病理学报,2003,33(5):434-438.
    [38]张穗,唐文华.井冈霉素诱导水稻防御纹枯病反应机理的研究[J].植物病理学报,2002,1(32):95-96.
    [39] DOMBRINK-KURTZMAN M A. The isoepoxydon dehydrogenase gene of the patulinmetabolic pathway differs for Penicillium griseofulvum and Penicillium expansu[J]. Antonie vanLeeuwenhoek,2006,89(1):1-8.
    [40] HüTTER R, PORALLA K, ZACHAU H G, et al. Metabolic products of microorganisms.5l. On the mechanism of action of borrelidin-inhibition of the threonine incorporation in sRNA[J].Biochem. Z.,1966,344(2):190-196.
    [41] NASS G. Mode of action of borrelidin on protein biosynthesis and regulatory processesin microorganisms[J]. Zentralbl Bakteriol Orig.,1970,212(2):239-245.
    [42] NASS G, HASENBANK R. Effect of borrelidin on the threonyl-tRNA-synthetaseactivity and the regulation of threonine-biosynthetic enzymes in Saccharomyces cerivisiae[J]. Mol.Gen. Genet.,1970,108(1):28-32.
    [43] THOMALE J, NASS G. Regulation of threonyl-tRNA synthetase formation in borrelidinresistent E. coli mutants[J]. Hoppe Seylers Z Physiol. Chem.,1972,353(10):1572.
    [44] PAETZ W, NASS G. Biochemical and immunological characterization of threonyl-tRNAsynthetase of two borrelidin-resistant mutants of Escherichia coli K12[J]. Eur. J Biochem.,1973,35(2):331-337.
    [45] NASS G, THOMALE J. Alteration of structure of level of threonyl-tRNA-synthetase inBorrelidin resistant mutants of E. coli[J]. FEBS Lett.,1974,39(2):182-186.
    [46] NASS G, PORALLA K. Genetics of borrelidin resistant mutants of Saccharomycescerivisiae and properties of their threonyl-tRNA-synthetase[J]. Mol. Gen. Genet.,1976,147(1):39-43.
    [47] SEIBOLD M, NILL K, PORALLA K. Homoserine and threonine pools of borrelidinresistant Saccharomyces cerevisiae mutants with an altered aspartokinase[J]. Arch. Microbiol.,1981,129(5):368-370.
    [48] RUAN B, BOVEE M L, SACHER M, et al. A unique hydrophobic cluster near the activesite contributes to differences in borrelidin inhibition among threonyl-tRNA synthetases[J]. J Biol.Chem.,2005,280(1):571-577.
    [49] KAWAMURA T, LIU D, TOWLE M J, et al. Anti-angiogenesis effects of borrelidin aremediated through distinct pathways: threonyl-tRNA synthetase and caspases are independentlyinvolved in suppression of proliferation and induction of apoptosis in endothelial cells[J]. JAntibiot (Tokyo),2003,56(8):709-715.
    [50] EASTWOOD E L, SCHAUS S E. Borrelidin induces the transcription of amino acidbiosynthetic enzymes via a GCN4-dependent pathway[J]. Bioorg. Med. Chem. Lett.,2003,(13):2235-2237.
    [51]李文赟,张磊,李福龙,等.抗肿瘤细胞周期蛋白依赖性激酶抑制剂的研究进展[J].国外医药抗生素分册,2009,30(3):113-120.
    [52] TSUCHIYA E, YUKAWA M, MIYAKAWA T, et al. Borrelidin inhibits acyclin-dependent kinase (CDK), Cdc28/Cln2, of Saccharomyces cerevisiae[J]. J Antibiot (Tokyo),2001,54(1):84-90.
    [53] TSUCHIYA E, YUKAWA M, UENO M, et al. A novel method of screening cell-cycleblockers as candidates for anti-tumor reagents using yeast as a screening tool[J]. Biosci.Biotechnol. Biochem.,2010,74(2):411-414.
    [54] ZIMMERMANN C, CHYMKOWITCH P, ELDHOLM V, et al. A chemical-geneticscreen to unravel the genetic network of CDC28/CDK1links ubiquitin and Rad6-Bre1to cell cycleprogression[J]. Proc. Natl. Acad. Sci. U S A.,2011,108(46):18748-53.
