金属有机络合聚合物的合成及其催化性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶模拟催化体系一直是科学家研究的热点,按照生物化学、分子生物学、无机生物学、聚合物化学、配位化学、计算机模拟化学的基本原理,一些催化特性的人工酶已经被设计出来了。论文就近几年出现的一种新的酶模拟体系-金属有机络合聚合物(MOCPs)就其合成表征以及催化特性进行研究。
     MOCP作为一种新颖的酶模拟体系,在催化方面展示出一种诱人前景。由于目前这一领域的工作者研究的焦点主要集中在MOCP合成上,很少研究其催化特性,对模拟酶这个概念还未涉及。至于MOCP的合成方法,目前主要集中在高压高温反应釜中水热合成法,由于其反应时间长,且产率太低,因此在实际中研究其在合适温度下合成MOCP是非常重要的。
     论文应用低温水热合成法,用三种不同的多齿羧酸配体和Cd(Ⅱ)配位合成MOCP,结果发现合成出了三种不同结构的MOCP晶体。在实验和理论上研究分析了构建分子浓度、pH值、NH3·H2O用量、温度及降温速率对晶体形成影响规律。用红外光谱法确认了骨架中的有机官能团;用粉末和单晶的X射线衍射分析法测定了MOCP的晶体结构,并确定其骨架的组成;通过低温氮气吸附等温线测定了其比表面积和孔径分布;以热重分析(TGA)和差热分析(DTA)测定材料骨架的热稳定性。此外,还测定了晶体的溶解性能,并筛选了其中一种晶体对其进行光催化特性探索。
     研究发现,MOCP能在低于100℃氨水作为溶剂的水热反应条件下大约8个小时左右被合成出来,同时我们通过大量实验发现了控制晶体合成的规律。合成的MOCP能作为一种耐热,耐酸碱,以及部分溶剂的良好材料。其中经过活化的MOCP(镉离子与异烟酸合成的)具有光催化特性是一种半导体催化剂,经过修饰有望成为一种废水处理的催化剂。
Mimic enzyme systems are always hotspots scientists study. Some artificial enzymes with different catalytic properties have been designed based on the elementary principles of biochemistry, molecule biology, inorganic chemistry, polymer chemistry, and computer chemistry. In this paper, approaches to synthesis, characterization and investigation of catalytic property are investigated for a class of promising functional porous materials arising recently, catalytic Metal-Organic Coordination Polymers (cMOCPs).
     As a novel enzyme mimic systems, cMOCPs display an attractive potential in catalysis. Currently, most workers focus on the MOCPs synthesis, but know little about their catalytic properties, and have not mentioned to the concept of cMOCPs mimic enzyme. As for the synthesis methods, most people use hydrothermal synthesis in Teflon-lined autoclave. But it is low in output and usually takes a long period time. So it is very important in practice to synthesize cMOCPs in milder conditions.
     In the paper, three different multidentate carboxylic acid ligands were used to combined with as Cd(Ⅱ), respectively, resulting in three MOCPs single crystals with different structures with a low temperature hydrothermal synthesis method. The effects of concentration of building molecules, pH values, ammonia usage, temperature and coolimg rates on crystal formation were studied experimentally and explored theoretically. The samples were characterized with IR spectra to affirm the organic groups in the frameworks, single-crystal X-ray diffraction to determine the crystal structure and composition of frameworks, N2 adsorption isotherms at low temperature to measure the specific surface area and pore size distribution, and with TGA/DGA analysis to scale the thermal stability. Furthermore, dissolution properties and the catalytic property of MOCP were explored.
     We found that above MOCPs single crystals could be hydro-thermally synthesized in an ammonia solution at no more than 100℃for eight hours. And at the same time we experimentally discovered some synthesis rules controlling crystal formation. The synthesized MOCPs are stable in heat, acid, alkali and commonly used solvents. Even one of MOCPs after being activated became a semiconductor photo-catalyst, which could be used to treat polluted water.
