用户名: 密码: 验证码:
大面积等离子体源离子运动行为及均匀性控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体浸没离子注入与沉积(PIII&D)技术能够在复杂形状零件表面获得一层与基体结合强度高、均匀和致密的表面改性层,从而大幅度提高材料表面的抗摩擦磨损、耐腐蚀和接触疲劳寿命等性能,在表面强化处理方面具有广泛的应用前景。然而,PIII&D技术要走向工业化应用必须解决大型零件和批量处理以及零件内表面处理这些难题,而大面积均匀等离子体的形成正是解决这些难题的关键。本文提出了一种基于脉冲辉光放电的大面积气体等离子体产生技术和一种基于多个金属等离子体的优化叠加的大面积金属等离子体产生技术。构建了直射叠加和绕射叠加大面积金属等离子产生系统,通过等离子体粒子模拟法研究了外部磁场对金属等离子粒子运动行为的影响,并从理论上验证了大面积金属等离子体产生系统的可行性。根据金属等离子体直射叠加和绕射叠加均匀性的实验研究结果,研制了一套大面积PIII&D处理装置。
     为了解决零件内表面的大面积气体离子注入与沉积,提出了一种基于脉冲辉光放电的大面积气体等离子体产生技术。在低压脉冲辉光放电模式下,随着沉积脉冲频率、沉积脉冲偏压幅值的增加,经PIII&D工艺制备的DLC膜层的抗摩擦磨损性能逐渐提高。在高压脉冲辉光放电模式下,随着高能碳离子的注入,经PIII&D工艺制备的DLC膜层与基体的结合强度以及抗摩擦磨损性能要优于单层DLC膜层。
     为了验证大面积金属等离子体直射和绕射叠加产生系统的可行性,采用等离子体粒子模拟方法定性地分析了外部磁场对金属等离子体中带电粒子运动行为的影响。模拟结果显示,在大面积金属等离子体产生系统中通过外部磁场去控制金属等离子体粒子运动行为的设计方案是可行的。随着磁场强度的增大,其对金属等离子体的约束不断增强,但若要完全约束金属等离子体则需要非常大的磁场强度,而金属等离子体的密度均匀性又与约束的程度成反比。金属等离子体中的电子在外部磁场作用下,改变原来的运动方而向沿磁力线运动,进而由于离子与电子的电荷分离产生的静电力导致离子的运动轨迹也发生改变,从而实现大面积金属等离子体的输出。
     直射叠加大面积金属等离子体产生系统的粒子模拟结果显示,粒子束流大小与阴极真空弧源间距的合理配合是获得大面积均匀金属等离子体的关键。当粒子束流为20A,阴极真空弧源距离为400mm时,可获得均匀性良好的大面积金属等离子体输出。通过离子电流密度测量结果发现,当叶片电流小于700A时,金属等离子体无法穿过百叶窗过滤器实现大颗粒的过滤,且改变叶片安装角度、叶片间距、叶片宽度等参数对金属等离子体离子电流密度分布的影响非常小。
     通过绕射叠加大面积金属等离子体产生系统的粒子模拟发现,通过较小的外部磁场强度便可以实现对金属等离子体中电子的约束,突破了传统磁过滤阴极真空弧源需较大磁场进行约束的局限性。产生的金属等离子体在Y方向随着传输距离的增加,密度呈现一定的衰减,但衰减幅度逐渐减小,在X方向的密度均匀性良好。弧源间距对绕射叠加大面积金属等离子体的输出有着重要的影响,弧源间距与螺线圈直径的差值应小于100mm。螺线圈载流大小对离子电流密度分布的影响有限,但有无磁场电流对金属等离子体的密度分布均匀性影响较大。金属等离子体在阴极真空弧源中心线方向的沉积均匀性可达80%以上。
     最后,通过对直射与绕射叠加金属等离子体粒子运动及均匀性控制的模拟和实验结果对比分析,成功研制了一套大面积PIII&D处理装置,金属等离子体输出直径大于500mm,沉积厚度不均匀性小于15%,将金属等离子体的输出直径从目前国内最高水平的Ф200mm左右提高到Ф500mm左右。脉冲阴极真空弧源引弧容易,燃弧稳定,可在不破坏真空环境条件下实现长时间的稳定工作,满足大尺寸零部件的强化处理或小尺寸零部件的批量处理的要求。本文研究对于推进PIII&D技术的工业化进程,以及提高精密零部件的寿命和可靠性都具有非常重要的意义。
Plasma immersion ion implantation and deposition (PIII&D) can obtain a highadhesion strength, homogeneous and dense surface modification layer oncomponents with sophisticated shapes, which can improve the wear, corrosion andfatigue resistence of the substrate. However, for comercial applications of thePIII&D, inner surface ion implantation and large area uniform plasma formation arethe key problems to be solved. This research proposed a method for large areagaseous and metallic plasma sources based on respectivley pulsed glow dischargeand overlap of cathodic arc plasma source. Large area metal plasma sources basedon direct-overlay and bend-overlay have been built, and through a particle-in-cellsimulation, the influences of the processing parameters on motion behaviors of theparticles in metal plasma were obtained, and the feasibility of the large area metalplasma source was proved. According to the experimental results of the uniformityof large area metal plasma based on direct-overlay and bend-overlay, a large areaPIII&D equipment was developed.
