用户名: 密码: 验证码:
脑出血大鼠脑内细胞外基质相关基因表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:脑出血(intracerebral hemorrhage, ICH)属于脑血管病中的危重类型,在中国的发病率明显高于西方国家。尽管ICH急性期治疗策略已经越来越规范化,但仍局限于血肿清除以及对症支持治疗,针对脑出血造成的神经功能缺失目前尚无有效的治疗方法,致使其病死率及致残率近十年来仍居高不下。已知的脑出血后损伤机制表明细胞外基质(extracellular matrix, ECM)的组成、结构和分布均发生了变化,血脑屏障(blood brain barrier, BBB)破坏、脑水肿的形成等都与ECM密切相关。既往研究证实ECM参与胚胎及各种组织、器官的形成、发育、修复和再生。ECM的组成成分与神经系统的多种生理病理过程密切相关。此外,与ECM功能相关的蛋白如基质金属蛋白酶家族(matrix metalloproteinases, MMPs),整合素家族(integrins),选择素家族(selectins)以及透明质酸酶等均可作用于ECM,参与炎症反应、肿瘤转移、血管发生及创伤愈合等过程。因此,本研究拟从脑出血后ECM相关基因表达变化的角度,探讨脑出血后组织和神经功能恢复的作用机制,将为基础和临床探索脑出血治疗策略提供新的线索和思路。
     方法:本研究分为2个部分。第一部分:通过立体定位向大鼠脑内注射Ⅶ型胶原酶复制脑出血模型,假手术组注入等体积生理盐水。采用基因芯片法检测脑出血后ECM相关基因表达变化。第二部分:根据第一部分实验结果,选择胶原(collagen)Ⅰ、collagen Ⅲ、collagen Ⅳ,MMP-2、MMP-9、膜型(memberane-type, MT)1-MMP以及integrin αvβ3、integrin α5β1进行蛋白表达验证。大鼠分假手术组及脑出血组,处理同第一部分。采用异硫氰酸荧光素(fluorescein isothiocyanate, FITC)-右旋糖酐(dextran)灌注结合激光共聚焦显微镜观察损伤区微血管构筑及血流灌注情况;免疫组化方法检测脑出血损伤区增殖细胞核抗原(proliferating cell nuclear antigen, PCNA)+/血管性血友病因子(von Willebrand factorv, WF)+标记的新生血管密度变化及collagen Ⅰ、collagen Ⅲ、collagen Ⅳ, MMP-2、MMP-9、MT1-MMP以及integrin αvβ3、integrin α5β1的时空分布;Western blot技术检测脑出血后collagen Ⅰ、collagen Ⅲ、collagen Ⅳ, MMP-2、MMP-9、MT1-MMP以及integrin β3、integrin a5的蛋白表达。
     结果:基因芯片结果显示:脑出血后ECM相关基因如细胞分化抗原(cluster of differentiation, CD)44、骨桥蛋白(oesteopontin, OPN/SPP-1)、钙粘蛋白(cadherin)-1、弹性蛋白微原纤维界面因子(elastin microfibril interfacer, EMILIN)-1、胞间粘附因子(intercellular adhesion molecule, ICAM)-1、转化生长因子(transforming growth factor, TGF)-β以及大部分的ECM胶原成分、MMPs及integrins成员等于不同时间点均有不同趋势的变化。FITC-dextran灌注结果显示:脑出血后4天,损伤处周围血流灌注较假手术组明显减少,脑出血后7天到14天损伤脑组织周围微血管密度较4天时逐渐增大,血流灌注增多,21天到达高峰。免疫组化结果显示:脑出血后4天血肿周围即可见至JPCNA+/vWF+标记的细胞核,且持续增高至14天。在血肿周围可见大量collagen Ⅰ、collagen Ⅲ、collagen Ⅳ, MMP-2、MMP-9、 MT1-MMP以及integrin αvβ3、integrin α5β1阳性血管。Western blot结果显示:脑出血后4天collagen Ⅰ、collagen Ⅲ、collagen Ⅳ, MMP-2、 MMP-9、MT1-MMP以及integrin β3、integrin a5蛋白表达较假手术组明显增高。Collagen Ⅰ、collagen Ⅲ蛋白表达增高至14天,持续到21天;collagenⅣ蛋白表达从14天开始有所降低;MMP-9蛋白表达7天时即开始有所减少,MMP-2、MT1-MMP、integrin β3、integrin α5蛋白表达随着时间延长逐渐增高至14天,21天时开始降低。
     结论:1.脑出血后,ECM相关基因表达改变,可能参与脑内炎症反应、组织修复过程;2.脑出血后,collagens、MMPs和integrins表达持续增高,可能改变脑微血管与周围ECM的相互作用,影响血管新生,修复损伤组织。
Background and purpose:Intracerebral hemorrhage (ICH) is a critical subtype of cerebrovascular disease, with higher morbility in China than western countries. In spite of the medical strategy for the acute phase of ICH is becaming more and more standardized, it still be limited to evacuation of the hematoma and supporting therapy. At present, there is no effective therapeutic method for patients to improve neurological deficits caused by ICH. So the fatality rate and disability rate still remain high in the last ten years. The foregone injured mechanism of ICH demonstrated that the composition, structures and distribution of extracellular matrix (ECM) all have changed. Destruction of blood brain barrier (BBB), formation of brain edema, and etc are closely relevant to ECM. The former research confirmed that ECM participate in formation, development, restoration and regeneration of embryo and all kinds of tissues and organs. Moity of ECM were relevated to physiological and pathological process of nervous system. In addition, matrix metalloproteinases (MMPs), integrins, selectins, hyaluronidase and the other proteins associated with function of ECM, participating in inflammatory reaction, neoplasm metastasis, vasculogenesis, wound healing and the other process. Accordingly, the purpose of the present study is to clarify the mechanism of neurological function recovery following ICH by investigating genes associated ECM, and to provide new clues and ideas for exploring the clinical and basic treatment of ICH.
     Methods:This study was divided into two parts.(1) Models of ICH were administered by injecting type Ⅶ collagenase into brain of the rats. Sham controls received the same volume of0.9%sterile saline. Gene chip technology was used to detect genes correlated with ECM following ICH.(2) According to the results in the first part, collagen Ⅰ, collagen Ⅲ, collagenⅣ, MMP-2, MMP-9, MT1-MMP, integrin αvβ3and integrin α5β1were selected for further validation. The rats were divided into sham-operated group and model group, and given the same treatment with the rats in the first part. Confocal laser scanning microscopy was used to observed angioarchitecture and blood perfusion of damage zone after fluorescein isothiocyanate (FITC)-dextran injection. Immunohistochemisty were used to identify proliferating cell nuclear antigen (PCNA)+/von Willebrand factor+(vWF) nuclei, and the spatial and temporal distribution of collagen Ⅰ, collagen Ⅲ, collagen Ⅳ, MMP-2, MMP-9, MT1-MMP, integrin αvβ3and integrin α5β1. The expression level of protein collagen Ⅰ, collagenⅢ, collagenⅣ, MMP-2, MMP-9, MT1-MMP, integrin β3and integrin α5were evaluated by Western blot.
     Results:Results of gene chip detection showed that ECM-related genes such as cluster of differentiation (CD)44, oesteopontin (OPN/SPP-1), cadherin-1, elastin microfibril interfacer (EMILIN)-1, intercellular adhesion molecule (ICAM)-1, transforming growth factor (TGF)-β as well as most members of collagens, MMPs, intergrins all have different tendency at different time points after ICH induction, and it suggests that ECM may be revelant to repairing of neural injury following ICH. The result after FITC-dextran perfusion showed that the blood perfusion around the hematoma at4days after ICH decrease obviously than that of sham operation, The density of microvessel around the injured brain tissue continuously increasd from7days to14days after ICH and reach peak value at21days. Immunohistochemisty displayed that PCNA+nuclei in vWF+dilated vessels could be observed around the hematoma at4days, and peaked at14days after ICH induction. Numerous collagen Ⅰ, collagen Ⅲ, collagen Ⅳ, MMP-2, MMP-9, MT1-MMP, integrin αvβ3and integrin α5β1positive blood vessel could be detected around the hematoma. Results of Western blot suggested that the expression of protein collagen Ⅰ, collagen Ⅲ, collagen Ⅳ, MMP-2, MMP-9, MT1-MMP, integrin β3and integrin a5all increased obviously at4days after ICH than that in the sham operation group. Expression of collagen Ⅰ and collagen Ⅲ arrived climax at14days and lasted to21days, while expression of collagen Ⅳ started to reduce from14days. Protein level of MMP-9decreased from at7days, while the expression of MMP-2, MT1-MMP, integrin β3and integrin α5gradually increased untill14days and decreased at21days.
     Conclusions:1. Expression of genes correlated with ECM changed after ICH, the alteration may be relevant to inflammatory reaction and tissue repair process in the brain.2. Collagens, MMPs and integrins contiued to increase following ICH, and they may modify interaction between cerebral microvessel and peripheral ECM, thus to affect angiogenesis and restore injured brain tissue.