    [55] WOOLARD J, VOUSDEN W, MOSS S J, et al. Borrelidin modulates the alternativesplicing of VEGF in favour of anti-angiogenic isoforms[J]. Chem. Sci.,2011,(2):273-278.
    [56] ERIANI G, DELARUE M, POCH O, et al. Partition of tRNA synthetases into two classesbased on mutually exclusive sets of sequence motifs[J]. Nature,1990,347(6289):203-206.
    [57] WESTBROOK J, FENG Z, JAIN S, et al. The Protein Data Bank: unifying the archive[J]. Nucleic Acids Res.,2002,30(1):245-248.
    [58] VALBUZZI A, YANOFSKY C. Inhibition of the B. subtilis regulatory protein TRAP bythe TRAP2inhibitory protein, AT[J]. Science,2001,293(5537):2057-2059.
    [59] CHEN G, YANOFSKY C. Tandem transcription and translation regulatory sensing ofuncharged tryptophan tRNA[J]. Science,2003,301(5630):211-213.
    [60] HOWARD O M Z, DONG H F, YANG D, et al. Histidyl-tRNA synthetase andasparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on Tlymphocytes and immature dendritic cells[J]. J Exp. Med.,2002,196(6):781-791.
    [61] MOINE H, ROMBY P, SPRINGER M, et al. Escherichia coli threonyl-tRNA synthetaseand tRNA(Thr)modulate the binding of the ribosome to the translational initiation site of the thrSmRNA[J]. J. Mol. Biol.,1990,216:299-310.
    [62] DOCK-BREGEON A C, REES B, TORRES-LARIOS A, et al. Achieving error-freetranslation; the mechanism of proofreading of threonyl-tRNA synthetase at atomic resolution[J].Mol.Cell,2004,16:375-386.
    [63] SANKARANARAYANAN R, DOCK-BREGEON A C, REES B, et al. Zinc ion mediatedamino acid discrimination by threonyl-tRNA synthetase[J]. Nat. Struct. Biol.,2000,7:461-465.
    [64] HUSSAIN T, KRUPARANI S P, PAL B, DOCK-BREGEON A C, et al. Post-transferediting mechanism of a D-aminoacyl-tRNA deacylase-like domain in threonyl-tRNA synthetasefrom archaea[J]. Embo. J.,2006,25:4152-4162.
    [65] HUSSAIN T, KAMARTHAPU V, KRUPARANI S P, et al. Mechanistic insights intocognate substrate discrimination during proofreading in translation[J]. Proc. Natl. Acad. Sci. USA,2010,107(51):22117-22121.
    [66] DWIVEDI S, KRUPARANI S P, SANKARANARAYANAN R. A D-amino acid editingmodule coupled to the translational apparatus in archaea[J]. Nat. Struct. Mol. Biol.,2005,12:556-557.
    [67] LING J, PETERSON K M, SIMONOCI I, et al.Yeast mitochondrial threonyl-tRNAsynthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codonreassignment[J]. Proc.Natl.Acad.Sci.USA,2012,109:3281-3286.
    [68] LING J, PETERSON K M, SIMONOCI I, et al. The mechanism of pre-transfer editingin yeast mitochondrial threonyl-tRNA synthetase[J]. J. Biol. Chem.,2012,287:28518-28525.
    [69] SHIMIZU S, JUAN E C, SATO Y, et al. Two complementary enzymes for threonylationof tRNA in crenarchaeota: Crystal Structure of Aeropyrum pernix threonyl-tRNA synthetaselacking a cis-editing domain[J]. J Mol. Biol.,2009,394(2):286-296.
    [70] TORRES-LARIOS A, SANKARANARAYANAN R, REES B, et al. Conformationalmovements and cooperativity upon amino acid, ATP and tRNA binding in threonyl-tRNAsynthetase[J]. J. Mol. Biol.,2003,331:201-211.
    [71] SANKARANARAYANAN R, DOCK-BREGEON A C, ROMBY P, et al. The structure ofthreonyl-tRNA synthetase-tRNA(Thr)complex enlightens its repressor activity and reveals anessential zinc ion in the active site[J]. Cell(Cambridge, Mass.),1999,97:371-381.
