用户名: 密码: 验证码:
拉伸装夹高速铣削钛合金的疲劳特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速加工技术的发展,钛合金的高速铣削技术已经在实际生产中获得应用。但是人们对钛合金高速铣削件的疲劳特性缺乏深入的了解,影响了高速铣削技术的优势在航空工业领域中得到进一步发挥。本文基于拉伸装夹高速铣削的抗疲劳加工新思路,重点研究拉伸装夹条件下TC4钛合金铣削工件的表面残余应力及其疲劳特性。
     采用自行设计的单向拉伸夹具,在HSM-600U型五轴高速加工中心上开展了TC4钛合金拉伸装夹铣削(Stretching-fixation Milling, SFM)的试验研究,铣削速度从38 m/min到566 m/min,拉伸装夹力从0到6330 N。采用Mahr Sp3表面粗糙度仪对铣削表面的微观几何形貌进行了测量分析,使用MSF-3M型X射线应力分析仪分别测量了铣削表面内与拉伸方向呈0°、30°、90°和120°角的四个方向上的残余应力,并结合电解抛光方法进一步测量了切削方向上铣削表面以下50μm深度内的残余应力分布。基于平面应变的热弹塑性理论分析了SFM过程中应力应变的变化过程,推导了拉伸装夹引起的初始应变和残余应力变化量之间的关系,并提出应变叠加模型,认为拉伸装夹产生的初始应变影响了铣削工件表层的塑性应变,从而使残余应力发生变化。使用有限元软件ANSYS对SFM过程进行仿真,把整个拉伸装夹铣削过程分为装夹施加、金属切削和装夹卸除三部分,分别采用不同的积分方式进行求解。最后,对SFM件进行了高频低周疲劳实验,建立疲劳裂纹监测系统对疲劳裂纹扩展的整个过程进行了在位停机观测,并使用JSM-7001F型场发射扫描电镜观察了疲劳断口。
     研究结果表明:在每转进给量保持不变的前提下表面粗糙度主要由高速旋转时刀具的动平衡偏心量决定,铣削速度和铣削装夹方式基本不影响表面粗糙度;拉伸装夹铣削工件表层残余压应力的增大与否取决于是否形成初始拉应变,而后者和方向相关;有限元仿真对拉伸装夹铣削工件表层残余应力分布的预测和实测结果基本一致;拉伸装夹铣削可以形成更有利的残余压应力层,对滑移带的形成和疲劳裂纹的萌生产生有效的抑制;与常规铣削试样相比,拉伸装夹铣削试样的疲劳寿命可提高8%~16%,疲劳源区位于铣削表面以下更深处。
With the development of high-speed machining technology, the high-speed milling has been applied in Ti alloy machining in practice. However, the fatigue characteristic of Ti alloy workpiece high-speed milled remains unclear, and this makes the high-speed milling technology difficult to further play to its advantages in aviation industry. In this paper, a new approach to anti-fatigue manufacture based on high-speed milling under stretching fixation was proposed, and the residual stresses and fatigue characteristics of TC4 Ti alloy workpiece milled under stretching fixation were studied in detail.
     Stretching-fixation milling (SFM) of TC4 Ti alloy was performed on five axis high speed machining center of Mikron HSM-600U with unidirectional stretching fixture designed independently,at milling speed of 38~566 m/min and stretching force of 0~6330 N. The surface roughness of the milling surface was measured, and the surface profile was analyzed with Mahr Sp3 surface roughness instrument. The residual stresses in the milling surface were measured at four directions of 0, 30, 90 and 120 degrees from the stretching direction respectively with MSF-3M X-ray stress analyzer, and the residual stress distribution 50μm below milling surface was studied by combining X-ray diffraction and electro-polishing techniques. Moreover, the thermoelastoplastic theory of plane strain was adopted to analyze the variations of stress and strain in the SFM process and to reveal the relationship between the stretching strain and the residual stress. Then, a strain superposition model was proposed, which recognized that the initial strain produced by stretching fixation changed the plastic strain, thereby the residual stress in the milling surface layer. By using general FEA software ANSYS, a finite element model of SFM was developed, in which the entire SFM process was divided into three parts, namely fixation loading, metal cutting and fixation unloading, and each part was solved by using different integral method respectively. Finally, low cycle fatigue test of SFM specimen under high frequency was carried out on PLG-100C high-frequency fatigue testing machine, and during periodical shutdown of the machine a fatigue crack monitoring system designed independently was used to in-situ observe the fatigue crack, while the fatigue fracture section was observed under JSM-7001F field-emission scanning electron microscope.