引文
[1]Ikram MA, Wieberdink RG, Koudstaal PJ. International epidemiology of intracerebral hemorrhage. Curr Atheroscler Rep,2012,14(4):300-306
    [2]Rincon F, Mayer SA. The Epidemiology of Intracerebral Hemorrhage in the United States from 1979 to 2008. Neurocrit Care,2012,
    [3]Liu L, Wang D, Wong KS, et al. Stroke and stroke care in China:huge burden, significant workload, and a national priority. Stroke,2011,42(12):3651-3654
    [4]Yang QD, Niu Q, Zhou YH, et al. Incidence of cerebral hemorrhage in the Changsha community. A prospective study from 1986 to 2000. Cerebrovasc Dis,2004,17(4):303-313
    [5]van ACJ, Luitse MJ, Rinkel GJ, et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin:a systematic review and meta-analysis. Lancet Neurol,2010,9(2): 167-176
    [6]Bamford J, Sandercock P, Dennis M, et al. A prospective study of acute cerebrovascular disease in the community:the Oxfordshire Community Stroke Project--1981-86.2. Incidence, case fatality rates and overall outcome at one year of cerebral infarction, primary intracerebral and subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry,1990,53(1):16-22
    [7]Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol,2006,5(1):53-63
    [8]Lu A, Tang Y, Ran R, et al. Brain genomics of intracerebral hemorrhage. J Cereb Blood Flow Metab,2006,26(2):230-252
    [9]Mellergard P, Aneman O, Sjogren F, et al. Differences in cerebral extracellular response of interleukin-lbeta, interleukin-6, and interleukin-10 after subarachnoid hemorrhage or severe head trauma in humans. Neurosurgery, 2011,68(1):12-19; discussion 19
    [10]Wu J, Hua Y, Keep RF, et al. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke,2003,34(12):2964-2969
    [11]刘柏炎,张化先.脑溢安颗粒对实验性大鼠脑出血后神经干细胞增殖的影响.中国临床康复,2003,(25):3428-3429+3539
    [12]Tang T, Liu XJ, Zhang ZQ, et al. Cerebral angiogenesis after collagenase- induced intracerebral hemorrhage in rats. Brain Res,2007,1175:134-142
    [13]Keep RF, Hua Y, Xi G. Intracerebral haemorrhage:mechanisms of injury and therapeutic targets. Lancet Neurol,2012,11(8):720-731
    [14]Vikman P, Ansar S, Henriksson M, et al. Cerebral ischemia induces transcription of inflammatory and extracellular-matrix-related genes in rat cerebral arteries. Exp Brain Res,2007,183(4):499-510
    [15]Vikman P, Ansar S, Edvinsson L. Transcriptional regulation of inflammatory and extracellular matrix-regulating genes in cerebral arteries following experimental subarachnoid hemorrhage in rats. Laboratory investigation. J Neurosurg,2007,107(5):1015-1022
    [16]Arroyo AG, Iruela-Arispe ML. Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc Res,2010,86(2):226-235
    [17]Korpos E, Wu C, Sorokin L. Multiple roles of the extracellular matrix in inflammation. Curr Pharm Des,2009,15(12):1349-1357
    [18]Fomovsky GM, Thomopoulos S, Holmes JW. Contribution of extracellular matrix to the mechanical properties of the heart. J Mol Cell Cardiol, 2010,48(3):490-496
    [19]Campbell NE, Kellenberger L, Greenaway J, et al. Extracellular matrix proteins and tumor angiogenesis. J Oncol,2010,2010:586905
    [20]Lockhart M, Wirrig E, Phelps A, et al. Extracellular matrix and heart development. Birth Defects Res A Clin Mol Teratol,2011,91(6):535-550
    [21]Lelongt B, Ronco P. Role of extracellular matrix in kidney development and repair. Pediatr Nephrol,2003,18(8):731-742
    [22]Novak U, Kaye AH. Extracellular matrix and the brain:components and function. J Clin Neurosci,2000,7(4):280-290
    [23]Erickson AC, Couchman JR. Still more complexity in mammalian basement membranes. J Histochem Cytochem,2000,48(10):1291-1306
    [24]Franco SJ, Muller U. Extracellular matrix functions during neuronal migration and lamination in the mammalian central nervous system. Dev Neurobiol, 2011,71(11):889-900
    [25]Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol,2011,71(11):1018-1039
    [26]Fox MA, Sanes JR, Borza DB, et al. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell, 2007,129(1):179-193
    [27]Frischknecht R, Gundelfinger ED. The brain's extracellular matrix and its role in synaptic plasticity. Adv Exp Med Biol,2012,970:153-171
    [28]Rhodes JM, Simons M. The extracellular matrix and blood vessel formation: not just a scaffold. J Cell Mol Med,2007,11(2):176-205
    [29]Barros CS, Franco SJ, Muller U. Extracellular matrix:functions in the nervous system. Cold Spring Harb Perspect Biol,2011,3(1):a005108
    [30]Lu P, Takai K, Weaver VM, et al. Extracellular matrix degradation and remodeling in development and disease.LID-10.1101/cshperspect.a005058 [doi]LID-a005058 [pⅱ]. Cold Spring Harb Perspect Biol,2011,3(12)
    [31]Chen ZL, Haegeli V, Yu H, et al. Cortical deficiency of laminin gammal impairs the AKT/GSK-3beta signaling pathway and leads to defects in neurite outgrowth and neuronal migration. Dev Biol,2009,327(1):158-168
    [32]George EL, Georges-Labouesse EN, Patel-King RS, et al. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development,1993,119(4):1079-1091
    [33]Hong SE, Shugart YY, Huang DT, et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet,2000,26(1):93-96
    [34]Grewal PK, Holzfeind PJ, Bittner RE, et al. Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse. Nat Genet,2001,28(2):151-154
    [35]Blaess S, Graus-Porta D, Belvindrah R, et al. Betal-integrins are critical for cerebellar granule cell precursor proliferation. J Neurosci, 2004,24(13):3402-3412
    [36]Mid wood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol,2004,36(6):1031-1037
    [37]Li J, Zhang YP, Kirsner RS. Angiogenesis in wound repair:angiogenic growth factors and the extracellular matrix. Microsc Res Tech,2003,60(1):107-114
    [38]Sato H. [Tumor metastasis and MMP inhibitor]. Clin Calcium,2006,16(4): 621-621 26
    [39]唐渊,陈礼刚.MMPs和TIMPs在脑创伤的研究进展.泸州医学院学报,2009,32(6):661-663
    [40]Desgrosellier JS, Cheresh DA. Integrins in cancer:biological implications and therapeutic opportunities. Nat Rev Cancer,2010,10(1):9-22
    [41]Vachon PH. Integrin signaling, cell survival, and anoikis:distinctions, differences, and differentiation. J Signal Transduct,2011,2011:738137
    [42]Rosenberg GA, Mun-Bryce S, Wesley M, et al. Collagenase-induced intracerebral hemorrhage in rats. Stroke,1990,21(5):801-807
    [43]Hayashi T, Noshita N, Sugawara T, et al. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab,2003,23(2):166-180
    [44]Sinar EJ, Mendelow AD, Graham DI, et al. Experimental intracerebral hemorrhage:effects of a temporary mass lesion. J Neurosurg,1987,66(4):568-576
    [45]Nehls DG, Mendelow DA, Graham DI, et al. Experimental intracerebral hemorrhage:early removal of a spontaneous mass lesion improves late outcome. Neurosurgery,1990,27(5):674-682; discussion 682
    [46]Okamoto K, Yamamoto K, Morita N, et al. Establishment and use of the M strain of stroke-prone spontaneously hypertensive rat. J Hypertens Suppl, 1986,4(3):S21-24
    [47]Nath FP, Jenkins A, Mendelow AD, et al. Early hemodynamic changes in experimental intracerebral hemorrhage. J Neurosurg,1986,65(5):697-703
    [48]Del BMR, Yan HJ, Buist R, et al. Experimental intracerebral hemorrhage in rats. Magnetic resonance imaging and histopathological correlates. Stroke, 1996,27(12):2312-2319; discussion 2319-2320
    [49]Chesney JA, Kondoh T, Conrad JA, et al. Collagenase-induced intrastriatal hemorrhage in rats results in long-term locomotor deficits. Stroke, 1995,26(2):312-316; discussion 317
    [50]Kannagi R. [Recent advances in the study of lymphocyte homing involving selectins and CD44]. Tanpakushitsu Kakusan Koso,2003,48(8 Suppl):1112-1119
    [51]Brennan FR, O'Neill JK, Allen SJ, et al. CD44 is involved in selective leucocyte extravasation during inflammatory central nervous system disease. Immunology,1999,98(3):427-435
    [52]Plantman S. Osteopontin is upregulated after mechanical brain injury and stimulates neurite growth from hippocampal neurons through betal integrin and CD44. Neuroreport,2012,23(11):647-652
    [53]Redies C, Hertel N, Hubner CA. Cadherins and neuropsychiatric disorders. Brain Res,2012,1470:130-144
    [54]Liu Q, Ensign RD, Azodi E. Cadherin-1,-2 and-4 expression in the cranial ganglia and lateral line system of developing zebrafish. Gene Expr Patterns, 2003,3(5):653-658
    [55]Dallerac G, Rampon C, Doyere V. NCAM Function in the Adult Brain: Lessons from Mimetic Peptides and Therapeutic Potential. Neurochem Res, 2013,
    [56]Nomellini V, Brubaker AL, Mahbub S, et al. Dysregulation of neutrophil CXCR2 and pulmonary endothelial icam-1 promotes age-related pulmonary inflammation. Aging Dis,2012,3(3):234-247
    [57]Liu CP, Hsieh CH, Wu BN, et al. Inhaled KMUP-1 Prevents Allergic Pulmonary Vascular Inflammation and Remodeling via NO and Suppressed MMP-9 and ICAM-1/VCAM-1. Inflamm Allergy Drug Targets, 2012,11(4):251-261
    [58]Corsi MM, Licastro F, Porcellini E, et al. Reduced plasma levels of P-selectin and L-selectin in a pilot study from Alzheimer disease:relationship with neuro-degeneration. Biogerontology,2011,12(5):451-454
    [59]Wei YS, Lan Y, Meng LQ, et al. The association of L-selectin polymorphisms with L-selectin serum levels and risk of ischemic stroke. J Thromb Thrombolysis,2011,32(1):110-115
    [60]Zhang RJ, You C, Cai BW, et al. [Changes in P-selectin expression after brain injury in rats]. Nan Fang Yi Ke Da Xue Xue Bao,2006,26(3):348-351
    [61]Hirano S, Kimoto N, Shimoyama Y, et al. Identification of a neural alpha-catenin as a key regulator of cadherin function and multicellular organization. Cell,1992,70(2):293-301