    [72] TORRES-LARIOS A, DOCK-BREGEON A C, ROMBY P, et al. Structural basis oftranslational control by Escherichia coli threonyl tRNA synthetase[J]. Nat. Struct. Biol.,2002,9:343-347.
    [73] BAINEAS P J, JACKSON D, MELLOWS G, et al. Mupirocin: A novel topical antibiotic
    [C]. Royal Society of Medicine International Congress and Symposium Series: London,1984,80:13-22.
    [74] KATZMAIER U, P HLER S, ENDERMANN R, et al. Straightforward syntheses offuranomycin derivatives and their biological evaluation[J]. Bioorg. Med. Chem.,2002,10(12):3905-3913.
    [75] ROCK F L, MAO W M, YAREMCHUK A, et al. An antifungal agent inhibits anaminoacyl-tRNA synthetase by trapping tRNA in the editing site[J]. Science,2007,316(5832):1759-1761
    [76] TANDON M, COFFEN D L, GALLANT P, et al. Potent and selective inhibitors ofbacterial methionyl tRNA synthetase derived from an oxazolone-dipeptide scaffold[J]. Bioorg.Med. Chem. Lett.,2004,14(8):1909-1911.
    [77] JARVEST R L, BERGE J M, BROWN P, et al. Conformational restriction of methionyltRNA synthetase inhibitors leading to analogues with potent inhibition and excellent gram-positiveantibacterial activity [J]. Bioorg. Med. Chem. Lett.,2003,13(7):1265-1268.
    [78] WERNER RG. Uptake of indolmycin in gram-positive bacteria[J]. Antimicrob AgentsChemother,1980,18(6):858-862.
    [79] JARVEST R L, ERSKINE S G, FORREST A K, et al. Discovery and optimisation ofpotent, selective, ethanolamine inhibitors of bacterial phenylalanyl tRNA synthetase[J]. Bioorg.Med. Chem. Lett.,2005,15(9):2305-2309.
    [80] VAN WEST P, SHEPHERD S J, WALKER C A, et al. Internuclear gene silencing inPhytophthora infestans is established through chromatin remodelling[J]. Microbiology,2008,154(Pt5):1482-1490.
    [81] YE W, WANG X, TAO K, et al. Digital gene expression profiling of the Phytophthorasojae transcriptome[J]. Molecular Plant-Microbe Interactions[J].2011,24(12):1530-1539.
    [82] TYLER B M, TRIPATHY S, ZHANG X, et al. Phytophthora genome sequences uncoverevolutionary origins and mechanisms of pathogenesis[J]. Science,2006,313(5791):1261-1266.
    [83] HAAS B J, KAMOUN S, ZODY M C, et al. Genome sequence and analysis of the Irishpotato famine pathogen Phytophthora infestans[J]. Nature,2009,461(7262):393-398.
    [84] LAMOUR K H, MUDGE J, GOBENA D, et al. Genome sequencing and mapping revealloss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthoracapsici[J]. Molecular Plant-Microbe Interactions,2012,25(10):1350-1360.
    [85] LéVESQUE C A, BROUWER H, CANO L, et al. Genome sequence of the necrotrophicplant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effectorrepertoire[J]. Genome Biology,2010,11(7):R73-R94.
    [86] BAXTER L, TRIPATHY S, ISHAQUE N, et al. Signatures of adaptation to obligatebiotrophy in the Hyaloperonospora arabidopsidis genome[J]. Science,2010,330(6010):1549-1551.
    [87] TIAN M, WIN J, SAVORY E, et al.454genome sequencing of Pseudoperonosporacubensis reveals effector proteins with a putative QXLR translocation motif[J]. MolecularPlant-Microbe Interactions,2011,24(5):543-553.
    [88] LAMOUR K H, KAMOUN S. Oomycete genetics and genomics: Diversity, interactionsand research tools[M]. Wiley-Blackwell Press, Hoboken, USA,2009,540-582.
    [89] RICHARDS T A, DACKS J B, JENKINSON J M, et al. Evolution of filamentous plantpathogens: Gene exchange across eukaryotic kingdoms[J]. Current Biology,2006,16(18):1857-1864.