     From the results obtained, it is made clear as follows. When the feed per revolution remains unchanged, the micro fluctuation of milled surface is mainly attributed to the dynamic imbalance of high-speed rotary tool, while is little affected by milling speed and stretching force. The variation of the residual stress in SFM surface layer depends on the value of initial strain produced by stretching fixation, and the latter is different in each direction. The residual stress distribution simulated by FEA shows good agreement with the experiment result. SFM produces a more favorable residual compressive stress layer, and delays the formation of slip band and the initiation of fatigue crack effectively. Consequently, stretching fixation in high speed milling causes an 8%~16% growth of fatigue life, and fatigue crack of SFM specimen initiates at deeper layer from the surface.
引文
[1]梁彦学,高锋.我国高速加工技术现状及发展趋势[J].工具技术, 2002, 36(1): 16~21
    [2]庞俊忠,王敏杰,马日光等.高速铣削淬硬钢时切削载荷平稳化研究[J].机械科学与技术, 2007, 26(6): 705~709
    [3]史兴宽,陈明,张树全等.钛合金TC4高速铣削表面完整性的研究[J].航空制造技术, 2001, (1): 30~31, 35
    [4]万熠,艾兴,刘战强等.高速铣削航空铝合金7050-T7451时刀具的磨损破损[J].机械工程学报. 2007, 43(4): 103~108
    [5]耿国盛,徐九华,傅玉灿.高速铣削近α钛合金的切削温度研究[J].机械科学与技术, 2006, 25(3): 329~332
    [6]李沪曾,郭重庆,林建平等.高速铣削加工技术在汽车模具制造中的应用[J].机械与电子, 2003, (1): 26~28
    [7]李沪曾,王逸,张冲等.薄壁整体结构件的高速铣削[J].同济大学学报. 2007, 35(4): 522~525
    [8]孔金星,雷大江,岳晓斌.高速铣削参数对工件表面质量的影响[J].机床与液压. 2007, 35(2): 80~82, 85
    [9]陈振华等译.钛与钛合金[M].北京:化学工业出版社. 2005
    [10]何晓,岳俊,沈保罗等.氢对Ti-4Al-2V钛合金疲劳寿命的影响[J].核动力工程. 2003, 24(4): 297~301
    [11] Gerhard Biallas, Mark Essert, Hans Jürgen Maier. Influence of environment on fatigue mechanisms in high-temperature titanium alloy IMI834[J]. International Journal of Fatigue. 2005, 27(10~12): 1485~1493
    [12] J. Lindemann, L. Wagner. Mean stress sensitivity in fatigue ofα, (α+β) andβtitanium alloys[J]. Materials Science and Engineering A. 1997, 234~236(30): 1118~1121
    [13] K. Kubiak, J. Sieniawski. Effect of forging conditions and annealing temperature on fatigue strength of two-phase titanium alloys[J]. Materials & Design.1997, 18(4~6): 365~367
    [14] John J. Ruschau, Reji John, Steven R. Thompson. Fatigue crack nucleation and growth rate behaviour of laser shock peened titanium[J]. International Journal of Fatigue. 1999, 21(s1): 199~209
    [15]高玉魁.喷丸对TC18钛合金拉-拉疲劳性能的影响[J].稀有金属材料与工程.2004, 33(9): 1000~1002
    [16]左敦稳.抗疲劳制造技术取得新进展[J].机械科学与技术, 1995, (6): 17
    [17]王珉.抗疲劳制造原理与技术[M].南京:江苏科学技术出版社. 1999: 3
    [18] Toshiaki Segawa, Hiroyuki Sasahara, Masaomi Tsutsumi. Development of a new tool to generate compressive residual stress within a machined surface[J]. International Journal of Machined Tools & Manufacture , 2004, 44(11): 1215~1221
