用户名: 密码: 验证码:
化学气相沉积法原位合成碳纳米管增强铝基复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs)因具有优异的力学、电学和热学等特性而受到多个学科领域研究者的关注,同时在先进复合材料领域也引发了新的研究热点。作为金属基复合材料的理想增强体,要发挥CNTs优异的性能,需要解决的关键技术是如何获得CNTs在金属基体中分散均匀、结构保持完好且CNTs与基体之间界面结合良好的复合材料。而传统的金属基复合材料制备技术难以满足这一要求,因此,寻求新的制备技术以克服现有方法的不足,是发展CNTs增强金属基复合材料的关键。
     本论文首次采用在铝基体上原位合成CNTs方法制备了CNTs(Ni)/Al复合材料。首先采用沉积-沉淀法在铝粉基体上获得均匀分散的活性Ni纳米颗粒,以该Ni/Al粉末为催化剂,利用化学气相沉积法原位合成形态好、纯度高、分散均匀的CNTs,即获得CNTs(Ni)/Al复合粉末,并直接利用此复合粉末采用粉末冶金的方法来制备复合材料。
     通过沉积-沉淀工艺和化学气相沉积工艺分别制备了Ni/Al催化剂与CNTs(Ni)/Al复合粉末,研究了还原温度对Ni颗粒粒径的影响,系统探索了化学气相沉积工艺对CNTs产率、形貌与结构的影响。结果表明:铝可以作催化剂载体,并能有效防止Ni纳米颗粒的团聚;CNTs的形貌、结构与原位合成工艺条件密切相关,当催化剂中Ni含量较低,还原温度400℃、还原时间2 h,合成温度630℃,反应气氛比例VN2: VH2: VCH4 = 480:120:60 (ml/min)时,制备的CNTs形态好、纯度高且在铝粉中分散均匀;CNTs生长过程中Ni催化剂与铝基体之间作用力较弱,其生长属于顶端生长机制。
     采用差热分析仪、X射线衍射仪和透射电子显微镜分析了原位合成CNTs(Ni)/Al复合粉末及其复合材料块体发生相变的温度范围,研究了退火对CNTs-Al界面结构的影响,考察了CNTs在复合粉末和复合材料中的热稳定性及其与铝基体之间的界面浸润情况,进而探讨了CNTs-Al的界面润湿理论。结果表明:复合粉末中CNTs在退火温度低于800℃基本不与铝发生反应,只是CNTs表面的无定形碳薄层与铝反应生成Al4C3薄层;复合材料块体经过850℃退火后CNTs与铝基体之间界面结合好,且CNTs结构保持好;CNTs与铝基体间的界面反应润湿动力学主要是通过Al4C3薄层沿着CNTs轴向长大进行的;CNTs与铝基体间Al4C3薄层的形成,有利于改善CNTs-Al界面浸润性,提高界面结合强度,从而提高CNTs(Ni)/Al复合材料的载荷传递效率和力学性能。
     采用粉末冶金工艺对原位合成CNTs(Ni)/Al复合粉末进行压制-烧结后制备了CNTs(Ni)/Al复合材料。研究了成型工艺、烧结温度、时间和复压对复合材料微观结构与性能的影响,获得了优化的粉末冶金工艺参数。同时,研究了CNTs含量对复合材料力学性能和微观组织的影响,并探讨了复合材料的强化机理。结果表明:原位合成法引入的CNTs能显著提高复合材料的硬度、拉伸强度和弹性模量。当CNTs含量为5 wt%时,复合材料的硬度和拉伸强度较纯铝基体分别提高180%和300%,与传统高能机械球磨法制备的复合材料的硬度和拉伸强度相比,分别提高约100%和86%;复合材料的强化主要来自CNTs与铝基体热膨胀系数不匹配而引起的基体加工硬化,CNTs对铝基体变形的约束和对铝基体中位错运动的阻碍产生的位错强化和细晶强化。
     采用化学气相沉积法在Ni含量较高的Ni/Al催化剂中合成了碳纳米洋葱结构相(CNOs)。探讨了化学气相沉积工艺对CNOs产率、形貌与结构的影响,考察了CNOs的纯化、磁性能和摩擦学性能。结果表明:以氢气作载气时制得纯度高且具有超顺磁性的内包镍纳米碳洋葱(Ni@CNOs),而以氮气作载气时获得中空CNOs和Ni@CNOs的混合物;添加质量分数为1%的Ni@CNOs能显著提高润滑油的抗磨性能和承载能力,并大幅降低润滑油的摩擦系数。
Carbon nanotubes (CNTs) have attracted much attention because of their excellent mechanical, electrical, and thermal properties. Of particular interest is the use of CNTs in the reinforcement of metal matrix composites as a means of overcoming the performance limits of conventional materials. The most important issues for preparing CNTs/metal composites with high performances are the homogenous molecular-level mixing between CNTs and metal powders, the retention of perfect structure of CNTs during preparation of composites, and the strong interfacial bonding between CNTs and matrix to ensure load translation. However, these issues are very hard to be solved by means of traditional powder mixing process (high-energy ball milling). Therefore, it is very urgent to search a novel method to improve the traditional route and develop CNTs/metal composites with high performances.