    [90] KEMEN E, GARDINER A, SCHULTZ-LARSEN T, et al. Gene gain and loss duringevolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana[J]. PLoSBiology,2011,9(7):e1001094.
    [91] JUDELSON H S. Dynamics and innovations within Oomycete genomes: Insights intobiology, pathology, and evolution[J]. Eukaryot Cell,2012,11(11):1304-1312.
    [92] GRIGORIEV I V, NORDBERG H, SHABALOV I, et al. The genome portal of thedepartment of Energy Joint Genome Institute[J]. Nucleic Acids Resarch,2012,40(Databaseissue):D26-D32.
    [93]王晓莉.大豆疫霉转录组研究及GPR功能分析[D].南京:南京农业大学,2011.
    [94]王永林.大豆疫霉转录因子PsCZF1、PsHSF1和PsMAD1的功能研究[D].南京:南京农业大学,2009.
    [95] AH-FONG A M, JUDELSON H S. New role for Cdc14phosphatase: localization to basalbodies in the oomycete phytophthora and its evolutionary coinheritance with eukaryotic flagella[J].PLoS One,2011,6(2):e16725.
    [96]祁云霞,刘永斌,荣威恒.转录组研究新技术:RNA-Seq及其应用[J].遗传,33(11):1191-1202.
    [97] SEIDL M F, VAN DEN ACKERVEKEN G, GOVERS F, et al. A domain-centricanalysis of oomycete plant pathogen genomes reveals unique protein organization[J]. PlantPhysiology,2011,155(2):628-644.
    [98] SAVORY E A, ZOU C, ADHIKARI B N, et al. Alternative splicing of a multi-drugtransporter from Pseudoperonospora cubensis generates an RXLR effector protein that elicits arapid cell death[J]. PLoS One,2012,7(4):e34701.
    [99] JUDELSON H S, AH-FONG A M. The kinome of Phytophthora infestans revealsoomycete-specific innovations and links to other taxonomic groups[J]. BMC Genomics,2010,11:700.
    [100]周晓罡,侯思名,陈铎文,等.马铃薯晚疫病菌全基因组分泌蛋白的初步分析[J].遗传,2011,33(7):785-793.
    [101] MORRIS P F, PHUNTUMART V. Inventory and comparative evolution of the ABCsuperfamily in the genomes of Phytophthora ramorum and Phytophthora sojae[J]. J Mol. Evol.,2009,68:563-575.
    [102] LAMOUR K H, WIN J, KAMOUN S. Oomycete genomics: new insights and futuredirections[J]. FEMS Microbiol. Lett.,2007,274(1):1-8.
    [103]孙艳涛.药物小分子及其与生物大分子相互作用的光谱研究[D].长春:吉林大学,2009.
    [104] ZHANG J, WANG X J, YAN Y J, et al. Comparative Studies on the Interaction ofGenistein,8-Chlorogenistein, and3’,8-Dichlorogenistein with Bovine Serum Albumin[J]. J. Agric.Food Chem.,2011,59:7506-7513.
    [105] SANDHUA B, HEGDE A H, KALANUR S S, et al. Interaction of triprolidinehydrochloride with serum albumins: thermodynamic and binding characteristics, and influence ofsite probes[J]. J Pharm. Biomed. Anal.,2011,54:1180-1186.
    [106] CHENG F Q, WANG Y P, LI Z P, et al. Fluorescence study on the interaction of humanserum albumin with bromsulphalein[J]. Spectrochim Acta. A Mol. Biomol. Spectrosc.,2006,65(5):1144-1147.
    [107] NIETO M, PERKINS H R, FRèRE J M, et al. Fluorescence and circular dichroismstudies on the Streptomyces R61DD-carboxypeptidase-transpeptidase. Penicillin binding by theenzyme[J]. Biochem. J.,1973,135:493-505.
    [108] SUN S, HUANG X, MA M, et al. Systematic evaluation of avidin-biotin interaction byfluorescence spectrophotometry[J]. Spectrochim Acta A Mol. Biomol. Spectrosc.,2011,89C:99-104.
    [109] RICCI G, DE MARIA F, ANTONINI G, et al.7-Nitro-2,1,3-benzoxadiazole derivatives,a new class of suicide inhibitors for glutathione S-transferases. Mechanism of action of potentialanticancer drugs[J]. J Biol. Chem.,2005,280(28):26397-26405.