     In order to obatain a large area gaseous ion implantation and deposition in theinner surface of a tube, a method based on pulsed glow discharge was proposed, andDiamond-like carbon (DLC) films were obtained in the tube. In the low voltagepulsed glow discharge mode, the wear resistance of the the DLC film raised with theincrease of pulse frequency and bias voltage. In the high voltage pulsed glowdischarge mode, the adhesion strength and wear resistance of DLC film wereincreased by the high energy carbon ion implantation, and they are better than thesingle DLC film obatined with a low bias voltage.
     In order to verify the feasibility of large area metal plasma based ondirect-overlay and bend-overlay, particle-in-cell simulation was used to analyze theinfluence of the external magnetic field on movement behavior of the chargedparticles in the metal plasma. Simulation results show that it is easy for the externalmagnetic field to control the metal plasma transport process. With the increase ofthe magnetic field, the constraint of the metal plasma was enhanced, but a completeconstraint of the metal plasma requires a large magnetic field. However, theuniformity of the metal plasma is inversely proportional to the magnetic field. Theelectron in the metal plasma will change its original direction and move along thelines of the magnetic field. Due to different movements of the ions and electrons inthe metal plasma, charge separation will take place and the electrostatic forcecaused by this effect will change the ion trajectory and form a large area metalplasma.
     Particle-in-cell simulation results of large area metal plasma source based ondirect-overlap show that the beam current and the distance between dirrerentcathodic arc sources are the key parameters for obtaining a large area homogeneousmetal plasma. When the beam current and the distance were respectilvely20A and400mm, a large area uniform metal plasma can be obatined. Howerver, the ioncurrent density results show that metal plasma couldnot pass through the shutteruntil the blade current was above700A. However, the efficiency of this filter wasvery small.
     Particle-in-cell simulation results of large area metal plasma souce based onbend-overlay reveal that a small perpendicular external magnetic field can realizethe constraint of the metal plasma. The uniformity of the metal plasma in Xdirection was better than that in Y direction, and the distance of arc sources has ansignificant influence on the plasma uniformity. In addition, the spacing between thearc source and the magnetic coil should be less than100mm. The influence of thecurrent of the the magnetic coil on unifomity is obvious, and a small current canobtain a uniform metal plasma (more than80%).
     According to the experimental and simulational resutls, a large area PIII&Dequipment, with a metal plasma output diameter greater than500mm and adeposition thickness nonuniformity less than15%, was built. The pulsedd cathodicvacuum arc source in this facility can can work for a long time without broken thevacuum. It can meet the requirements of PIII&D process for compoents with largesize or batching processing of small parts.
引文
[1] C. B. Mello, M. Ueda, R. M. Oliveira, et al. Surface Modification of SAE1070by Chromium Using Plasma Immersion Ion Implantation andDeposition[J]. Surf Coat Tech.2010,204(18-19):2971-2975.
    [2] H. X. Liu, Y. H. Jiang, R. Zhou, et al. Friction and Wear Behaviors andRolling Contact Fatigue Life of TiN Film on Bearing Steel by PlasmaImmersion Ion Implantation and Deposition Technique[J]. AdvancedTribology.2009:732-733.