    [19] P.Chevrierm, A.Tidu, B.Bolle, et al. Investigation of surface integrity in high speed end milling of a low alloyed steel[J]. International Jounal of Machine Tools & Manufacture 2003, 43(11): 1135~1142
    [20] Jiang Hua, Rajiv Shivpuri, Xiaomin Cheng, et al. Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer+hone cutting edge geometry[J]. Material Science and Engineering A. 2005, 394(1~2): 238~248
    [21] Hiroyuki Sasahara. The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45%C steel[J]. International Journal of Machine Tools & Manufacture. 2005, 45(2): 131~136
    [22] Kurt Jacobus, S.G.Kapoor, R.E. Devor. Experimentation on the Residual Stresses Generated by Endmilling[J]. Journal of Manufacturing Science and Engineering. 2001, 123(4): 748~753
    [23] Kurt Jacobus, R.E. Devor, S.G. Kapoor. Machining-Induced Residual Stress: Experimentation and Modeling[J]. Journal of Manufacturing Science and Engineering. 2000, 122(1): 20~31
    [24] Zhou Ze-hua, Guo Da-tong. Pre-stressed machining[C]. IX International Conference on Production Research, Cincinnati, U.S.A, 1987, (1): 257~263
    [25]王成龙.螺纹的预应力加工:一种提高螺纹的疲劳强度的方法[D]. [硕士学位论文].广州:华南理工大学, 1989
    [26]王珉, Lau Ws.金属表面改性的预应力磨削机理研究[J].机械工程学报, 1992, 28(3): 104~109
    [27]胡华南,周泽华,陈澄洲.预应力加工表面残余应力的理论分析[J].华南理工大学学报,1994, 22(2): 1~10
    [28]布光斌,程足发,左敦稳等.拉紧条件下铝合金铣削残余应力的试验研究[J].南京航空航天大学学报, 2005, 37(s): 21~25
    [29]郭魂,左敦稳,王树宏等.拉伸装夹对航空框类零件加工变形影响的有限元分析[J].南京航空航天大学学报, 2005, 37 (s): 72~76
    [30] Guo Hun, Zuo Dunwen, Wang Shuhong, et al. Effect of tool-path on milling accuracy under clamping[J]. Transactions of NUAA, 33 (3): 234~239
    [31]工程材料实用手册编辑委员会.工程材料实用手册[M].北京:中国标准出版社, 1988
    [32]姚启均.金属机械零件力学性能试验手册[M].北京:兵器工业出版社, 1995
    [33] Luc M, Debongnie JF. Machining processes simulation: specific finite element aspect[J]. Journal of Computational and Applied Mathematics, 2004, 168(4): 309~320
    [34]л.M.什科利尼克.疲劳试验方法手册[M].北京:机械工业出版社, 1983
    [35]冯芝华,王红红,谢成木等.热工艺对ZT4(Ti-6Al4V)钛合金铸件残余应力的影响[J].航空材料学报, 2005, 25(3): 25~27
    [36]章宏甲,周邦俊.金属切削机床液压传动[M].南京:江苏科学技术出版社, 1980, 5~6
    [37]张忠林,孟庆鑫,汪学清等.穿地龙机器人转向机构设计与校核[J].中国机械工程, 2006, 17(6): 580~583
    [38]徐灏.安全系数和许用应力[M].北京:机械工业出版社, 1981
    [39] L.N. López de lacalle, J.Pérez, J.I. Llorente, et al. Advanced cutting conditions for themilling of aeronautical alloys[J]. Journal of Materials Processing Technology, 2000, 100(1~3): 1~11
    [40]刘战强,黄传真,郭培全.先进切削加工技术及应用[J].北京:机械工业出版社, 2005