    [62]Mikami T, Yasunaga D, Kitagawa H. Contactin-1 is a functional receptor for neuroregulatory chondroitin sulfate-E. J Biol Chem,2009,284(7):4494-4499
    [63]Stoeckli ET. Neural circuit formation in the cerebellum is controlled by cell adhesion molecules of the Contactin family. Cell Adh Migr, 2010,4(4):523-526
    [64]Lamprianou S, Chatzopoulou E, Thomas JL, et al. A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells. Proc Natl Acad Sci U S A, 2011,108(42):17498-17503
    [65]Ji K, Tsirka SE. Inflammation modulates expression of laminin in the central nervous system following ischemic injury. J Neuroinflammation,2012,9:159
    [66]Li L, Liu F, Welser-Alves JV, et al. Upregulation of fibronectin and the alpha5betal and alphavbeta3 integrins on blood vessels within the cerebral ischemic penumbra. Exp Neurol,2012,233(1):283-291
    [67]Zanetti M, Braghetta P, Sabatelli P, et al. EMILIN-1 deficiency induces elastogenesis and vascular cell defects. Mol Cell Biol,2004,24(2):638-650
    [68]Farber K, Markworth S, Pannasch U, et al. The ectonucleotidase cd39/ENTPDasel modulates purinergic-mediated microglial migration. Glia, 2008,56(3):331-341
    [69]管栋,张相彤,梁洪生.小胶质细胞激活与脑出血后继发性脑损伤机制的研究进展.国际神经病学神经外科学杂志,2012,(04):383-386
    [70]Iseki K, Hagino S, Zhang Y, et al. Altered expression pattern of testican-1 mRNA after brain injury. Biomed Res,2011,32(6):373-378
    [71]Nor JE, Peters MC, Christensen JB, et al. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest, 2001,81(4):453-463
    [72]Xing C, Hayakawa K, Lok J, et al. Injury and repair in the neurovascular unit. Neurol Res,2012,34(4):325-330
    [73]Kalra L, Ratan RR. Advances in stroke regenerative medicine 2007. Stroke, 2008,39(2):273-275
    [74]何纲,金益强,黎杏群.脑溢安颗粒对脑出血大鼠脑内细胞间粘附分子-1表达和中性白细胞浸润及神经细胞损伤的影响.中国中西医结合杂志,2003,23(7):526-529
    [75]Gong C, Hoff JT, Keep RF. Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res,2000,871(1):57-65
    [76]Krupinski J, Kaluza J, Kumar P, et al. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke,1994,25(9):1794-1798
    [77]Clarkson AN, Liu H, Schiborra F, et al. Angiogenesis as a predictive marker of neurological outcome following hypoxia-ischemia. Brain Res, 2007,1171:111-121
    [78]Lok J, Gupta P, Guo S, et al. Cell-cell signaling in the neurovascular unit. Neurochem Res,2007,32(12):2032-2045
    [79]Klagsbrun M, Moses MA. Molecular angiogenesis. Chem Biol, 1999,6(8):R217-224
    [80]Murakami M, Simons M. Regulation of vascular integrity. J Mol Med (Berl), 2009,87(6):571-582
    [81]宋楠萌,桑建利,徐恒.增殖细胞核抗原(PCNA)的分子结构及其生物学功能研究进展.自然科学进展,2006,16(10):1201-1209
    [82]Robertson PL, Du Bois M, Bowman PD, et al. Angiogenesis in developing rat brain:an in vivo and in vitro study. Brain Res,1985,355(2):219-223
    [83]Beauvais DM, Ell BJ, McWhorter AR, et al. Syndecan-1 regulates alphavbeta3 and alphavbeta5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J Exp Med,2009,206(3):691-705
    [84]Li B, Zhang HQ, Shi Y, et al. Overexpression of nuclear transport factor 2 may protect against diabetic retinopathy. Mol Vis,2009,15:861-869
    [85]Wojciak-Stothard B, Torondel B, Zhao L, et al. Modulation of Racl activity by ADMA/DDAH regulates pulmonary endothelial barrier function. Mol Biol Cell,2009,20(1):33-42
    [86]Hua Y, Schallert T, Keep RF, et al. Behavioral tests after intracerebral hemorrhage in the rat. Stroke,2002,33(10):2478-2484
    [87]Hartman R, Lekic T, Rojas H, et al. Assessing functional outcomes following intracerebral hemorrhage in rats. Brain Res,2009,1280:148-157
    [88]Myllyharju J, Kivirikko KI. Collagens and collagen-related diseases. Ann Med, 2001,33(1):7-21
    [89]Prockop DJ, Kivirikko KI. Collagens:molecular biology, diseases, and potentials for therapy. Annu Rev Biochem,1995,64:403-434
    [90]田波,刘慧雯,于宏伟,等.大鼠胎脑神经细胞与胶原复合体移植对脑损伤的修复.中国临床康复,2003,7(25):3430-3431
    [91]Huang KF, Hsu WC, Chiu WT, et al. Functional improvement and neurogenesis after collagen-GAG matrix implantation into surgical brain trauma. Biomaterials,2012,33(7):2067-2075
    [92]Qu C, Xiong Y, Mahmood A, et al. Treatment of traumatic brain injury in mice with bone marrow stromal cell-impregnated collagen scaffolds. J Neurosurg, 2009,111(4):658-665
    [93]Elias PZ, Spector M. Treatment of penetrating brain injury in a rat model using collagen scaffolds incorporating soluble Nogo receptor.LID 10.1002/term.1621 [doi]. J Tissue Eng Regen Med,2012,
    [94]Han Q, Jin W, Xiao Z, et al. The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody. Biomaterials,2010,31(35):9212-9220
    [95]Houweling DA, van AJT, Lankhorst AJ, et al. Local application of collagen containing brain-derived neurotrophic factor decreases the loss of function after spinal cord injury in the adult rat. Neurosci Lett,1998,251(3):193-196
    [96]Rooney P, Kumar S. Inverse relationship between hyaluronan and collagens in development and angiogenesis. Differentiation,1993,54(1):1-9
    [97]Nakamura J, Shigematsu S, Yamauchi K, et al. Biphasic function of focal adhesion kinase in endothelial tube formation induced by fibril-forming collagens. Biochem Biophys Res Commun,2008,374(4):699-703
    [98]Boudko SP, Engel J, Bachinger HP. The crucial role of trimerization domains in collagen folding. Int J Biochem Cell Biol,2012,44(1):21-32
    [99]Yu H, Cao B, Feng M, et al. Combinated transplantation of neural stern cells and collagen type I promote functional recovery after cerebral ischemia in rats. Anat Rec (Hoboken),2010,293(5):911-917
    [100]Graf K, Kappert K, Stawowy P, et al. Statins regulate alpha2betal-integrin expression and collagen I-dependent functions in human vascular smooth muscle cells. J Cardiovasc Pharmacol,2003,41(1):89-96
    [101]周勇,姚昶,高峰,等.黄芪多糖胶原干预周围组织中核因子κB与血管内皮细胞生长因子表达而促进毛细血管新生.中国组织工程研究,2012,16(7):1184-1187
    [102]樊炼,高卫卫,潘立群,等.黄芪多糖修饰胶原促血管新生的实验研究.江苏中医药,2010,42(6):68-70
    [103]Majesky MW, Lindner V, Twardzik DR, et al. Production of transforming growth factor beta 1 during repair of arterial injury. J Clin Invest, 1991,88(3):904-910
    [104]周玉杰,汪丽蕙,柯元南.碱性成纤维细胞生长因子对血管平滑肌细胞及内膜损伤后血管Ⅰ及Ⅲ型胶原mRNA表达的影响.中华心血管病杂志,1998,26(1)
    [105]Kaartinen MT, Pirhonen A, Linnala-Kankkunen A, et al. Cross-linking of osteopontin by tissue transglutaminase increases its collagen binding properties. J Biol Chem,1999,274(3):1729-1735
    [106]王博,张继东,冯进波,等.芩丹胶囊对自发性高血压大鼠血管重构以及骨桥蛋白基因表达的影响.南京中医药大学学报(自然科学版),2007,23(3):157-160,封3
    [107]郭雪峰,张继东,姜红,等.芩丹胶囊对老年自发性高血压大鼠血管外膜Ⅰ、Ⅲ型胶原表达的影响.中国中西医结合杂志,2010,(11):1178-1182
    [108]陈光,贺占国,王永海,等.胶原蛋白对毛细血管瘤病理演变的影响.中华小儿外科杂志,1998,19(6):329-330
    [109]Mirre C, Le PY, Knibiehler B. Collagen IV is present in the developing CNS during Drosophila neurogenesis. J Neurosci Res,1992,31 (1):146-155
    [110]Eagleson KL, Ferri RT, Levitt P. Complementary distribution of collagen type IV and the epidermal growth factor receptor in the rat embryonic telencephalon. Cereb Cortex,1996,6(3):540-549
    [111]Kalaria RN, Pax AB. Increased collagen content of cerebral microvessels in Alzheimer's disease. Brain Res,1995,705(1-2):349-352
    [112]于学平,孙晓伟,邹伟.头针对脑缺血再灌注大鼠脑微血管Ⅳ型胶原蛋白影响的动态研究.针灸临床杂志,2012,28(4):60-62
    [113]Wang H, Su Y. Collagen IV contributes to nitric oxide-induced angiogenesis of lung endothelial cells. Am J Physiol Cell Physiol,2011,300(5):C979-988
    [114]Yonezawa T, Hattori S, Inagaki J, et al. Type IV collagen induces expression of thrombospondin-1 that is mediated by integrin alphalbetal in astrocytes. Glia,2010,58(7):755-767
    [115]Stichel CC, Hermanns S, Luhmann HJ, et al. Inhibition of collagen IV deposition promotes regeneration of injured CNS axons. Eur J Neurosci, 1999,11(2):632-646
    [116]Anik I, Kokturk S, Gene H, et al. Immunohistochemical analysis of TIMP-2 and collagen types Ⅰ and Ⅳ in experimental spinal cord ischemia-reperfusion injury in rats. J Spinal Cord Med,2011,34(3):257-264
    [117]Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases:structure, function, and biochemistry. Circ Res, 2003,92(8):827-839
    [118]Chakraborti S, Mandal M, Das S, et al. Regulation of matrix metalloproteinases:an overview. Mol Cell Biochem,2003,253(1-2):269-285
    [119]van HVW, Koolwijk P. Endothelial sprouting and angiogenesis:matrix metalloproteinases in the lead. Cardiovasc Res,2008,78(2):203-212
    [120]成宪武,宋海珍,宋辉,等.基质金属蛋白酶在血管新生过程中的研究进展.中华心血管病杂志,2009,37(7):660-662
    [121]Sottile J. Regulation of angiogenesis by extracellular matrix. Biochim Biophys Acta,2004,1654(1):13-22
    [122]Kaczmarek L, Lapinska-Dzwonek J, Szymczak S. Matrix metalloproteinases in the adult brain physiology:a link between c-Fos, AP-1 and remodeling of neuronal connections. EMBO J,2002,21 (24):6643-6648
    [123]Kim HJ, Fillmore HL, Reeves TM, et al. Elevation of hippocampal MMP-3 expression and activity during trauma-induced synaptogenesis. Exp Neurol, 2005,192(1):60-72
    [124]Zhao BQ, Wang S, Kim HY, et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med,2006,12(4):441-445
    [125]Cunningham LA, Wetzel M, Rosenberg GA. Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia,2005,50(4):329-339
    [126]Hrabec E, Naduk J, Strek M, et al. [Type IV collagenases (MMP-2 and MMP-9) and their substrates--intracellular proteins, hormones, cytokines, chemokines and their receptors]. Postepy Biochem,2007,53(1):37-45
    [127]罗先道,曾妍,杨磊.膜型基质金属蛋白酶-1在肿瘤中的作用.现代肿瘤医学,2009,17(10):2005-2008
    [128]Gora-Kupilas K, Josko J. The neuroprotective function of vascular endothelial growth factor (VEGF). Folia Neuropathol,2005,43(1):31-39
    [129]Wang YQ, Guo X, Qiu MH, et al. VEGF overexpression enhances striatal neurogenesis in brain of adult rat after a transient middle cerebral artery occlusion. J Neurosci Res,2007,85(1):73-82