    [110] CHAUDHURI S, CHAKRABORTY S, SENGUPTA P K. Probing the interactions ofhemoglobin with antioxidant flavonoids via fluorescence spectroscopy and molecular modelingstudies[J]. Biophy. Chem.,2011,154:26-34.
    [111]尹燕霞,向本琼,佟丽.荧光光谱法在蛋白质研究中的应用[J].实验技术与管理,2010,27(2):33-40.
    [112] LAKOWICZ J R. Principles of fluorescence spectroscopy[M]. New York:Plenum Press,1983.
    [113] AKBAY N, SEFERO LU Z, G K E. Fluorescence interaction and determination ofcalf thymus DNA with two ethidium derivatives[J]. J Fluoresc.,2009,19(6):1045-1051.
    [114] HEGDE A H, PRASHANTH S N, SEETHARAMAPPA J. Interaction of antioxidantflavonoids with calf thymus DNA analyzed by spectroscopic and electrochemical methods[J]. JPharm. Biomed. Anal.,2012,63:40-46.
    [115]费丹,王兴明,黎泓波,等.亚甲基蓝与鲱鱼精DNA相互作用的光谱研究[J].化学学报,2008,66(4):443-448.
    [116]屈凌波,郁有祝,郭玉华,等.荧光光谱法研究磷酰化5,7-二羟基黄酮与ctDNA的相互作用[J].分析测试学报,2007,26(5):651-654.
    [117] GARBETT N C, RAGAZZON P A, CHAIRES J B. Circular dichroism to determinebinding mode and affinity of ligand-DNA interactions [J]. Nat. Protoc.,2007,2:3166-3172.
    [118] NORDEN B, KURUCSEV T. Analysing DNA complexes by circular and lineardichroism[J]. J Mol. Recognit.,1994,7:141-155.
    [119] GREENFIELD N J, FASMAN G D. Computed circular dichroism spectra for theevaluation of protein conformation[J]. Biochem.,1969,8:4108-4116.
    [120] SREERAMA N, WOODY R W. Estimation of protein secondary structure from circulardichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expandedreference set[J]. Anal. Biochem.,2000,287:252-260.
    [121] MCPHIE P. Circular dichroism studies on proteins in films and in solution: estimationof secondary structure by g-factor analysis[J]. Anal. Biochem.,2001,293:109-119.
    [122] SREERAMA N, WOODY R W. Computation and analysis of protein circular dichroismspectra[J]. Methods Enzymol.,2004,383:318-351.
    [123] BISHOP G R, CHAIRES J B. Characterization of DNA structures by circulardichroism[J]. Curr. Protoc. Nucleic Acid Chem.,2003, Chapter7:Unit7.11.
    [124]赵维秋,李宜雯,曹洪玉,等.停流光谱在蛋白质动力学反应中应用的研究进展[J].大连大学学报,2009,3:50-55.
    [125] BIRO F N, ZHAI J, DOUCETTE C W, et al. Application of stopped-flow kineticsmethods to investigate the mechanism of action of a DNA Rrpair protein[J]. J Vis. Exp.,2010,(37):1874.
    [126] RODNEY L B, JEREMIAH W H,GREGORY A G. A stopped flow transient kineticanalysis of substrate binding and catalysis in Escherichia coli d-3-phosphoglyceratedehydrogenase[J]. J Biol Chem.,2008,283(44):29706-29714.
    [127] GE N, ZHANG X, KEIDERLING T A. Kinetic studies of the interaction ofβ-lactoglobulin with model membranes: stopped-flow CD and fluorescence studies[J].Biochemistry,2010,49(41):8831-8838.
    [128] NAYAK R K, PEERSEN O B, HALL K B, et al. Millisecond time-scale folding andunfolding of DNA hairpins using rapid-mixing stopped-flow kinetics[J]. J Am. Chem. Soc.,2012,134(5):2453-2456.
    [129]左豫虎,薛春生,刘惕若.杀菌剂对大豆疫霉菌生长的抑制作用[J].黑龙江大学自然科学学报,2002,19(1):106-108.