    [41] T.Kitagawa, A.Kubo, K.Maekawa. Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti-6Al-6V-2Sn[J]. Wear, 1997, 202(2): 142~148
    [42]满忠雷,何宁,武凯等.不同介质下高速铣削钛合金时切屑的变形研究[J].航空精密制造技术, 2005, 41(1): 54~56
    [43]苏宇,何宁,李亮等.低温氮气射流对钛合金高速铣削加工性能的影响[J].中国机械工程, 2006, 17(11): 1183~1187
    [44] P.G. Benardos, G.C. Vosniakos. Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments[J]. Robotics and Computer Integrated Manufacturing, 2002, 18(5~6): 343~354
    [45]李亮,何宁,何磊等.高速铣削铝合金时切削力和表面质量影响因素的试验研究[J].工具技术, 2002, 36(12): 16~19
    [46]袁发荣,伍尚礼.残余应力测试与计算[M].湖南:湖南大学出版社, 1987
    [47] E.A.鲍利索娃,陈石卿.钛合金金相学[M].北京:国防工业出版社, 1986
    [48]张铭,何家文.丝织构对薄膜X射线残余应力分析的影响[J].机械工程材料, 2001, 25(5): 21~23, 31
    [49]张定铨,何家文.材料中残余应力的X射线衍射分析和作用[M].西安:西安交通大学出版社, 1999
    [50]日本材料学会. X射线应力测定法标准[M].北京机电所译, 1973
    [51] Rigaku corporation. Residual-austenite measuring attachment instruction manual[M]. Tokyo Japan, 2003
    [52] Takeyoshi Ukai, Junichi Shibano.由X射线穿透深度简易测量残余应力[J].无损检测, 1999, 21(2): 87~90
    [53] Peiter A. Simultaneous X-ray measurements in-situ of tri-axial stresses, Poisson’s ratio and the stress free lattice spacing[J]. Strain, 1987, 23(8): 103
    [54] Wern H. Influence of measurement and evaluation parameters on stress distributions investigated by X-rays[J]. Strain, 1991, 23(11): 27
    [55] American stress technologies, Inc. AST/S2001-G2 X-ray stress analyzer user’s manual[M]. Pittsburgh, 2001
    [56] Harting M. A semi numerical method to determine the depth profile of the three dimensional residual stress state with X-ray diffraction[J]. Acta Mater, 1998, 45(4): 1427
    [57]胡华南,陈澄洲,周泽华.剥层测量残余应力的修正[J].华南理工大学学报, 1992, 20(4): 47~57
    [58]李家宝,康增桥,王中元.利用双面剥层X射线应力测定技术测量板状试样的残余应力分布[J].力学与实践, 1992, 14(3): 41~44
    [59] R.G. Treuting, H. B. Wishart, J. J. Lynch etc. Residual stress measurements[M] Cleveland, Ohio. American society for metals, 1952
    [60]张占宽,习宝田,安静贤.用X射线测定圆锯片表面初始残余应力[J].北京林业大学学报, 2003, 25(1): 78~81
    [61] B.H. Sencer, G.S. Was, H. Yuya et al. Cross-sectional TEM and X-ray examination of radiation-induced stress relaxation of peened stainless steel surfaces[J]. Journal of nuclear materials, 2005, 336(2~3): 314~322
    [62] W.J. M. Tegart, M.Sc. The electrolytic and chemical polishing of metals in research and industry[M]. London: Pergamon Press, 1959
    [63]《电解加工》编译组.电解加工[M].北京:国防工业出版社, 1977
    [64]李华清,李旭东,谢水生.钛合金材料OIM试样的电解抛光及制备工艺[J].钛工业进展, 2006, 23(6): 28~32
    [65]包胜华,吴蒙华,刘正宁.医用钛合金超声-电化学抛光工艺[J].材料保护, 2005., 38(11): 34~36
    [66] Morrow, D., Stress-strain response of a two-bar structure subject to cyclic thermal and steady net section loads[D]. Master’s thesis, University of Illinois, 1982.