引文
[1] Wei Zeng, Jianzhang Li, Zhihua Mao, et al. Synthesis, Oxygenation and Catalytic Oxidation Performance of Crown Ether-Containing Schiff Base-Transition Metal Complexes[J]. Advanced Synthesis & Catalysis, 2004, 346:1385~1391
    [2] D.Valle, E.M.Martin. Cyclodextrins and their uses: a review[J]. Process biochemistry, 2004, 9(39):1033~1046
    [3] Cyril Rousseau, Brian Christensen, Mikael Bols. Artificial Epoxidase II. Synthesis of Cyclodextrin Ketoesters and Epoxidation of Alkenes[J]. European Journal of Organic Chemistry, 2005, 13:2734~2739
    [4] 刘敏, 达世禄, 冯钰筠等. 杯芳烃键合硅胶固定相的制备表征及色谱性能[J]. 高等学校化学学报, 2004, 7(25):1254~1256
    [5] 计亮年, 彭小彬, 黄锦汪. 金属卟啉配合物模拟某些金属酶的研究进展[J]. 自然科学进展, 2002, 12(2):120~129
    [6] K. Seiichiro, O. Toshihide, K. Misa, et al. Role of copper ion in bacterial copper amine oxidase: Spectroscopic and crystallographic studies of metal substituted enzymes[J]. American Chem Soc, 2003, 125(4):1041~1055
    [7] W.B. Motherwell, M. J. Bingham, Y. Six. Recent progress in the design and synthesis of artificial enzymes[J]. Tetrahedron, 2001, 57:4663~4686
    [8] 林之恩, 杨国昱. 多孔材料化学:从无机微孔化合物到金属有机多孔骨架[J]. 结构化学, 2004, 12(23):1388~1398
    [9] Yaghi O M, O’Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials. Nature[J], 2003, 423:705~714
    [10] M.J. Rosseinsky. Recent developments in metal-organic framework chemistry: design, discovery, permanent porosity and flexibility[J]. Microporous and mesoporous materials, 2004, 73:15~30
    [11] O.M. Yaghi. Guest Co-Edito Design of Solids from Molecular Building Blocks:Golden Opportunities for Solid State Chemistry[J]. Journal of Solid State Chemistry, 2000, 152:1~2
    [12] P.M. Budd, S.M. Makhseed, B.S. Ghanem. Microporous polymeric materials[J]. Materials Today, 2004, 139:40~46
    [13] Yen-Hsiang Liu, Yi-Long Lu. Hydrothermal Synthesis,Crystal Structure, and Magnetic Property of Copper(II) Coordination Networks with Chessboard Tunnels[J]. Journal of Solid State Chemistry, 2001, 158:315~319
    [14] L.C. Rowsell, O.M. Yaghi. Metal-organic frameworks: A new class of porous materials[J]. Microporous and Mesoporous Materials, 2004, 73:3~14
    [15] 安德列亚斯.S, 博马留斯贝蒂娜. R.著.孙志浩,许建和译. 生物催化-基础与应用[M].化学工业出版社, 2006, 16
    [16] 宋峥, 梁宏. 利用环糊精为基础的模拟酶的模型研究[J]. 广西化工, 2001,30(3):22~24
    [17] R.Brestow .Biomimetic Selectivity[J]. The Chemical Record, 2000,(1)1:3~11
    [18] 王永健, 白姝, 孙彦. 分子印迹聚合物的设计合成[J]. 离子交换与吸附, 2001, 17(4): 360~368
    [19] 董文国, 张敏莲, 刘铮. 分子印迹技术及其在生物化工领域的应用现状与展望[J].化工进展, 2003, 22(7):683~688
    [20] L.Wu, Y. Li. Study on the recognition of templates and their analogues on molecularly imprinted polymer using computational and conformational analysis approaches[J]. Mol. Recogniti, 2004, 17: 567~574
    [21] 王江干, 徐伟箭. 分子印迹聚合物模拟酶催化剂的设计合成[J]. 化学研究与应用, 2004, 16(4):449~452
    [22] 徐如人, 庞文琴, 屠昆岗. 沸石分子筛的结构与合成[M]. 吉林大学出版社, 1987
    [23] 中国科学院大连化物所分子筛组编著. 沸石分子筛[M]. 科学出版社, 1978
    [24] 高滋主编. 沸石催化与分离技术[M]. 中国石化出版社, 1999
    [25] D.W. Breck. Zeolite Molecular Sieves. Structure, Chemistry and Use[M]. Wiley and Sons: London, 1974
    [26] Bandyopadhyay, Rajib, Kubota, Yoshihiro. Synthesis of borosilicate zeolites by the dry gel conversion method and their characterization[J]. Microporous and Mesoporous Materials, 1999, 32:81~91
    [27] M.Estermann, L.B. Mccusker, Baerlocher, et al. A synthetic gallophospate molecular sieve with a 20-tetrahedral-atom pore opeing[J]. Nature, 1991, 352: 320~323
    [28] H.X. Li, Davis, E. Mark. Phosphate-based molecular sieves with pores comprised of greater than 12-rings[J].Catalysis Today, 1994, 19:61~106
    [29] C. Freyhardt, M. Tsapatsis, R.F. Loboetal, A high-silica zeolite with a 14-tetrahedral-atom pore opening[J]. Nature, 1996, 381:295~298
    [30] Yoshikawa, Masahito, Wagner, Paul. Synthesis, characterization, and structure solution of CIT-5, a new, high-silica, extra-large-pore molecular sieve[J]. Journal of Physical Chemistry, 1998, 102:7139~7147
    [31] C.T. Kresge, M.E. Leonowicz, W.J. Roth, et al. Order mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359:710~712