    [130] SMALL I, PEETERS N, LEGEAI F, LURIN C. Predotar: A tool for rapidly screeningproteomes for N-terminal targeting sequences[J]. Proteomics,2004,4(6):1581-1590.
    [131] PETERSEN T N, BRUNAK S, VON HEIJNE G, et al. SignalP4.0: discriminatingsignal peptides from transmembrane regions[J]. Nature Methods,2011,8:785-786.
    [132] MARCHLER-BAUER A, LU S, ANDERSON J B, et al. CDD: a conserved domaindatabase for the functional annotation of proteins[J]. Nucleic Acids Res.,2011,39(D):225-229.
    [133] ZELAYA-MOLINA L X, ORTEGA M A, DORRANCE A E. Easy and efficient protocolfor oomycete DNA extraction suitable for population genetic analysis[J]. Biotechnol. Lett.,2011,33:715-720.
    [134]李玉花,张旸,周波,等.蛋白质分析实验技术指南[M].高等教育出版社,北京,2011.
    [135] MCKERROW J, VAGG S, MCKINNEY T, et al. A simple HPLC method for analysingdiaminopimelic acid diastereomers in cell walls of Gram-positive bacteria[J]. Lett. Appl.Microbiol.,2000,30:178-182.
    [136] TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionarygenetics analysis using maximum likelihood, evolutionary distance, and maximum parsimonymethods[J]. Mol. Biol. Evol.2011,28:2731-2739.
    [137] SCHWEDE T, KOPP J, GUEX N, et al. SWISS-MODEL: An automated proteinhomology-modeling server[J]. Nucleic Acids Res.2003,31:3381-3385.
    [138] LIANG J, EDELSBRUNNER H, WOODWARD C. Anatomy of protein pockets andcavities: measurement of binding site geometry and implications for ligand design[J]. Protein Sci.1998,7:1884-1897.
    [139]左豫虎,康振生,黄丽丽.大豆疫霉菌对大豆下胚轴侵染过程的细胞学研究[J].植物病理学报,2005,35(3):235-241.
    [140]孔祥清,刘洋,左豫虎.氟吗啉对大豆疫霉菌的抑制作用[J].中国农学通报,2007,23(2):371-373.
    [141] SANSOME E, BRASIER C M. Polyploidy associated with varietal differentiation in themegasperma complex of Phytophthora[J].Trans. Br. Myco1.Soe.,1974,63:461-467.
    [142] JIANG R H Y, DAWE A L, WEIDE R, et al. Elieitin genes in Phytophthora infestantsare clustered and interspersed with various transposon-like elements[J]. Mo1. Genet.Genomics,2005,273:20-32.
    [143] LAKOWICZ J R. Principles of fluorescence spectroscopy[M].2nd ed., NewYork:Plenum Press,1999.
    [144] LAKOWICA J R, WEBER G. Quenching of fluorescence by oxygen. A probe forstructural fluctuantions in macromolecules[J]. Biochemistry.1973,12:4161-4170.
    [145] MANDEVILLE J S, FROEHLICH E, TAJMIR-RIAHI H A. Study of curcumin andgenistein interactions with human serum albumin[J]. J Pharm. Biomed. Anal.,2009,49(2):468-474.
    [146] HAYNIE D T. Gibbs free energy-theory In Biological thermodynamics[M]. Cambridge:Cambridge University Press,2001.
    [147] ROSS P D, SUBRAMANIAN S. Thermodynamics of protein association reactions:Forces contributing to stability[J]. Biochemistry.1981,20:3096-3102.
    [148] FORSTER T. Delocalized excitation and excitation transfer. In Modern quantumchemistry[M], New York: Academic Press, Inc,1966.
    [149] WOLF Y I, ARAVIND L, GRISHIN N V, et al. Evolution of aminoacyl-tRNAsynthetases-analysis of unique domain architectures and phylogenetic trees reveals a complexhistory of horizontal gene transfer events[J]. Genome Res.1999,9:689-710.
    [150] TAKITA T, AKITA E, INOUYE K, et al. Lysyl-tRNA synthetase from Bacillusstearothermophilus. Stopped-flow kinetic analysis of enzyme·lysyladenylate formation[J]. J.Biochem.,1998,124:45-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700