    [67] Y.B.Guo, C.R.Liu. 3D FEA Modeling of Hard Turning[J]. Journal of Manufacturing Science and Engineering. 2002, 124: 189~199
    [68] O. Pantale, J.-L. Bacaria, O. Dalverny. 2D and 3D numerical models of metal cutting with damage effects[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(39-41): 4383~4399
    [69]布光斌.预拉伸夹紧铣削铝合金残余应力的基础研究[D]. [硕士学位论文],南京:南京航空航天大学, 2005
    [70] K. Okushima, Y. Kakino. The residual stress produced by metal cutting[J]. Ann. CIRP 1971, 20(1): 13~14
    [71] A.O. Tay, M.G. Stevenson, G. de Bahl Davis. Using the finite element method to determine temperature distributions in orthogonal machining[C], Proc. Inst. Mech. Eng, 1974, 188: 627~638
    [72] A.G. Mamalis, M. Horvath, A.S. Branis, D.E. Manolakos. Finite element simulation of chip formation in orthogonal metal cutting[J]. Jouranal of Materials Processing Technology, 2001, 110(1): 19~27
    [73] Shih AJ. Finite element simulation of orthogonal metal cutting[J]. Journal of Engineering for Industry, 1995, 117: 84~93
    [74] K. Komvopoulos, A.S. Erpenbeck. Finite element modeling of orthogonal metal cutting[J]. Precision Engineering. 1992, 14(2): 119-120
    [75] J.S. Strenkowski, J.T. Carroll. A finite element model of orthogonal metal cutting[J]. Journal of Engineering for Industry, 1985, 107: 349~356
    [76] Z.C. Lin, S.Y. Lin. A coupled finite element model of thermo-elastic-plastic large deformation for orthogonal cutting[J]. Journal of Engineering for Materials Technology, 1992, 114: 218~226
    [77] K. Watanabe, Y. Umezu. Cutting Simulation Using LS-DYNA3D[C]. Thrid International LS-DYNA3D Conference, Kyoto Research Park, Kyoto, Japan, 1995
    [78] Liangchi Zhang. On the sparation criteria in the simulation of orthogonal metal cutting using the finite element method[J]. Journal of Materials Processing Technology, 1999, 89-90(19):273-278
    [79]寇哲君,程建钢,黄文斌等.结构动力分析显隐式混合积分并行算法及实现[J].清华大学学报, 1999, 39(4): 21~24
    [80] ANSYS/LS-DYNA中国技术支持中心. ANSYS_LSDYNA算法基础和使用方法[M].北京:北京理工大学出版社, 1999
    [81] Hiroyuki Sasahara, Toshiyuki Obikawa, Takahiro Shirakashi. Prediction model of surface residual stress within a machined surface by combining two orthogonal plane models[J]. International Journal of Machine Tools & Manufacuture. 2004, 44(7~8): 815~822
    [82]成群林,何映林,董辉跃.航空铝合金高速铣削加工的有限元模拟[J].浙江大学学报, 2006, 40(1): 113~117
    [83]王艳颖,黄志刚.基于正交切削模型的铣削加工残余应力预测方法[J].组合机床与自动化加工技术, 2004, (9): 4~6
    [84] Y.B. Guo, David W.Yen. A FEM study on mechanisms of discontinuous chip formation in hard machining[J]. Journal of Materials Processing Technology, 2004, 155-156(30): 1350~1356
    [85] Eu-Gene Ng, David K. Aspinwall. Modelling of hard part machining[J]. Journal of Materials Processing Technology, 2002, 127(2): 222~229
    [86] Xiaoping Yang, C. Richard Liu. A new stress-based model of friction behavior in machining and its significant impact on residual stresses computed by finite element method[J]. International Journal of Mechanical Science, 2002, 44(4): 703~723