    [130]Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest, 2003,111(12):1843-1851
    [131]Lamoreaux WJ, Fitzgerald ME, Reiner A, et al. Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cells in vitro. Microvasc Res,1998,55(1):29-42
    [132]Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol, 2000,2(10):737-744
    [133]Sounni NE, Devy L, Hajitou A, et al. MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression. FASEB J,2002,16(6):555-564
    [134]Deryugina EI, Ratnikov BI, Postnova TI, et al. Processing of integrin alpha(v) subunit by membrane type 1 matrix metalloproteinase stimulates migration of breast carcinoma cells on vitronectin and enhances tyrosine phosphorylation of focal adhesion kinase. J Biol Chem,2002,277(12):9749-9756
    [135]Wu H, Zhang Z, Li Y, et al. Time course of upregulation of inflammatory mediators in the hemorrhagic brain in rats:correlation with brain edema. Neurochem Int,2010,57(3):248-253
    [136]Kawakita K, Kawai N, Kuroda Y, et al. Expression of matrix metalloproteinase-9 in thrombin-induced brain edema formation in rats. J Stroke Cerebrovasc Dis,2006,15(3):88-95
    [137]Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain,2005,128(Pt 7):1622-1633
    [138]Xue M, Hollenberg MD, Yong VW. Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. J Neurosci,2006,26(40):10281-10291
    [139]Tucker GC. Inhibitors of integrins. Curr Opin Pharmacol,2002,2(4):394-402
    [140]Hall R, Mazer CD. Antiplatelet drugs:a review of their pharmacology and management in the perioperative period. Anesth Analg,2011,112(2):292-318
    [141]Eberhard A, Kahlert S, Goede V, et al. Heterogeneity of angiogenesis and blood vessel maturation in human tumors:implications for antiangiogenic tumor therapies. Cancer Res,2000,60(5):1388-1393
    [142]Clark RA, Tonnesen MG, Gailit J, et al. Transient functional expression of alphaVbeta 3 on vascular cells during wound repair. Am J Pathol, 1996,148(5):1407-1421
    [143]Boudreau NJ, Varner JA. The homeobox transcription factor Hox D3 promotes integrin alpha5betal expression and function during angiogenesis. J Biol Chem,2004,279(6):4862-4868
    [144]Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science,1994,264(5158):569-571
    [145]Abumiya T, Lucero J, Heo JH, et al. Activated microvessels express vascular endothelial growth factor and integrin alpha(v)beta3 during focal cerebral ischemia. J Cereb Blood Flow Metab,1999,19(9):1038-1050
    [146]Reynolds LE, Wyder L, Lively JC, et al. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med, 2002,8(1):27-34
    [147]Li L, Welser JV, Milner R. Absence of the alpha v beta 3 integrin dictates the time-course of angiogenesis in the hypoxic central nervous system: accelerated endothelial proliferation correlates with compensatory increases in alpha 5 beta 1 integrin expression. J Cereb Blood Flow Metab, 2010,30(5):1031-1043
    [148]George EL, Baldwin HS, Hynes RO. Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood,1997,90(8):3073-3081
    [149]Goh KL, Yang JT, Hynes RO. Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos. Development, 1997,124(21):4309-4319
    [150]Morozevich G, Kozlova N, Cheglakov I, et al. Integrin alpha5betal controls invasion of human breast carcinoma cells by direct and indirect modulation of MMP-2 collagenase activity. Cell Cycle,2009,8(14):2219-2225
    [151]Jan Y, Matter M, Pai JT, et al. A mitochondrial protein, Bitl, mediates apoptosis regulated by integrins and Groucho/TLE corepressors. Cell, 2004,116(5):751-762
    [152]Kang WS, Choi JS, Shin YJ, et al. Differential regulation of osteopontin receptors, CD44 and the alpha(v) and beta(3) integrin subunits, in the rat hippocampus following transient forebrain ischemia. Brain Res, 2008,1228:208-216
    [153]Senger DR, Ledbetter SR, Claffey KP, et al. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol,1996,149(1):293-305
    [154]Byzova TV, Goldman CK, Pampori N, et al. A mechanism for modulation of cellular responses to VEGF:activation of the integrins. Mol Cell,2000,6(4): 851-860
    [155]Tsou R, Isik FF. Integrin activation is required for VEGF and FGF receptor protein presence on human microvascular endothelial cells. Mol Cell Biochem, 2001,224(1-2):81-89
    [156]Montgomery AM, Reisfeld RA, Cheresh DA. Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci U S A,1994,91(19):8856-8860
    [157]Boudreau N, Sympson CJ, Werb Z, et al. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science,1995,267(5199): 891-893
    [158]Scatena M, Almeida M, Chaisson ML, et al. NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. J Cell Biol,1998,141(4):1083-1093
    [159]Kim S, Bell K, Mousa SA, et al. Regulation of angiogenesis in vivo by ligation of integrin alpha5betal with the central cell-binding domain of fibronectin. Am J Pathol,2000,156(4):1345-1362
    [160]Liu Z, Kobayashi K, van DM, et al. VEGF and inhibitors of TGFbeta type-I receptor kinase synergistically promote blood-vessel formation by inducing alpha5-integrin expression. J Cell Sci,2009,122(Pt 18):3294-3302
    [161]Silva R, D'Amico G, Hodivala-Dilke KM, et al. Integrins:the keys to unlocking angiogenesis. Arterioscler Thromb Vase Biol,2008,28(10):1703-1713
    [162]Collo G, Pepper MS. Endothelial cell integrin alpha5betal expression is modulated by cytokines and during migration in vitro. J Cell Sci,1999,112 (Pt4):569-578
    [1]Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem, 1999,274(31):21491-21494
    [2]Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol,2001,17:463-516
    [3]Woessner JF Jr. Matrix metalloproteinase inhibition. From the Jurassic to the third millennium. Ann N Y Acad Sci,1999,878:388-403
    [4]Gomez DE, Alonso DF, Yoshiji H, et al. Tissue inhibitors of metalloproteinases:structure, regulation and biological functions. Eur J Cell Biol,1997,74(2):111-122
    [5]Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta,2000,1477(1-2): 267-283
    [6]Creemers EE, Cleutjens JP, Smits JF, et al. Matrix metalloproteinase inhibition after myocardial infarction:a new approach to prevent heart failure. Circ Res, 2001,89(3):201-210
    [7]Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis:the good, the bad, and the ugly. Circ Res,2002,90(3):251-262
    [8]Spinale FG. Matrix metalloproteinases:regulation and dysregulation in the failing heart. Circ Res,2002,90(5):520-530
    [9]Leontovich AA, Zhang J, Shimokawa K, et al. A novel hydra matrix metalloproteinase (HMMP) functions in extracellular matrix degradation, morphogenesis and the maintenance of differentiated cells in the foot process. Development,2000,127(4):907-920
    [10]Lepage T, Gache C. Early expression of a collagenase-like hatching enzyme gene in the sea urchin embryo. EMBO J,1990,9(9):3003-3012
    [11]Maidment JM, Moore D, Murphy GP, et al. Matrix metalloproteinase homologues from Arabidopsis thaliana. Expression and activity. J Biol Chem, 1999,274(49):34706-34710
    [12]Allan JA, Docherty AJ, Barker PJ, et al. Binding of gelatinases A and B to type-Ⅰ collagen and other matrix components. Biochem J,1995,309 (Pt 1):299-306
    [13]Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4-and 1/4-length fragments. J Biol Chem,1995,270(11):5872-5876
    [14]Patterson ML, Atkinson SJ, Knauper V, et al. Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain. FEBS Lett,2001,503(2-3):158-162
    [15]Itoh T, Ikeda T, Gomi H, et al. Unaltered secretion of beta-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J Biol Chem,1997,272(36):22389-22392
    [16]Martignetti JA, Aqeel AA, Sewairi WA, et al. Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nat Genet,2001,28(3):261-265
    [17]Suzuki K, Enghild JJ, Morodomi T, et al. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry, 1990,29(44):10261-10270
    [18]Uria JA, Lopez-Otin C. Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. Cancer Res,2000,60(17): 4745-4751
    [19]Park HI, Ni J, Gerkema FE, et al. Identification and characterization of human endometase (Matrix metalloproteinase-26) from endometrial tumor. J Biol Chem,2000,275(27):20540-20544
    [20]Ohuchi E, Imai K, Fujii Y, et al. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem,1997,272(4):2446-2451
    [21]Holmbeck K, Bianco P, Caterina J, et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell,1999,99(1):81-92
    [22]Pepper MS. Extracellular proteolysis and angiogenesis. Thromb Haemost, 2001,86(1):346-355
    [23]Sekine-Aizawa Y, Hama E, Watanabe K, et al. Matrix metalloproteinase (MMP) system in brain:identification and characterization of brain-specific MMP highly expressed in cerebellum. Eur J Neurosci,2001,13(5):935-948
    [24]Velasco G, Cal S, Merlos-Suarez A, et al. Human MT6-matrix metalloproteinase:identification, progelatinase A activation, and expression in brain tumors. Cancer Res,2000,60(4):877-882
    [25]Pei D. Leukolysin/MMP25/MT6-MMP:a novel matrix metalloproteinase specifically expressed in the leukocyte lineage. Cell Res,1999,9(4):291-303
    [26]Shapiro SD, Kobayashi DK, Ley TJ. Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J Biol Chem,1993,268(32):23824-23829
    [27]Shipley JM, Wesselschmidt RL, Kobayashi DK, et al. Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci U S A,1996,93(9):3942-3946
    [28]Pendas AM, Knauper V, Puente XS, et al. Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution. J Biol Chem, 1997,272(7):4281-4286