    [3] G. Kalacska, L. Zsidai, K. Kereszturi, et al. Sliding Tribological Properties ofUntreated and PIII-treated PETP[J]. Appl Surf Sci.2009,255(11):5847-5850.
    [4] G. J. Wan, N. Huang, Y. X. Leng, et al. Mechanical Properties of TiNNano-film Deposited by Plasma Immersion Ion Implantation andDeposition[J]. J Inorg Mater.2003,18(4):904-910.
    [5] R. M. Oliveira, J. A. N. Goncalves, M. Ueda, et al. Improved CorrosionResistance of Tool Steel H13by Means of Cadmium Ion Implantation andDeposition[J]. Surf Coat Tech.2010,204(18-19):2981-2985.
    [6] J. H. Sui, W. Cai. Formation of Diamond-like Carbon (DLC) Film on the NiTiAlloys via Plasma Immersion Ion Implantation and Deposition (PIIID) forImproving Corrosion Resistance[J]. Appl Surf Sci.2006,253(4):2050-2055.
    [7] C. L. Liu, Y. C. Xin, X. B. Tian, et al. Corrosion Behavior of AZ91Magnesium Alloy Treated by Plasma Immersion Ion Implantation andDeposition in Artificial Physiological Fluids[J]. Thin Solid Films.2007,516(2-4):422-427.
    [8] Y. F. Zheng, D. Liu, X. L. Liu, et al. Enhanced Corrosion Resistance of ZrCoating on Biomedical TiNi Alloy Prepared by Plasma Immersion IonImplantation and Deposition[J]. Appl Surf Sci.2008,255(2):512-514.
    [9] H. X. Liu, Y. H. Jiang, R. Zhou, et al. Rolling Contact Fatigue Life andMechanical Property of TiN Film Fabricated by Plasma Immersion IonImplantation and Deposition[J]. Acta Metall Sin.2008,44(3):325-330.
    [10] H. X. Liu, B. Y. Tang, L. P. Wang, et al. Diamond-like Carbon FilmsSynthesized on Bearing Steel Surface by Plasma Immersion Ion Implantationand Deposition[J]. T Nonferr Metal Soc.2004,14:291-295.
    [11] B. Y. Tang, H. X. Liu, L. P. Wang, et al. Fabrication of Titanium Carbide Filmon Bearing Steel by Plasma Immersion Ion Implantation and Deposition[J].Surf Coat Tech.2004,186(1-2):320-323.
    [12] B. Y. Tang, Y. H. Wang, L. P. Wang, et al. Adhesion Strength of TiN FilmsSynthesized on GCr15-bearing Steel Using Plasma Immersion IonImplantation and Deposition[J]. Surf Coat Tech.2004,186(1-2):153-156.
    [13] J.R. Conrad, J.L. Radtke, R.A. Dodd, et al. Plasma Source Ion ImplantationTehnique for Surface Modification of Materials[J]. J. Appl. Phys.1987,62:4591-4594.
    [14] R. M. Oliveira, J. A. N. Goncalves, M. Ueda, et al. Plasma Immersion IonImplantation with Solid Targets for Space and Aerospace Applications[J].Protection of Materials and Structures from Space Environment.2009,1087:357-367.
    [15] R. Y. Honda, R. P. Mota, R. G. S. Batocki, et al. Plasma-polymerizedHexamethyldisilazane Treated by Nitrogen Plasma Immersion IonImplantation Technique[J]. J Phys Conf Ser.2009,167.
    [16] P. K. Chu. Recent Applications of Plasma-based Ion Implantation andDeposition to Microelectronic, Nano-structured, and Biomedical Materials[J].Surf Coat Tech.2010,204(18-19):2853-2863.
    [17] M. Xu, W. Zhang, Z. W. Wu, et al. Mechanical Properties of Tungsten DopedAmorphous Hydrogenated Carbon Films Prepared by Tungsten PlasmaImmersion Ion Implantation[J]. Surf Coat Tech.2009,203(17-18):2612-2616.
    [18] A. Anders. Metal Plasma Immersion Ion Implantation and Deposition: aReview[J]. Surf Coat Tech.1997,93(2-3):158-167.