    [87] C. Shet, X. Deng. Residual stresses and strains in orthogonal metal cutting[J]. International Journal of Machine Tools & Manufacture, 2003, 43(6): 573~587
    [88] Z.J. Yuan, M. Zhou, S. Dong. Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining[J]. Journal of Materials Processing Technology, 1996, 62(4): 327~330
    [89] Seong Min Son, Han Seok Lim, Jung Hwan Ahn. Effects of the friction coefficient on the minimum cutting thickness in micro cutting[J]. International Journal of Machine Tools& Manufacture, 2005, 45(4~5): 529~535
    [90]左敦稳.现代加工技术[M].北京:北京航空航天大学出版社, 2005
    [91] Yung-Chang Yen, Anurag Jain, Taylan Altan. A finite element analysis of orthogonal machining using different edge geometries[J]. Journal of Material Processing Technology, 2004, 146(1): 72~81
    [92] C.Shet, X.Deng. Finite element analysis of the orthogonal metal cutting[J]. Journal of Materials Processing Technology, 2000, 105(1-2): 95~109
    [93] G. Shi, X. Deng, C. Shet. A finite element study of the effect of friction in orthogonal metal cutting[J]. Finite Elements in Analysis and Design, 2002, 38(9): 863~883
    [94] Yogesh K. Potdar, Alan T. Zehnder. Measurements and simulations of temperature and deformation fields in transient metal cutting[J]. Journal of Manufacturing Science and Engineering, 2003, 125: 645~655
    [95] Zener C., Hollomon, J. H.. Effect of strain rate on plastic flow of steel[J]. Journal of application physics, 1944, 15: 22~32
    [96] Batra, R. C., Kim C.H..Effect of viscoplastic flow rules on the initiation and growth of shear bands at high strain rates[J]. Journal of application physics, 1990, 38(6): 859~874
    [97] Jing Shi, C. Richard Liu. The influence of material models on finite element simulation of machining[J]. Journal of manufacturing science and Engineering, 2004, 126(4): 849~857
    [98] Tu?rul ?zel, Erol Zeren. Determination of work material flow stress and friction for FEA of machining using orthogonal cutting tests[J]. Journal of Materials Processing Technology, 2004, 153-154(10): 1019~1025
    [99] Klopp R.W., Clifton R.J., Shawki T.G.. Pressure-shear impact and the dynamic viscoplastic response of metals[J]. Mechanical Materials, 1985, 4(3-4): 375~385
    [100] Johnson G.R.. Strength and fracture characteristics of a titanium alloy (Ti6Al4V) subjected to various strains, strain rates, temperatures and pressures[J]. NSWCTR 86-144, Dahlgren, VA, 1985
    [101] Woei-Shyan Lee, Chi-Feng Lin. Plastic deformation and fracture behaviour of Ti6Al4V alloy loaded with high strain rate under various temperatures[J]. Materials Science and Engineering A, 1998, 241(1-2): 48~59
    [102] Songwon Seo, Oakkey Min, Hyunmo Yang. Constitutive equation for Ti6Al4V at high temperatures measured using the SHPB technique[J]. International Journal of Impact Engineering, 2005, 31(6): 735~754
    [103] L. Daridon, O. Oussouaddi, S. Ahzi. Influence of the material constitutive models on the adiabatic shear band spacing: MTS, power law and Johnson-Cook models[J]. International Journal of Solids and Structures, 2004, 41(11-12): 3109~3124