    [29]Kolb C, Mauch S, Peter HH, et al. The matrix metalloproteinase RASI-1 is expressed in synovial blood vessels of a rheumatoid arthritis patient. Immunol Lett,1997,57(1-3):83-88
    [30]Li W, Gibson CW, Abrams WR, et al. Reduced hydrolysis of amelogenin may result in X-linked amelogenesis imperfecta. Matrix Biol,2001,19(8):755-760
    [31]Yang M, Kurkinen M. Cloning and characterization of a novel matrix metalloproteinase (MMP), CMMP, from chicken embryo fibroblasts. CMMP, Xenopus XMMP, and human MMP 19 have a conserved unique cysteine in the catalytic domain. J Biol Chem,1998,273(28):17893-17900
    [32]Velasco G, Pendas AM, Fueyo A, et al. Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem,1999,274(8):4570-4576
    [33]Pei D, Kang T, Qi H. Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. J Biol Chem, 2000,275(43):33988-33997
    [34]Marchenko GN, Strongin AY. MMP-28, a new human matrix metalloproteinase with an unusual cysteine-switch sequence is widely expressed in tumors. Gene,2001,265(1-2):87-93
    [35]Lohi J, Wilson CL, Roby JD, et al. Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury. J Biol Chem,2001,276(13):10134-10144
    [36]Saarialho-Kere U, Kerkela E, Jahkola T, et al. Epilysin (MMP-28) expression is associated with cell proliferation during epithelial repair. J Invest Dermatol, 2002,119(1):14-21
    [37]Becker JW, Marcy Al, Rokosz LL, et al. Stromelysin-1:three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Sci,1995,4(10):1966-1976
    [38]Bode W, Gomis-Ruth FX, Stockler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the'metzincins'. FEBS Lett,1993,331(1-2):134-140
    [39]Bode W, Fernandez-Catalan C, Tschesche H, et al. Structural properties of matrix metalloproteinases. Cell Mol Life Sci,1999,55(4):639-652
    [40]Morgunova E, Tuuttila A, Bergmann U, et al. Structure of human pro-matrix metalloproteinase-2:activation mechanism revealed. Science, 1999,284(5420):1667-1670
    [41]Briknarova K, Gehrmann M, Banyai L, et al. Gelatin-binding region of human matrix metalloproteinase-2:solution structure, dynamics, and function of the COL-23 two-domain construct. J Biol Chem,2001,276(29):27613-27621
    [42]Cha H, Kopetzki E, Huber R, et al. Structural basis of the adaptive molecular recognition by MMP9. J Mol Biol,2002,320(5):1065-1079
    [43]Olson MW, Gervasi DC, Mobashery S, et al. Kinetic analysis of the binding of human matrix metalloproteinase-2 and-9 to tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. J Biol Chem, 1997,272(47):29975-29983
    [44]Roeb E, Schleinkofer K, Kernebeck T, et al. The matrix metalloproteinase 9 (mmp-9) hemopexin domain is a novel gelatin binding domain and acts as an antagonist. J Biol Chem,2002,277(52):50326-50332
    [45]Morgunova E, Tuuttila A, Bergmann U, et al. Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proc Natl Acad Sci U S A,2002,99(11):7414-7419
    [46]Smith TF, Gaitatzes C, Saxena K, et al. The WD repeat:a common architecture for diverse functions. Trends Biochem Sci,1999,24(5):181-185
    [47]Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem, 1997,378(3-4):151-160
    [48]Van Wart HE, Birkedal-Hansen H. The cysteine switch:a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A, 1990,87(14):5578-5582
    [49]Chen LC, Noelken ME, Nagase H. Disruption of the cysteine-75 and zinc ion coordination is not sufficient to activate the precursor of human matrix metalloproteinase 3 (stromelysin 1). Biochemistry,1993,32(39):10289-10295
    [50]Okada Y, Harris ED Jr, Nagase H. The precursor of a metalloendopeptidase from human rheumatoid synovial fibroblasts. Purification and mechanisms of activation by endopeptidases and 4-aminophenylmercuric acetate. Biochem J, 1988,254(3):731-741
    [51]Nagase H, Enghild JJ, Suzuki K, et al. Step wise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl)mercuric acetate. Biochemistry,1990,29(24):5783-5789
    [52]Gu Z, Kaul M, Yan B, et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science, 2002,297(5584):1186-1190
    [53]Lijnen HR. Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost,2001,86(1):324-333
    [54]Suzuki K, Kan CC, Hung W, et al. Expression of human pro-matrix metalloproteinase 3 that lacks the N-terminal 34 residues in Escherichia coli: autoactivation and interaction with tissue inhibitor of metalloproteinase 1 (TIMP-1). Biol Chem,1998,379(2):185-191
    [55]Pei D, Weiss SJ. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature,1995,375(6528):244-247
    [56]Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res,2006,69(3):562-573
    [57]Butler GS, Will H, Atkinson SJ, et al. Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur J Biochem, 1997,244(2):653-657
    [58]Takino T, Sato H, Shinagawa A, et al. Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J Biol Chem,1995,270(39):23013-23020
    [59]Llano E, Pendas AM, Freije JP, et al. Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Res,1999,59(11):2570-2576
    [60]Pei D. Identification and characterization of the fifth membrane-type matrix metalloproteinase MT5-MMP. J Biol Chem,1999,274(13):8925-8932
    [61]English WR, Puente XS, Freije JM, et al. Membrane type 4 matrix metalloproteinase (MMP 17) has tumor necrosis factor-alpha convertase activity but does not activate pro-MMP2. J Biol Chem, 2000,275(19):14046-14055
    [62]Strongin AY, Collier I, Bannikov G, et al. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem,1995,270(10):5331-5338
    [63]Butler GS, Butler MJ, Atkinson SJ, et al. The TIMP2 membrane type 1 metalloproteinase "receptor" regulates the concentration and efficient activation of progelatinase A. A kinetic study. J Biol Chem, 1998,273(2):871-880
    [64]Wang Z, Juttermann R, Soloway PD. TIMP-2 is required for efficient activation of proMMP-2 in vivo. J Biol Chem,2000,275(34):26411-26415
    [65]Itoh Y, Takamura A, Ito N, et al. Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. EMBO J,2001,20(17):4782-4793
    [66]Jo Y, Yeon J, Kim HJ, et al. Analysis of tissue inhibitor of metalloproteinases-2 effect on pro-matrix metalloproteinase-2 activation by membrane-type 1 matrix metalloproteinase using baculovirus/insect-cell expression system. Biochem J,2000,345 Pt 3:511-519
    [67]Morrison CJ, Butler GS, Bigg HF, et al. Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. J Biol Chem,2001,276(50):47402-47410
    [68]Hernandez-Barrantes S, Shimura Y, Soloway PD, et al. Differential roles of TIMP-4 and TIMP-2 in pro-MMP-2 activation by MT1-MMP. Biochem Biophys Res Commun,2001,281(1):126-130
    [69]Knauper V, Will H, Lopez-Otin C, et al. Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. J Biol Chem, 1996,271(29):17124-17131
    [70]Knauper V, Bailey L, Worley JR, et al. Cellular activation of proMMP-13 by MT1-MMP depends on the C-terminal domain of MMP-13. FEBS Lett, 2002,532(1-2):127-130
    [71]Nagase H, Fields GB. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers, 1996,40(4):399-416
    [72]Gronski TJ Jr, Martin RL, Kobayashi DK, et al. Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. J Biol Chem,1997,272(18):12189-12194
    [73]Sone S, Shiraga M. [Matrix metalloproteinase inhibitors for therapy of cancer]. Nihon Rinsho,2001,59 Suppl 4:431-437
    [74]Murphy G, Nguyen Q, Cockett MI, et al. Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of a deletion mutant. J Biol Chem,1994,269(9):6632-6636
    [75]Shipley JM, Doyle GA, Fliszar CJ, et al. The structural basis for the elastolytic activity of the 92-kDa and 72-kDa gelatinases. Role of the fibronectin type Ⅱ-like repeats. J Biol Chem,1996,271(8):4335-4341
    [76]Chung L, Shimokawa K, Dinakarpandian D, et al. Identification of the (183)RWTNNFREY(191) region as a critical segment of matrix metalloproteinase 1 for the expression of collagenolytic activity. J Biol Chem, 2000,275(38):29610-29617
    [77]Overall CM. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol,2002,22(1):51-86
    [78]Holliday LS, Welgus HG, Fliszar CJ, et al. Initiation of osteoclast bone resorption by interstitial collagenase. J Biol Chem,1997,272(35):22053-22058
    [79]Pilcher BK, Dumin JA, Sudbeck BD, et al. The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol, 1997,137(6):1445-1457
    [80]Lei H, Furth EE, Kalluri R, et al. A program of cell death and extracellular matrix degradation is activated in the amnion before the onset of labor. J Clin Invest,1996,98(9):1971-1978
    [81]Giannelli G, Falk-Marzillier J, Schiraldi O, et al. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science, 1997,277(5323):225-228
    [82]Koshikawa N, Giannelli G, Cirulli V, et al. Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol, 2000,148(3):615-624
    [83]Kajita M, Itoh Y, Chiba T, et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol,2001,153(5):893-904
    [84]Krekoski CA, Neubauer D, Graham JB, et al. Metalloproteinase-dependent predegeneration in vitro enhances axonal regeneration within acellular peripheral nerve grafts. J Neurosci,2002,22(23):10408-10415
    [85]McCawley LJ, Matrisian LM. Matrix metalloproteinases:they're not just for matrix anymore. Curr Opin Cell Biol,2001,13(5):534-540
    [86]Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta, 2000,1477(1-2):267-283
    [87]Murphy G, Houbrechts A, Cockett MI, et al. The N-terminal domain of tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity. Biochemistry,1991,30(33):8097-8102
    [88]Williamson RA, Marston FA, Angal S, et al. Disulphide bond assignment in human tissue inhibitor of metalloproteinases (TIMP). Biochem J, 1990,268(2):267-274