    [19] A. Anders. Width, Structure and Stability of Sheaths in Metal PlasmaImmersion Ion Implantation and Deposition: Measurements and AnalyticalConsiderations[J]. Surf Coat Tech.2001,136(1-3):85-92.
    [20] Y. Z. You, H. G. Chun, D. I. Kim, et al. Plasma Immersion Ion Implantationand Deposition[J]. Korus2005, Proceedings.2005:565-567.
    [21] R. H. Wei, T. Booker, C. Rincon, et al. Metal Plasma Immersion IonImplantation and Deposition (MPIII and D) Using a Metal Plasma ElectronEvaporation Source (MPEES)[J]. Surf Coat Tech.2005,200(1-4):579-583.
    [22] R. M. Oliveira, M. Ueda, B. Moreno, et al. A Novel Process for PlasmaImmersion Ion Implantation and Deposition with Ions from Vaporization ofSolid Targets[J]. Phys Status Solidi C.2008,5(4):893-896.
    [23] A. Anders, S. Anders, I. G. Brown, et al. Metal Plasma ImmersionIon-Implantation and Deposition Using Vacuum-Arc Plasma Sources[J]. J VacSci Technol B.1994,12(2):815-820.
    [24] B. S. Kang, Y. T. Sul, Y. Jeong, et al. Metal Plasma Immersion IonImplantation and Deposition (MePIIID) on Screw-shaped Titanium Implant:The Effects of Ion Source, Ion Dose and Acceleration Voltage on SurfaceChemistry and Morphology[J]. Med Eng Phys.2011,33(6):730-738.
    [25] R. H. Wei. Development of New Technologies and Practical Applications ofPlasma Immersion Ion Deposition (PIID)[J]. Surf Coat Tech.2010,204(18-19):2869-2874.
    [26] T. Lu, Y. Q. Qiao, X. Y. Liu. Surface Modification of Biomaterials UsingPlasma Immersion Ion Implantation and Deposition[J]. Interface Focus.2012,2(3):325-336.
    [27] H. X. Liu, Y. H. Jiang, R. Zhou, et al. Wear Behaviour and Rolling ContactFatigue Life of Ti/TiN/DLC Multilayer Films Fabricated on Bearing Steel byPIIID[J]. Vacuum.2012,86(7):848-853.
    [28] X. J. Zhou, Y. X. Leng, H. Sun, et al. The Structure and Adhesion ofHydrogenated Amorphous Carbon (a-C:H) Films Synthesized on CoCrMoAlloy by Plasma Immersion Ion Implantation and Deposition at DifferentFlow Ratios of Acetylene to Argon[J]. Surf Coat Tech.2011,206(5):994-998.
    [29] Z. W. Xie, L. P. Wang, X. F. Wang, et al. Influence of Si Content on Structureand Mechanical Properties of TiAlSiN Coatings Deposited by Multi-plasmaImmersion Ion Implantation and Deposition[J]. T Nonferr Metal Soc.2011,21:S476-S482.
    [30] Z. W. Xie, L. P. Wang, X. F. Wang, et al. Mechanical Performance andCorrosion Behavior of TiAlSiN/WS2Multilayer Deposited by Multi-plasmaImmersion Ion Implantation and Deposition and Magnetron Sputtering[J]. TNonferr Metal Soc.2011,21:S470-S475.
    [31] T. Sun, L. P. Wang, M. Wang.(Ti, O)/Ti and (Ti, O, N)/Ti Composite CoatingsFabricated via PIIID for the Medical Application of NiTi Shape MemoryAlloy[J]. J Biomed Mater Res B.2011,96B(2):249-260.
    [32] P. Yang, N. Huang, Y. X. Leng, et al. Wettability and Bloodcompatibility ofa-C:N:H Films Deposited by PIII-D[J]. Surf Coat Tech.2010,204(18-19):3039-3042.
    [33] S. F. Zhu, N. Huang, L. Xu, et al. Biocompatibility of Fe-O Films Synthesizedby Plasma Immersion Ion Implantation and Deposition[J]. Surf Coat Tech.2009,203(10-11):1523-1529.