    [104] W. Dabboussi, J.A. Nemes. Modeling of ductile fracture using the dynamic punch test[J]. International Journal of Mechanical Sciences, 2005, 47(8): 1282~1299
    [105] Office of aviation research. Experimental investigations of material models for Ti6Al4V titanium and 2024-T3 aluminum[J]. DOT/FAA/AR-00/25, 2000, 9
    [106]李亮.钛合金高速铣削机理及其工艺研究[D]. [博士学位论文].南京:南京航空航天大学, 2004
    [107]赵威,何宁,李亮.强化冷却下正交切削Ti6Al4V合金的有限元分析[J].华南理工大学学报, 2006, 34(7): 40~44
    [108] W.H. Kao, Y.L. Su, S.H. Yao. Tribological property and drilling application of Ti-C:H and Cr-C:H coatings on high-speed steel substrates[J]. Vacuum, 2006, 80(6): 604~614
    [109] A.E. Reiter, B. Brunner, M. Ante, J. Rechberger. Investigation of several PVD coatings for blind hole tapping in austenitic stainless steel[J]. Surface & Coatings Technology, 2006, 200(18~19): 5532~5541
    [110]郑修鳞,孟亮,王峰会.材料的切口强度与切口敏感性[J].中国机械工程, 1998, 9(1): 81~83
    [111]张亚军,梁健.钛合金试样无效断裂分析[J].材料开发与应用, 2000, 8(4): 31~34
    [112]胡本润,刘建中,陈剑峰.疲劳缺口系数Kf与理论应力集中系数Kt之间的关系[J].材料工程, 2007, (7): 70~73
    [113]陈耀明.评价及估算切口疲劳强度的新方法[M].北京:航空工业出版社, 2006
    [114] V.D. Lacarac, D.J. Smith, M.J. Pavier. The effect of cold expansion and fatigue crack growth from open holes at room and high temperature[J]. International Journal of Fatigue, 2001, 23(s1): 161~170
    [115]洪友士,方飙.疲劳裂纹萌生及发展的细观过程和理论[J].力学进展, 1993, (4): 468~485
    [116] Boyd-Lee AD. Fatigue crack growth resistant microstructures in polycrystalline Ni-base super alloys for aero engines [J]. International Journal of Fatigue, 1999, 21(4): 393~405
    [117]苟渊,李言荣,应诗浩.氢及氢化物对锆合金疲劳裂纹扩扩展速率的影响及估算[J].核动力工程, 2005, 26(4): 372~376
    [118]刘洪喜,王浪平,王小峰. TiC薄膜对轴承钢表面滚动接触疲劳寿命和力学性能的影响[J].金属学报, 2006, 42(11): 1197~1201
    [119]卢曦,郑松林.低载强化后汽车结构件疲劳裂纹扩展速率研究[J].机械科学与技术, 2006, 25(9): 1117~1119
    [120] E.R. de los Rios, A. Walley, M.T. Milan etc. Fatigue crack initiation and propagation on shot-peened surfaces in A316 stainless steel[J]. International Journal Fatigue, 1995, 17(7): 493~499
    [121] C.A. Rodopoulos, S.A. Curtis, E.R. de los Rios etc. Optimisation of the fatigue resistance of 2024-T351 aluminiium alloys by controlled shot peening-methodology results and analysis[J]. International Journal of Fatigue, 2004, 26(8): 849~856
    [122]王习术,汤彬,陶沙.铸造镁铝合金的微观破坏机理原位观测技术与应用[J].机械工程材料, 2006, 30(2): 1~5
    [123]刘昌奎,刘新灵. TA15钛合金焊缝及热影响区疲劳裂纹扩展行为[J].失效分析与预防, 2007, 2(1): 10~13
    [124] C.Makave, A.Purnowidodo A.J.McEvily. Effects of surface deformation and crack closure on fatigue crack propagation after overloading and underloading[J]. International Journal of Fatigue, 2004, 26(12): 1341~1348
    [125] V.D. Lacarac, D.J. Smith, M.J. Pavier. The effect of cold expansion on fatigue crack growth from open holes at room and high temperature[J]. International Journal of Fatigue, 2001, 23(s): 161~170
    [126]厚彦鹏,张卫正,向长虎等.缸盖热疲劳裂纹扩展特点的模拟试验分析[J].内燃机学报, 2006, 24(2): 184~187
    [127]龚明,刘云平,赵建华等. 45CrNiMoVA钢的低周疲劳特性和表面疲劳裂纹的在位观测[J].实验力学, 2001, 16(1): 86~92
    [128]高镇同.疲劳性能测试[M].北京:国防工业出版社, 1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700