    [89]Williamson RA, Martorell G, Carr MD, et al. Solution structure of the active domain of tissue inhibitor of metalloproteinases-2. A new member of the OB fold protein family. Biochemistry,1994,33(39):11745-11759
    [90]Gomis-Ruth FX, Maskos K, Betz M, et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature, 1997,389(6646):77-81
    [91]Fernandez-Catalan C, Bode W, Huber R, et al. Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J,1998,17(17):5238-5248
    [92]Will H, Atkinson SJ, Butler GS, et al. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J Biol Chem,1996,271(29):17119-17123
    [93]Amour A, Slocombe PM, Webster A, et al. TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett,1998,435(1):39-44
    [94]Amour A, Knight CG, Webster A, et al. The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett,2000,473(3):275-279
    [95]Loechel F, Fox JW, Murphy G, et al. ADAM 12-S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3. Biochem Biophys Res Commun, 2000,278(3):511-515
    [96]Kashiwagi M, Tortorella M, Nagase H, et al. TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J Biol Chem, 2001,276(16):12501-12504
    [97]Yu WH, Yu S, Meng Q, et al. TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J Biol Chem,2000,275(40):31226-31232
    [98]Fedak PW, Altamentova SM, Weisel RD, et al. Matrix remodeling in experimental and human heart failure:a possible regulatory role for TIMP-3. Am J Physiol Heart Circ Physiol,2003,284(2):H626-634
    [99]Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors:biological actions and therapeutic opportunities. J Cell Sci,2002,115(Pt 19):3719-3727
    [100]Zucker S, Cao J, Chen WT. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene, 2000,19(56):6642-6650
    [101]Rouis M, Adamy C, Duverger N, et al. Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-1 reduces atherosclerotic lesions in apolipoprotein E-deficient mice. Circulation,1999,100(5):533-540
    [102]Allaire E, Forough R, Clowes M, et al. Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J Clin Invest,1998,102(7):1413-1420
    [103]Barrett AJ. Alpha 2-macroglobulin. Methods Enzymol,1981,80 Pt C:737-754
    [104]Cawston TE, Mercer E. Preferential binding of collagenase to alpha 2-macroglobulin in the presence of the tissue inhibitor of metalloproteinases. FEBS Lett,1986,209(1):9-12
    [105]Herman MP, Sukhova GK, Kisiel W, et al. Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J Clin Invest,2001,107(9):1117-1126
    [106]Mott JD, Thomas CL, Rosenbach MT, et al. Post-translational proteolytic processing of procollagen C-terminal proteinase enhancer releases a metalloproteinase inhibitor. J Biol Chem,2000,275(2):1384-1390
    [107]Miyazaki K, Hasegawa M, Funahashi K, et al. A metalloproteinase inhibitor domain in Alzheimer amyloid protein precursor. Nature, 1993,362(6423):839-841
    [108]Oh J, Takahashi R, Kondo S, et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell,2001,107(6):789-800
    [109]Takahashi C, Sheng Z, Horan TP, et al. Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci U S A, 1998,95(22):13221-13226
    [110]Deshane J, Garner CC, Sontheimer H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J Biol Chem,2003,278(6):4135-4144
    [111]Gasson JC, Golde DW, Kaufman SE, et al. Molecular characterization and expression of the gene encoding human erythroid-potentiating activity. Nature, 1985,315(6022):768-771
    [112]Stetler-Stevenson WG, Bersch N, Golde DW. Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. FEBS Lett, 1992,296(2):231-234
    [113]Hayakawa T, Yamashita K, Tanzawa K, et al. Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett,1992,298(1):29-32
    [114]Hayakawa T, Yamashita K, Ohuchi E, et al. Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). J Cell Sci,1994,107 (Pt 9):2373-2379
    [115]Zhao WQ, Li H, Yamashita K, et al. Cell cycle-associated accumulation of tissue inhibitor of metalloproteinases-1 (TIMP-1) in the nuclei of human gingival fibroblasts. J Cell Sci,1998,111 (Pt 9):1147-1153
    [116]Ritter LM, Garfield SH, Thorgeirsson UP. Tissue inhibitor of metalloproteinases-1 (TIMP-1) binds to the cell surface and translocates to the nucleus of human MCF-7 breast carcinoma cells. Biochem Biophys Res Commun,1999,257(2):494-499
    [117]Barasch J, Yang J, Qiao J, et al. Tissue inhibitor of metalloproteinase-2 stimulates mesenchymal growth and regulates epithelial branching during morphogenesis of the rat metanephros. J Clin Invest,1999,103(9):1299-1307
    [118]Murphy AN, Unsworth EJ, Stetler-Stevenson WG. Tissue inhibitor of metalloproteinases-2 inhibits bFGF-induced human microvascular endothelial cell proliferation. J Cell Physiol,1993,157(2):351-358
    [119]Bond M, Murphy G, Bennett MR, et al. Tissue inhibitor of metalloproteinase-3 induces a Fas-associated death domain-dependent type Ⅱ apoptotic pathway. J Biol Chem,2002,277(16):13787-13795
    [120]Deng X, Bhagat S, Dong Z, et al. Tissue inhibitor of metalloproteinase-3 induces apoptosis in prostate cancer cells and confers increased sensitivity to paclitaxel. Eur J Cancer,2006,42(18):3267-3273
    [121]Valente P, Fassina G, Melchiori A, et al. TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. Int J Cancer,1998,75(2):246-253
    [122]Weber BH, Vogt G, Pruett RC, et al. Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nat Genet,1994,8(4):352-356
    [123]Felbor U, Weber BH. [Sorsby's fundus dystrophy. A genetically homogeneous disease]. Ophthalmologe,1998,95(5):287-290
    [124]Langton KP, McKie N, Curtis A, et al. A novel tissue inhibitor of metalloproteinases-3 mutation reveals a common molecular phenotype in Sorsby's fundus dystrophy. J Biol Chem,2000,275(35):27027-27031
    [125]Tabata Y, Isashiki Y, Kamimura K, et al. A novel splice site mutation in the tissue inhibitor of the metalloproteinases-3 gene in Sorsby's fundus dystrophy with unusual clinical features. Hum Genet,1998,103(2):179-182
    [126]Qi JH, Ebrahem Q, Yeow K, et al. Expression of Sorsby's fundus dystrophy mutations in human retinal pigment epithelial cells reduces matrix metalloproteinase inhibition and may promote angiogenesis. J Biol Chem, 2002,277(16):13394-13400
    [127]Yeow KM, Kishnani NS, Hutton M, et al. Sorsby's fundus dystrophy tissue inhibitor of metalloproteinases-3 (TIMP-3) mutants have unimpaired matrix metalloproteinase inhibitory activities, but affect cell adhesion to the extracellular matrix. Matrix Biol,2002,21(1):75-88
    [128]Zhou Z, Apte SS, Soininen R, et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A,2000,97(8):4052-4057
    [129]Vu TH, Shipley JM, Bergers G, et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell, 1998,93(3):411-422
    [130]Hobeika MJ, Edlin RS, Muhs BE, et al. Matrix metalloproteinases in critical limb ischemia. J Surg Res,2008,149(1):148-154
    [131]Lee JG, Dahi S, Mahimkar R, et al. Intronic regulation of matrix metalloproteinase-2 revealed by in vivo transcriptional analysis in ischemia. Proc Natl Acad Sci U S A,2005,102(45):16345-16350
    [132]Muhs BE, Gagne P, Plitas G, et al. Experimental hindlimb ischemia leads to neutrophil-mediated increases in gastrocnemius MMP-2 and -9 activity:a potential mechanism for ischemia induced MMP activation. J Surg Res, 2004,117(2):249-254
    [133]Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell,2002,109(5):625-637
    [134]Huang PH, Chen YH, Wang CH, et al. Matrix metalloproteinase-9 is essential for ischemia-induced neovascularization by modulating bone marrow-derived endothelial progenitor cells. Arterioscler Thromb Vasc Biol, 2009,29(8):1179-1184
    [135]Johnson C, Sung HJ, Lessner SM, et al. Matrix metalloproteinase-9 is required for adequate angiogenic revascularization of ischemic tissues:potential role in capillary branching. Circ Res,2004,94(2):262-268
    [136]Cheng XW, Kuzuya M, Nakamura K, et al. Mechanisms underlying the impairment of ischemia-induced neovascularization in matrix metalloproteinase 2-deficient mice. Circ Res,2007,100(6):904-913
    [137]Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol, 2000,2(10):737-744
    [138]Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med, 2000,6(4):389-395
    [139]Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases:regulators of the tumor microenvironment. Cell,2010,141 (1):52-67
    [140]Mu D, Cambier S, Fjellbirkeland L, et al. The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-betal. J Cell Biol,2002,157(3):493-507
    [141]Xu J, Rodriguez D, Petitclerc E, et al. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol,2001,154(5):1069-1079
    [142]Hangai M, Kitaya N, Xu J, et al. Matrix metalloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is required before retinal angiogenesis. Am J Pathol,2002,161(4):1429-1437
    [143]Ardi VC, Kupriyanova TA, Deryugina El, et al. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc Natl Acad Sci U S A,2007,104(51):20262-20267
    [144]Ulrich D, Lichtenegger F, Unglaub F, et al. Effect of chronic wound exudates and MMP-2/-9 inhibitor on angiogenesis in vitro. Plast Reconstr Surg, 2005,116(2):539-545
    [145]Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med, 2005,9(2):267-285
    [146]Sudhakar A, Sugimoto H, Yang C, et al. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci U S A, 2003,100(8):4766-4771
    [147]Grundmann S, Piek JJ, Pasterkamp G, et al. Arteriogenesis:basic mechanisms and therapeutic stimulation. Eur J Clin Invest,2007,37(10):755-766
    [148]Heil M, Eitenmuller I, Schmitz-Rixen T, et al. Arteriogenesis versus angiogenesis:similarities and differences. J Cell Mol Med,2006,10(1):45-55