    [34] S. Anders, A. Anders, I. Brown, et al. Surface Modification of Nickel BatteryElectrodes by Cobalt Plasma Immersion Ion Implantation and Deposition[J].Surf Coat Tech.1996,85(1-2):75-79.
    [35] J. Bruckner, R. Gunzel, E. Richter, et al. Metal Plasma Immersion IonImplantation and Deposition (MPIIID): Chromium on Magnesium[J]. SurfCoat Tech.1998,104:227-230.
    [36] E. C. Rangel, P. A. F. Silva, R. P. Mota, et al. Thin Polymer Films Prepared byPlasma Immersion Ion Implantation and Deposition[J]. Thin Solid Films.2005,473(2):259-266.
    [37] G. J. Wan, N. Huang, S. C. H. Kwok, et al. Si-N-O Films Synthesized byPlasma Immersion Ion Implantation and Deposition (PIII&D) forBlood-contacting Biomedical Applications[J]. Ieee T Plasma Sci.2006,34(4):1160-1165.
    [38] R. C. C. Rangel, E. C. Rangel, R. M. Oliveira, et al. Study of SuperficialProperties of Titanium Treated by PIIID[J]. Eur Phys J-Appl Phys.2011,56(2).
    [39] C. B. Mello, M. Ueda, R. M. Oliveira, et al. Corrosion Effects of PlasmaImmersion Ion Implantation-enhanced Cr Deposition on SAE1070CarbonSteel[J]. Surf Coat Tech.2011,205:S151-S156.
    [40] Z. W. Xie, L. P. Wang, X. F. Wang, et al. Influence of Oxidation on theStructural and Mechanical Properties of TiAlSiN Coatings Synthesized byMulti-plasma Immersion Ion Implantation and Deposition[J]. Nucl InstrumMeth B.2012,271:1-5.
    [41] P. Huber, D. Manova, S. Mandl, et al. Formation of TiN, TiC and TiCN byMetal Plasma Immersion Ion Implantation and Deposition[J]. Surf Coat Tech.2003,174:1243-1247.
    [42] I. Tsyganov, M. F. Maitz, E. Wieser, et al. Structure and Properties of TitaniumOxide Layers Prepared by Metal Plasma Immersion Ion Implantation andDeposition[J]. Surf Coat Tech.2003,174:591-596.
    [43] S. Mandl, D. Manova, B. Rauschenbach. Transparent AIN Layers Formed byMetal Plasma Immersion Ion Implantation and Deposition[J]. Surf Coat Tech.2004,186(1-2):82-87.
    [44] F. Wen, N. Huang, H. Sun, et al. The Study of Composition, Structure,Mechanical Properties and Platelet Adhesion of Ti-O/TiN Gradient FilmsPrepared by Metal Plasma Immersion Ion Implantation and Deposition[J].Nucl Instrum Meth B.2004,222(1-2):81-90.
    [45] G. J. Wan, N. Huang, P. Yang, et al. Ti-O/TiN Films Synthesized by PlasmaImmersion Ion Implantation and Deposition on316L: Study of DeformationBehavior and Mechanical Properties[J]. Thin Solid Films.2005,484(1-2):219-224.
    [46] Y. Cheng, Y. F. Zheng. Deposition of TiN Coatings on Shape Memory NiTiAlloy by Plasma Immersion Ion Implantation and Deposition[J]. Thin SolidFilms.2006,515(4):1358-1363.
    [47] W. Wongsarat, S. Sarapirom, S. Aukkaravittayapun, et al. Plasma ImmersionIon Implantation and Deposition of DLC Coating for Modification ofOrthodontic Magnets[J]. Nucl Instrum Meth B.2012,272:346-350.
    [48] N. Ikenaga, Y. Kishi, Z. Yajima, et al. Improving Mechanical Characteristicsof an Aluminum Cutting Tool by Depositing Multilayer Amorphous Aarbonwith Assistance of Plasma Immersion Ion Implantation[J]. Nucl Instrum MethB.2012,272:361-364.
    [49] Z. W. Xie, L. P. Wang, X. F. Wang, et al. Microstructure and tribologicalProperties of Diamond-like Carbon and TiAlSiCN Nanocomposite Coatings[J].Surf Coat Tech.2011,206(6):1293-1298.