    [32] 李新生, 徐杰, 林励吾. 催化新反应与新材料[M]. 河南人民出版社, 1995
    [33] 李永祥, 马爱芬, 吴冲若. 新型电子材料-沸石分子筛[J]. 传感技术学报, 1996, 3:39~44
    [34] 陈作锋, 姜艳霞, 庄全超. 一种新型微孔聚合物电解质的制备与表征[J]. 科学通报, 2005, 7:638~642
    [35] 孙为银. 配位化学[M]. 化学工业出版社, 2004, 41
    [36] J.Y. Lu. Crystal engineering of Cu-containing metal–organic coordination polymers under hydrothermal conditions[J]. Coordination Chemistry Reviews, 2003, 246:327~347
    [37] B. Chen, N. W. Ockwig, A. R. Millward. High H2 Adsorption in a Microporous Metal–Organic Framework with Open Metal Sites[J]. Angew. Chem. Int. Ed, 2005, 44:4745~4749
    [38] R.G. Xiong, X.Z. You, B.F. Abrahams, et al. Enantio-separation of racemic organic molecules by a zeolite analogue[J]. Angew. Chem. Int Ed Engl, 2001, 40:44~22
    [39] O.R. Evans, H.L. Ngo, W.B. Lin. Chiral porous solids based on lamellar lanthanide phosphonates[J]. Am Chem. Soc, 2001, 123:10395~10396
    [40] 王桂茹. 催化剂与催化作用[M]. 第二版.大连理工大学出版社, 2004, 160
    [41] M.J. Rosseinsky. Recent developments in metal-organic framework chemistry: design, discovery, permanent porosity and flexibility[J]. Microporous and mesoporous materials, 2004, 73:15~30
    [42] B. Moulton, M. J. Zaworotko. Coordination polymers: toward functional transition metal sustained materials and supermolecules[J]. Current Opinion in Solid State and Materials Science, 2002, 6:117~123
    [43] W. Mori,S. Takamizawa, C.N. Kato, et al. Molecular-level design of efficient microporous materials containing metal carboxylates: inclusion complex formation with organic polymer, gas-occlusion properties, and catalytic activities for hydrogenation of olefins[J]. Microporous and mesoporous materials, 2004, 73:31~46
    [44] M. Fujita,Y.J. Kwon, S. Washizu.,et al. Preparation, clathration ability, and catalysis of a two-dimensional square network material-composed of cadmium(II) and 4,4 prime–bipyridine[J]. Journal of the American Chemical Society, 1994, 116:p1151
    [45] B. Kesanli, W. Lin. Chiral porous coordination networks: rational design and applications in enantioselective processes[J]. Coordination Chemistry Reviews, 2003, 246:305~326
    [46] K. Schlichte, T. Kratzke, S. Kaskel. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2[J]. Microporous and Mesoporous Materials, 2004, 73:81~88
    [47] J. Perles, M. Iglesias, C. Ruiz-Valero, et al. First high thermally stable organo-inorganic 3D polymer scandium derivative as a heterogenous Lewis acid catalyst[J]. Chem.commun, 2003,346~347
    [48] W. Lin. Homechiral porous metal-organic framework: Why and how?[J] Journal of Solid State Chemistry, 2005, 178:2486~2490
    [49] S.D. Rosa, G. Giordano, T. Granato,et al. Chemical pretreatment of olive oil mill wastewater using a metal-organic framework catalyst[J]. Journal of agricultural and food chemistry, 2005, 53 (21): 8306~8309
    [50] D. N. Dybtsev, A. L. Nuzhdin, H. Chun, et al. A Homochiral Metal–Organic Material with Permanent Porosity, Enantioselective Sorption Properties, and Catalytic Activity[J]. Angew. Chem. Int. Ed, 2006, 45:916~920
    [51] 杨明莉, 武凯, 鲜学福, 张新涛. 吸附剂-气体体系脱附动力学参数的压力测定方法. 中国专利:CN1869686
    [52] Zuojiang Li, Michal Kruk, Mietek Jaroniec, et al. Characterization of Structural and Surface Properties of Activated Carbon Fibers. Journal of Colloid and Interface Science, 1998, 204:151~156
    [53] 徐新花, 杨儒, 李慧琴. 大麻韧皮基活性炭纤维表面织构及吸附性能的研究[J]. 中国化工学会(IESC), 2006, 602~607
    [54] S.J. 格雷格, K.S.W. 辛.吸附、比表面与孔隙率[M]. 北京: 化学工业出版社, 1989
    [55] HAO QI, JIAN MA. Adsorption isotherms of fractal surfaces[J]. Colloids Surfaces A: Physicochemicaland Engineering Aspects, 2002, 206: 401~407
    [56] P. Mahata, G. Madras, S. Natarajan. Novel Photocatalysts for the Decomposition of Organic Dyes Based on Metal-Organic Framework Compounds[J]. Journal of Physical Chemistry, 2006, 110:13759~13768
    [57] 潭小萍, 王国生, 汤克敏. 光催化氧化法用于垃圾渗滤液深度处理主要影响因素的试验研究[J]. 环境科学动态, 1999, 1:28~30
    [58] 彭祺, 汪玉庭, 张伟安等. 纳米TiO2-CS 微球光催化降解亚甲基兰的研究[J]. 环境科学与技术, 2006, 29:23~25
    [59] 肖奇, 邱冠周, 徐兢等. 纳米 TiO2 表面修饰理论与实践[J]. 功能材料, 2002, 33(1):9~11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700