    [149]Mason DP, Kenagy RD, Hasenstab D, et al. Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery. Circ Res,1999,85(12):1179-1185
    [150]Cai WJ, Koltai S, Kocsis E, et al. Remodeling of the adventitia during coronary arteriogenesis. Am J Physiol Heart Circ Physiol, 2003,284(1):H31-40
    [151]Abbruzzese TA, Guzman RJ, Martin RL, et al. Matrix metalloproteinase inhibition limits arterial enlargements in a rodent arteriovenous fistula model. Surgery,1998,124(2):328-334; discussion 334-335
    [152]Lin CC, Yang WC, Chung MY, et al. Functional polymorphisms in matrix metalloproteinases-1,-3,-9 are associated with arteriovenous fistula patency in hemodialysis patients. Clin J Am Soc Nephrol,2010,5(10):1805-1814
    [153]Aikawa M, Rabkin E, Okada Y, et al. Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma:a potential mechanism of lesion stabilization. Circulation, 1998,97(24):2433-2444
    [154]Galis ZS, Muszynski M, Sukhova GK, et al. Enhanced expression of vascular matrix metalloproteinases induced in vitro by cytokines and in regions of human atherosclerotic lesions. Ann N Y Acad Sci,1995,748:501-507
    [155]Tanindi A, Sahinarslan A, Elbeg S, et al. Association of matrix metalloproteinase-1, matrix metalloproteinase-9, tissue inhibitor of matrix metalloproteinase-1, and interleukin-6 with epicardial and myocardial perfusion. Coron Artery Dis,2011,22(4):253-258
    [156]Fukuda D, Shimada K, Tanaka A, et al. Comparison of levels of serum matrix metalloproteinase-9 in patients with acute myocardial infarction versus unstable angina pectoris versus stable angina pectoris. Am J Cardiol, 2006,97(2):175-180
    [157]Amorino GP, Hoover RL. Interactions of monocytic cells with human endothelial cells stimulate monocytic metalloproteinase production. Am J Pathol,1998,152(1):199-207
    [158]Hojo Y, Ikeda U, Takahashi M, et al. Matrix metalloproteinase-1 expression by interaction between monocytes and vascular endothelial cells. J Mol Cell Cardiol,2000,32(8):1459-1468
    [159]Zhu Y, Hojo Y, Ikeda U, et al. Interaction between monocytes and vascular smooth muscle cells enhances matrix metalloproteinase-1 production. J Cardiovasc Pharmacol,2000,36(2):152-161
    [160]Galis ZS, Sukhova GK, Kranzhofer R, et al. Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci U S A,1995,92(2):402-406
    [161]Brown DL, Hibbs MS, Kearney M, et al. Identification of 92-kD gelatinase in human coronary atherosclerotic lesions. Association of active enzyme synthesis with unstable angina. Circulation,1995,91(8):2125-2131
    [162]Hobeika MJ, Thompson RW, Muhs BE, et al. Matrix metalloproteinases in peripheral vascular disease. J Vasc Surg,2007,45(4):849-857
    [163]Alvarez B, Ruiz C, Chacon P, et al. Serum values of metalloproteinase-2 and metalloproteinase-9 as related to unstable plaque and inflammatory cells in patients with greater than 70% carotid artery stenosis. J Vasc Surg, 2004,40(3):469-475
    [164]Takagi H, Manabe H, Kawai N, et al. Circulating matrix metalloproteinase-9 concentrations and abdominal aortic aneurysm presence:a meta-analysis. Interact Cardiovasc Thorac Surg,2009,9(3):437-440
    [165]Longo GM, Xiong W, Greiner TC, et al. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest, 2002,110(5):625-632
    [166]Zempo N, Kenagy RD, Au YP, et al. Matrix metalloproteinases of vascular wall cells are increased in balloon-injured rat carotid artery. J Vasc Surg, 1994,20(2):209-217
    [167]George SJ, Zaltsman AB, Newby AC. Surgical preparative injury and neointima formation increase MMP-9 expression and MMP-2 activation in human saphenous vein. Cardiovasc Res,1997,33(2):447-459
    [168]Cho A, Reidy MA. Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ Res,2002,91(9):845-851
    [169]Momi S, Falcinelli E, Giannini S, et al. Loss of matrix metalloproteinase 2 in platelets reduces arterial thrombosis in vivo. J Exp Med, 2009,206(11):2365-2379
    [1]Hynes RO. Integrins:bidirectional, allosteric signaling machines. Cell, 2002,110(6):673-687
    [2]Vigneault F, Zaniolo K, Gaudreault M, et al. Control of integrin genes expression in the eye. Prog Retin Eye Res,2007,26(2):99-161
    [3]Huhtala M, Heino J, Casciari D, et al. Integrin evolution:insights from ascidian and teleost fish genomes. Matrix Biol,2005,24(2):83-95
    [4]Xiong JP, Stehle T, Diefenbach B, et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science,2001,294(5541):339-345
    [5]Xiong JP, Stehle T, Zhang R, et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science,2002,296(5565):151-155
    [6]Xiao T, Takagi J, Coller BS, et al. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature,2004,432(7013):59-67
    [7]Puzon-McLaughlin W, Takada Y. Critical residues for ligand binding in an I domain-like structure of the integrin betal subunit. J Biol Chem, 1996,271(34):20438-20443
    [8]Kamata T, Tieu KK, Irie A, et al. Amino acid residues in the alpha Ⅱb subunit that are critical for ligand binding to integrin alpha Ⅱbbeta 3 are clustered in the beta-propeller model. J Biol Chem,2001,276(47):44275-44283
    [9]Wegener KL, Partridge AW, Han J, et al. Structural basis of integrin activation by talin. Cell,2007,128(1):171-182
    [10]Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 1984,309(5963):30-33
    [11]Taverna D, Moher H, Crowley D, et al. Increased primary tumor growth in mice null for beta3-or beta3/beta5-integrins or selectins. Proc Natl Acad Sci U SA,2004,101(3):763-768
    [12]Taverna D, Crowley D, Connolly M, et al. A direct test of potential roles for beta3 and beta5 integrins in growth and metastasis of murine mammary carcinomas. Cancer Res,2005,65(22):10324-10329
    [13]Reynolds LE, Conti FJ, Lucas M, et al. Accelerated re-epithelialization in beta3-integrin-deficient-mice is associated with enhanced TGF-betal signaling. Nat Med,2005,11 (2):167-174
    [14]Weng S, Zemany L, Standley KN, et al. Beta3 integrin deficiency promotes atherosclerosis and pulmonary inflammation in high-fat-fed, hyperlipidemic mice. Proc Natl Acad Sci U S A,2003,100(11):6730-6735
    [15]Ginsberg MH, Partridge A, Shattil SJ. Integrin regulation. Curr Opin Cell Biol, 2005,17(5):509-516
    [16]Arnaout MA, Mahalingam B, Xiong JP. Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol,2005,21:381-410
    [17]Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol,2007,25:619-647
    [18]Green CE, Schaff UY, Sarantos MR, et al. Dynamic shifts in LFA-1 affinity regulate neutrophil rolling, arrest, and transmigration on inflamed endothelium. Blood,2006,107(5):2101-2111
    [19]Shattil SJ. Integrins and Src:dynamic duo of adhesion signaling. Trends Cell Biol,2005,15(8):399-403
    [20]Adair BD, Xiong JP, Maddock C, et al. Three-dimensional EM structure of the ectodomain of integrin {alpha} V{beta}3 in a complex with fibronectin. J Cell Biol,2005,168(7):1109-1118
    [21]Sarantos MR, Raychaudhuri S, Lum AF, et al. Leukocyte function-associated antigen 1-mediated adhesion stability is dynamically regulated through affinity and valency during bond formation with intercellular adhesion molecule-1. J Biol Chem,2005,280(31):28290-28298
    [22]Dityatev A, Schachner M. Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci,2003,4(6):456-468
    [23]Gall CM, Pinkstaff JK, Lauterborn JC, et al. Integrins regulate neuronal neurotrophin gene expression through effects on voltage-sensitive calcium channels. Neuroscience,2003,118(4):925-940
    [24]Gall CM, Lynch G. Integrins, synaptic plasticity and epileptogenesis. Adv Exp Med Biol,2004,548:12-33
    [25]Dityatev A, Schachner M, Sonderegger P. The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci, 2010,11(11):735-746
    [26]Yang Y, Wu X, Gui P, et al. Alpha5betal integrin engagement increases large conductance, Ca2+-activated K+ channel current and Ca2+ sensitivity through c-src-mediated channel phosphorylation. J Biol Chem,2010,285(1):131-141
    [27]Wu X, Yang Y, Gui P, et al. Potentiation of large conductance, Ca2+-activated K+(BK) channels by alpha5betal integrin activation in arteriolar smooth muscle. J Physiol,2008,586(6):1699-1713
    [28]Gui P, Wu X, Ling S, et al. Integrin receptor activation triggers converging regulation of Cavl.2 calcium channels by c-Src and protein kinase A pathways. J Biol Chem,2006,281(20):14015-14025
    [29]Hynes RO. Integrins:versatility, modulation, and signaling in cell adhesion. Cell,1992,69(1):11-25
    [30]Yamada KM, Miyamoto S. Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol,1995,7(5):681-689
    [31]Schwartz MA. Integrin signaling revisited. Trends Cell Biol, 2001,11(12):466-470
    [32]Kim C, Ye F, Ginsberg MH. Regulation of integrin activation. Annu Rev Cell Dev Biol,2011,27:321-345
    [33]Venstrom KA, Reichardt LF. Extracellular matrix.2:Role of extracellular matrix molecules and their receptors in the nervous system. FASEB J, 1993,7(11):996-1003
    [34]Horwitz AF. Integrins and health. Sci Am,1997,276(5):68-75
    [35]Clemetson KJ, Clemetson JM. Integrins and cardiovascular disease. Cell Mol Life Sci,1998,54(6):502-513
    [36]Wu WW, Liu CW, Liu B, et al. [Diagnosis and treatment of acute coronary syndromes after carotid endarterectomy]. Zhonghua Yi Xue Za Zhi, 2010,90(23):1593-1596
    [37]Davis MJ, Wu X, Nurkiewicz TR, et al. Integrins and mechanotransduction of the vascular myogenic response. Am J Physiol Heart Circ Physiol, 2001,280(4):H1427-1433
    [38]Lal H, Guleria RS, Foster DM, et al. Integrins:novel therapeutic targets for cardiovascular diseases. Cardiovasc Hematol Agents Med Chem, 2007,5(2):109-132