    [50] M. P. DelplanckeOgletree, O. R. Monteiro, I. G. Brown. Preparation of Tic andTiC/DLC Multilayers by Metal Plasma Immersion Ion Implantation andDeposition: Relationship between Composition, Microstructure and WearProperties[C]. Materials Modification and Synthesis by Ion Beam Processing.1997,438:639-644.
    [51] C. Pakpum, N. Pasaja, D. Boonyawan, et al. Diamond-like Carbon Formed byPlasma Immersion Ion Implantation and Deposition Technique on304Stainless Steel[J]. Sol St Phen.2005,107:129-132.
    [52] G. Thorwarth, C. Hammerl, M. Kuhn, et al. Investigation of DLC Synthesizedby Plasma Immersion Ion Implantation and Deposition[J]. Surf Coat Tech.2005,193(1-3):206-212.
    [53] L. P. Wang, L. Huang, Y. H. Wang, et al. Duplex DLC Coatings Fabricated onthe Inner Surface of a Tube Using Plasma Immersion Ion Implantation andDeposition[J]. Diam Relat Mater.2008,17(1):43-47.
    [54] L. P. Wang, Y. H. Wang, Y. H. Yu, et al. Batch Treatment of IndustrialComponents Using Plasma Immersion Ion Implantation and Deposition[J].Surf Coat Tech.2007,201(15):6585-6588.
    [55] A. Anders. High Power Impulse Magnetron Sputtering and Related Discharges:Scalable Plasma Sources for Plasma-based Ion Implantation and Deposition[J].Surf Coat Tech.2010,204(18-19):2864-2868.
    [56] V. N. Zhitomirsky, L. Kaplan, R. L. Boxman, et al. Ion Current Distribution ina Filtered Vacuum Arc Deposition System[J]. Surf Coat Tech.1995,76(1-3):190-196.
    [57] A. Anders. Plasma and Ion Sources in Large area Coating: A Review[J]. SurfCoat Tech.2005,200(5-6):1893-1906.
    [58] L. Bardos, H. Barankova, S. Berg. Thin Film Processing by Radio FrequencyHollow Cathodes[J]. Surf Coat Tech.1997,97(1-3):723-728.
    [59] L. Bardos, H. Barankova, S. Berg. Linear arc Discharge Source for Large areaPlasma Processing[J]. Appl Phys Lett.1997,70(5):577-579.
    [60] R. Rank, T. Wunsche, S. Gunther. Magnetically Enhanced RF Discharges forEffective Pre-treatment of Plastic Webs at High Speed[J]. Surf Coat Tech.2003,174:218-221.
    [61] V. I. Gorokhovsky, D. G. Bhat, R. Shivpuri, et al. Characterization of LargeArea Filtered arc Deposition Technology: Part II-Coating Properties andApplications[J]. Surf Coat Tech.2001,140(3):215-224.
    [62] A. I. Ryabchikov, I. B. Stepanov, S. V. Dektjarev, et al. Very Broad VacuumArc Ion and Plasma Sources with Extended Large Area Cathodes[J]. Rev SciInstrum.2000,71(2):704-706.
    [63]李定,陈银华,马锦秀,等.等离子体物理学.高等教育出版社,2006:3-4.
    [64]郑春开.等离子体物理.北京大学出版社,2009:34-35.
    [65] Stephen Jardin. Computational Methods in Plasma Physics. CRC Press,2010:1-26.
    [66] H. Timko, K. Matyash, R. Schneider, et al. A One-DimensionalParticle-in-Cell Model of Plasma Build-Up in Vacuum Arcs[J]. Contrib PlasmPhys.2011,51(1):5-21.
    [67] M. Honda, J. Meyer-ter-Vehn, A. Pukhov. Two-dimensional Particle-in-cellSimulation for Magnetized Transport of Ultra-high Relativistic Currents inPlasma[J]. Phys Plasmas.2000,7(4):1302-1308.
    [68] T. Hurtig, N. Brenning, M. A. Raadu. Three-dimensional ElectrostaticParticle-in-cell Simulation with Open Boundaries Applied to a Plasma BeamEntering a Curved Magnetic Field[J]. Phys Plasmas.2003,10(11):4291-4305.