    [39]Cox D, Brennan M, Moran N. Integrins as therapeutic targets:lessons and opportunities. Nat Rev Drug Discov,2010,9(10):804-820
    [40]Millard M, Odde S, Neamati N. Integrin targeted therapeutics. Theranostics, 2011,1:154-188
    [41]Reichardt LF, Prokop A. Introduction:the role of extracellular matrix in nervous system development and maintenance. Dev Neurobiol, 2011,71(11):883-888
    [42]Becchetti A, Arcangeli A. Integrins and ion channels in cell migration: implications for neuronal development, wound healing and metastatic spread. Adv Exp Med Biol,2010,674:107-123
    [43]Huttenlocher A, Horwitz AR. Integrins in cell migration. Cold Spring Harb Perspect Biol,2011,3(9):a005074
    [44]Graus-Porta D, Blaess S, Senften M, et al. Betal-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron, 2001,31(3):367-379
    [45]Haack H, Hynes RO. Integrin receptors are required for cell survival and proliferation during development of the peripheral glial lineage. Dev Biol, 2001,233(1):38-55
    [46]Feltri ML, Graus PD, Previtali SC, et al. Conditional disruption of beta 1 integrin in Schwann cells impedes interactions with axons. J Cell Biol, 2002,156(1):199-209
    [47]Pietri T, Eder O, Breau MA, et al. Conditional betal-integrin gene deletion in neural crest cells causes severe developmental alterations of the peripheral nervous system. Development,2004,131(16):3871-3883
    [48]Campos LS, Leone DP, Relvas JB, et al. Betal integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development,2004,131(14):3433-3444
    [49]Testaz S, Delannet M, Duband J. Adhesion and migration of avian neural crest cells on fibronectin require the cooperating activities of multiple integrins of the (beta)1 and (beta)3 families. J Cell Sci,1999,112 (Pt 24):4715-4728
    [50]Georges-Labouesse E, Mark M, Messaddeq N, et al. Essential role of alpha 6 integrins in cortical and retinal lamination. Curr Biol,1998,8(17):983-986
    [51]Anton ES, Kreidberg JA, Rakic P. Distinct functions of alpha3 and alpha(v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron,1999,22(2):277-289
    [52]Marchetti G, Escuin S, der Flier A v, et al. Integrin alpha5betal is necessary for regulation of radial migration of cortical neurons during mouse brain development. Eur J Neurosci,2010,31(3):399-409
    [53]McCarty JH, Lacy-Hulbert A, Charest A, et al. Selective ablation of alphav integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. Development,2005,132(1):165-176
    [54]Proctor JM, Zang K, Wang D, et al. Vascular development of the brain requires beta8 integrin expression in the neuroepithelium. J Neurosci, 2005,25(43):9940-9948
    [55]Clegg DO, Wingerd KL, Hikita ST, et al. Integrins in the development, function and dysfunction of the nervous system. Front Biosci, 2003,8:d723-750
    [56]Dityatev A, Fellin T. Extracellular matrix in plasticity and epileptogenesis. Neuron Glia Biol,2008,4(3):235-247
    [57]Grotewiel MS, Beck CD, Wu KH, et al. Integrin-mediated short-term memory in Drosophila. Nature,1998,391(6666):455-460
    [58]Huang AM, Wang HL, Tang YP, et al. Expression of integrin-associated protein gene associated with memory formation in rats. J Neurosci, 1998,18(11):4305-4313
    [59]Chang HP, Lindberg FP, Wang HL, et al. Impaired memory retention and decreased long-term potentiation in integrin-associated protein-deficient mice. Learn Mem,1999,6(5):448-457
    [60]Chang HP, Ma YL, Wan FJ, et al. Functional blocking of integrin-associated protein impairs memory retention and decreases glutamate release from the hippocampus. Neuroscience,2001,102(2):289-296
    [61]Bi X, Lynch G, Zhou J, et al. Polarized distribution of alpha5 integrin in dendrites of hippocampal and cortical neurons. J Comp Neurol, 2001,435(2):184-193
    [62]Prokop A. Integrating bits and pieces:synapse structure and formation in Drosophila embryos. Cell Tissue Res,1999,297(2):169-186
    [63]Chan CS, Weeber EJ, Kurup S, et al. Integrin requirement for hippocampal synaptic plasticity and spatial memory. J Neurosci,2003,23(18):7107-7116
    [64]Chan CS, Weeber EJ, Zong L, et al. Beta 1-integrins are required for hippocampal AMPA receptor-dependent synaptic transmission, synaptic plasticity, and working memory. J Neurosci,2006,26(1):223-232
    [65]Huang Z, Shimazu K, Woo NH, et al. Distinct roles of the beta 1-class integrins at the developing and the mature hippocampal excitatory synapse. J Neurosci,2006,26(43):11208-11219
    [66]Akiyama H, Kawamata T, Dedhar S, et al. Immunohistochemical localization of vitronectin, its receptor and beta-3 integrin in Alzheimer brain tissue. J Neuroimmunol,1991,32(1):19-28
    [67]Preciado-Patt L, Hershkoviz R, Fridkin M, et al. Serum amyloid A binds specific extracellular matrix glycoproteins and induces the adhesion of resting CD4+ T cells. J Immunol,1996,156(3):1189-1195
    [68]Yamazaki T, Koo EH, Selkoe DJ. Cell surface amyloid beta-protein precursor colocalizes with beta 1 integrins at substrate contact sites in neural cells. J Neurosci,1997,17(3):1004-1010
    [69]Matter ML, Zhang Z, Nordstedt C, et al. The alpha5betal integrin mediates elimination of amyloid-beta peptide and protects against apoptosis. J Cell Biol, 1998,141(4):1019-1030
    [70]Lefcort F, Venstrom K, McDonald JA, et al. Regulation of expression of fibronectin and its receptor, alpha 5 beta 1, during development and regeneration of peripheral nerve. Development,1992,116(3):767-782
    [71]Pinkstaff JK, Detterich J, Lynch G, et al. Integrin subunit gene expression is regionally differentiated in adult brain. J Neurosci,1999,19(5):1541-1556
    [72]Condic ML. Adult neuronal regeneration induced by transgenic integrin expression. J Neurosci,2001,21(13):4782-4788
    [73]Matarin M, Brown WM, Hardy JA, et al. Association of integrin alpha2 gene variants with ischemic stroke. J Cereb Blood Flow Metab,2008,28(1):81-89
    [74]Ellison JA, Barone FC, Feuerstein GZ. Matrix remodeling after stroke. De novo expression of matrix proteins and integrin receptors. Ann N Y Acad Sci, 1999,890:204-222
    [75]Lee B, Clarke D, Al AA, et al. Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents. J Clin Invest, 2011,121(8):3005-3023
    [76]Becker K, Kindrick D, Relton J, et al. Antibody to the alpha4 integrin decreases infarct size in transient focal cerebral ischemia in rats. Stroke, 2001,32(1):206-211
    [77]Browne TR, Holmes GL. Epilepsy. N Engl J Med,2001,344(15):1145-1151
    [78]Schwartzkroin PA. Role of the hippocampus in epilepsy. Hippocampus, 1994,4(3):239-242
    [79]Reddy DS. Neurosteroids:endogenous role in the human brain and therapeutic potentials. Prog Brain Res,2010,186:113-137
    [80]Furtinger S, Pirker S, Czech T, et al. Increased expression of gamma-aminobutyric acid type B receptors in the hippocampus of patients with temporal lobe epilepsy. Neurosci Lett,2003,352(2):141-145
    [81]Notenboom RG, Hampson DR, Jansen GH, et al. Up-regulation of hippocampal metabotropic glutamate receptor 5 in temporal lobe epilepsy patients. Brain,2006,129(Pt 1):96-107
    [82]Yang JW, Czech T, Felizardo M, et al. Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy. Amino Acids,2006,30(4):477-493
    [83]Perosa SR, Arganaraz GA, Goto EM, et al. Kinin B1 and B2 receptors are overexpressed in the hippocampus of humans with temporal lobe epilepsy. Hippocampus,2007,17(1):26-33
    [84]Chang FL, Hawrylak N, Greenough WT. Astrocytic and synaptic response to kindling in hippocampal subfield CA1. I. Synaptogenesis in response to kindling in vitro. Brain Res,1993,603(2):302-308
    [85]Grooms SY, Jones LS. RGDS tetrapeptide and hippocampal in vitro kindling in rats:evidence for integrin-mediated physiological stability. Neurosci Lett, 1997,231(3):139-142
    [86]Chun D, Gall CM, Bi X, et al. Evidence that integrins contribute to multiple stages in the consolidation of long term potentiation in rat hippocampus. Neuroscience,2001,105(4):815-829
    [87]Fasen K, Elger CE, Lie AA. Distribution of alpha and beta integrin subunits in the adult rat hippocampus after pilocarpine-induced neuronal cell loss, axonal reorganization and reactive astrogliosis. Acta Neuropathol, 2003,106(4):319-322
    [88]Gabriel HM, Oliveira EI. Role of abciximab in the treatment of coronary artery disease. Expert Opin Biol Ther,2006,6(9):935-942
    [89]O'Connor P. Natalizumab and the role of alpha 4-integrin antagonism in the treatment of multiple sclerosis. Expert Opin Biol Ther,2007,7(1):123-136
    [90]Meyer A, Auernheimer J, Modlinger A, et al. Targeting RGD recognizing integrins:drug development, biomaterial research, tumor imaging and targeting. Curr Pharm Des,2006,12(22):2723-2747
    [91]Bartt RE. Multiple sclerosis, natalizumab therapy, and progressive multifocal leukoencephalopathy. Curr Opin Neurol,2006,19(4):341-349
    [92]Engelhardt B, Kappos L. Natalizumab:targeting alpha4-integrins in multiple sclerosis. Neurodegener Dis,2008,5(1):16-22
    [93]Kanwar JR, Harrison JE, Wang D, et al. Beta7 integrins contribute to demyelinating disease of the central nervous system. J Neuroimmunol, 2000,103(2):146-152
    [94]Sotgiu S, Murrighile MR, Constantin G. Treatment of refractory epilepsy with natalizumab in a patient with multiple sclerosis. Case report. BMC Neurol, 2010,10:84
    [95]Oliveira-Ferrer L, Hauschild J, Fiedler W, et al. Cilengitide induces cellular detachment and apoptosis in endothelial and glioma cells mediated by inhibition of FAK/src/AKT pathway. J Exp Clin Cancer Res,2008,27:86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700