    [69] S. K. Nam, D. J. Economou, V. M. Donnelly. Particle-in-cell Simulation ofBeam Extraction through a Hole in Contact with Plasma[J]. J Phys D ApplPhys.2006,39(18):3994-4000.
    [70] S. K. Nam, D. J. Economou, V. M. Donnelly. Particle-in-cell Simulation of IonBeam Extraction from a Pulsed Plasma through a Grid[J]. Plasma Sources SciT.2007,16(1):90-96.
    [71] E. Kawamura, A. J. Lichtenberg, M. A. Lieberman. Two-dimensionalParticle-in-cell Simulations of Transport in a Magnetized ElectronegativePlasma[J]. J Appl Phys.2010,108(10).
    [72] G. Sarri, G. C. Murphy, M. E. Dieckmann, et al. Two-dimensionalParticle-in-cell Simulation of the Expansion of a Plasma into a RarefiedMedium[J]. New J Phys.2011,13.
    [73] J. Krek, N. Jelic, J. Duhovnik. Particle-in-cell (PIC) Simulations onPlasma-sheath Boundary in Collision-free Plasmas with Warm-ion Sources[J].Nucl Eng Des.2011,241(4):1261-1266.
    [74] J. Z. Sun, C. F. Sang, T. Stirner, et al. Characteristics of Plasma Immersion IonImplantation with a Nanosecond Rise-time Pulse: Particle-in-cellSimulations[J]. J Phys D Appl Phys.2010,43(27).
    [75] H. Thiemann, R. W. Schunk. Particle-in-Cell Simulations of Sheath Formationaround Biased Interconnectors in a Low-Earth-Orbit Plasma[J]. J SpacecraftRockets.1990,27(5):554-562.
    [76] T. H. Chung, H. J. Yoon, T. S. Kim, et al. A particle-in-cell Simulation of theBreakdown and Period Doubling Thresholds for a RF Discharge Ar Plasma[J].J Phys D Appl Phys.1996,29(4):1014-1020.
    [77] D. T. K. Kwok, P. K. Chu, B. P. Wood, et al. Particle-in-cell and Monte CarloSimulation of the Hydrogen Plasma Immersion Ion Implantation Process[J]. JAppl Phys.1999,86(4):1817-1821.
    [78] A. Cenian, A. Chernukho, C. Leys. Particle-in-cell Monte Carlo (PIC-MC)Simulations of Plasma-wall Interactions in Low-pressure AR Plasma[J].Radiat Phys Chem.2003,68(1-2):109-113.
    [79] D. Tskhakaya, S. Kuhn. Particle-in-cell Simulations of the Plasma-wallTransition with a Magnetic Field almost Parallel to the Wall[J]. J Nucl Mater.2003,313:1119-1122.
    [80] T. Nedelea, H. M. Urbassek. Parametric Study of Ion Acceleration in aOne-dimensional Plasma Expansion Using the Particle-in-cell Simulation[J].Phys Rev E.2004,69(5).
    [81] A. Meige, M. Jarnyk, D. T. K. Kwok, et al. Particle-in-cell Simulation of anElectron Shock Wave in a Rapid Rise Time Plasma Immersion IonImplantation Process[J]. Phys Plasmas.2005,12(4).
    [82] G. Shirkov. Particle-in-cell Method for Numerical Simulation of Beam andPlasma Dynamics[J]. Nucl Instrum Meth A.2006,558(1):317-324.
    [83] C. S. Liu, D. Z. Wang, T. W. Liu, et al. Two-dimensional Particle-in-cellSimulation of the Ion Sheath Dynamics in Plasma Source Ion Implantation ofa Hemispherical Bowl-shaped Target[J]. Acta Phys Sin-Ch Ed.2008,57(10):6450-6456.
    [84] P. Diomede, D. J. Economou, V. M. Donnelly. Particle-in-cell Simulation ofIon Energy Distributions on an Electrode by Applying Tailored BiasWaveforms in the Afterglow of a Pulsed Plasma[J]. J Appl Phys.2011,109(8).
    [85] J. Robiche, J. M. Rax, G. Bonnaud, et al. Fast Electron Energy Deposition in aMagnetized Plasma: Kinetic Theory and Particle-in-cell Simulation[J]. PhysPlasmas.2010,17(3).
    [86] D. T. K. Kwok, R. K. Y. Fu, P. K. Chu. Two-dimensional Particle-in-cellPlasma Immersion Ion Implantation Simulation of Gear/windmill Geometry inCylindrical Co-ordinates along the (r-theta) Plane[J]. Surf Coat Tech.2002,156(1-3):97-102.
    [87] Y. Miyagawa, H. Nakadate, M. Tanaka, et al. Particle-in-cell Monte CarloSimulation of Plasma for Inner Coating of a Pipe[J]. Surf Coat Tech.2005,196(1-3):155-161.
    [88] S. K. Nam, V. M. Donnelly, D. J. Economou. Particle-in-cell Simulation of IonFlow through a Hole in Contact with Plasma[J]. Ieee T Plasma Sci.2005,33(2):232-233.
    [89] D. T. K. Kwok, C. Cornet. Numerical Simulation of Metal Plasma ImmersionIon Implantation (MePIIID) on a Sharp Cone and a Fine Tip by aMultiple-grid Particle-in-cell (PIC) Method[J]. Ieee T Plasma Sci.2006,34(5):2434-2442.
    [90] Y. X. Huang, X. B. Tian, S. Q. Yang, et al. Particle-in-cell NumericalSimulation of Non-uniform Plasma Immersion Ion Implantation[J]. Surf CoatTech.2007,201(9-11):5458-5462.
    [91] L. P. Wang, Y. H. Yu, X. F. Wang, et al. Particle-in-cell Simulation of MetalPlasma Flow in Dual Plasma Deposition[J]. Surf Coat Tech.2007,201(15):6576-6580.
    [92] D. T. K. Kwok, S. L. Wu, X. M. Liu, et al. Investigation of Plasma ImmersionIon Implantation of Nickel-titanium Rod by Multiple-grid Particle-in-cellSimulation[J]. J Appl Phys.2008,103(5).
    [93] D. T. K. Kwok, J. H. Li, X. B. Ma, et al. Hybrid Particle-in-cell (PIC) Ions andBoltzmann Electron Distribution Simulation of Direct-current PlasmaImmersion Ion Implantation into Three-dimensional Objects[J]. J Phys D ApplPhys.2010,43(9).
    [94] C. S. Liu, H. Y. Han, X. Q. Peng, et al. Two-dimensional Particle-in-cellPlasma Source Ion Implantation of a Prolate Spheroid Target[J]. Chinese PhysB.2010,19(3).
    [95] D. T. K. Kwok. Numerical Simulation of Metal Plasma Immersion IonImplantation and Deposition on a Dielectric Wedge[J]. Ieee T Plasma Sci.2006,34(4):1059-1065.
    [96] R. Faehl, B. Devolder, B. Wood. Application of Particle-in-Cell Simulation toPlasma Source Ion-Implantation[J]. J Vac Sci Technol B.1994,12(2):884-888.
    [97] C.K. Birdsall, A.B Langdon. Plasma Physics via Computer Simulation. Taylor&Francis,2004:55-81.
    [98] R.W Hockney, J.W Eastwood. Computer Simulation Using Particles. Taylor&Francis,1989:12-34.
    [99]邵福球.等离子体粒子模拟.北京:科学出版社,2002:9-15.
    [100] C. K. Birdsall. Particle in cell Monte Carlo Collision Codes (PIC-MCC);Methods and Applications to Plasma Processing[J]. Nato Adv Sci I E-App.1997,336:277-289.
    [101] G. Joyce, M. Lampe, S. P. Slinker, et al. Electrostatic Particle-in-cellSimulation Technique for Quasineutral Plasma[J]. J Comput Phys.1997,138(2):540-562.
    [102] J. Pasek. Particle to Particle in Cell Simulations of the Plasma[J]. Czech JPhys.2002,52:246-250.
    [103] G. Shirkov. Particle-in-cell Method for Numerical Simulation of Beam andPlasma Dynamics[J]. Radiat Eff Defect S.2005,160(10-12):483-493.
    [104] L. P. Wang, L. Huang, Z. W. Xie, et al. Fourth-generation Plasma ImmersionIon Implantation and Deposition Facility for Hybrid Surface ModificationLayer Fabrication[J]. Rev Sci Instrum.2008,79(2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700