     This thesis reports for the first time the synthesis of Al matrix composites reinforced with CNTs with a low Ni content, produced by a novel fabrication process, which involved preparation of a Ni(OH)2/Al precursor by a deposition-precipitation route, calcinations, and reduction of the precursor to yield active Ni nanoparticles spread evenly on the Al powder surfaces, and in situ synthesis of CNTs through chemical vapor deposition (CVD) followed by pressing and sintering of the CNTs(Ni)/Al composite powders. This process produced CNTs(Ni)/Al composites in which the in situ synthesized CNTs were very homogeneously dispersed within the Al powders, unlike conventional CNT-reinforced Al matrix composites. This unique in situ synthesis of CNTs in a matrix is particularly suitable for the fabrication of CNTs-reinforced metal matrix composites, because the desired dispersion of CNTs can be rather easily achieved.
     Ni/Al catalysts and CNTs(Ni)/Al composite powders were prepared using deposition-precipitation route and CVD method, respectively. The influence of reduction temperature on the diameters of Ni nanoparticles, and the influences of CVD technics on the yield, morphology and structure of CNTs were investigated. The results showed that the aluminum powder as a catalyst carrier could prevent the transition metal particles from agglomerating and promote the dispersion of nano-scale Ni particles after reduction, which are frequently responsible for CNT growth; the morphology and structure of CNTs were dependent on the in-situ synthesis technics, when the Ni content in the catalyst was relatively low, reduction temperature was 400 oC, reduction time was 2 h, synthesis temperature was 630 oC, and the ratio of reaction gases was VN2: VH2: VCH4 = 480:120:60 (ml/min), the CNTs synthesized were with better morphology, higher purity, and more homogenous dispersion in Al powder; the interaction between Ni catalyst and Al during CNT growth was feeble, which led to a tip growth mechanism for CNTs.
     The temperature ranges of phase change of CNTs(Ni)/Al composite powders and composite bulk, the influences of annealing on the CNTs-Al interfacial structure, the chemical stability of CNTs in the composite system, and the interfacial wetting theory were explored by differential scanning calorimetry, X-ray diffraction and transmission electron microscopy. The results showed that the CNTs were thermodynamically stable in Al below 800 oC, and only the locations containing an amorphous carbon coating of CNTs have reacted with Al to form Al4C3 thin film; the composite bulk annealed at 850 oC has good interfacial bonding between CNTs and Al, and the CNTs in the composite presented perfect structure; the interfacial reactive wetting kinetics in the composite system was developed by lateral growth of Al4C3 on the CNT surface. The carbide formed on the surface of the CNTs could improve the interfacial interaction between CNTs and Al. This also contributed to the enhancement of the mechanical properties of the composites.
     In-situ CNTs(Ni)/Al composites were fabricated by pressing and sintering of CNT(Ni)/Al composite powders. The optimal powder metallurgy technical parameters were obtained by analyzing the influences of initial pressure, sintering temperature, sintering time and repressing pressure on the microstructure and performances of composites. Meanwhile, the effects of CNT content on the mechanical properties and microstructure of composites, and the strengthening mechanism of composites were discussed. The results showed that the CNTs in-situ synthesized could remarkably improve the hardness, tensile strength and elastic modulus of the composites. The hardness and tensile strength of the Al-5%CNT-1%Ni composite were 4.3 and 2.8 times that of neat Al, respectively, and 2.0 and 1.8 times that of the same composition composites obtained by traditional methods; the strengthening mechanisms of CNTs(Ni)/Al composites were the work hardening of matrix resulted from the significant coefficient of thermal expansion mismatch between the matrix and the CNTs, Orowan and grain strengthening due to the inhibition of dislocation motion and matrix distortion.
     Carbon nano-onions (CNOs) were synthesized over Ni/Al catalyst with relatively high Ni content by CVD. The influences of CVD technics on the CNO yield, morphology and structure, and the purification, magnetic and friction properties of CNOs were investigated. The results showed that the Ni@CNOs with high purity and superparamagnetic behavior were obtained when using hydrogen as a carrier gas, and mixture of Ni@CNOs and CNOs with a hollow core were produced in the case of using nitrogen as a carrier gas; after addition of Ni@CNOs, the ability of resistance to wear as well as friction coefficient of the lubricant were improved remarkably.
引文
[1]郝斌,段先进,张济山,等,金属基复合材料的发展现状及展望,材料导报, 2005, 19 (7): 64-68.
    [2]覃业霞,吕维洁,张荻,等,原位合成(TiB+TiC)/Ti6242基复合材料高温氧化行为,稀有金属材料与工程, 2006, 35 (10): 1647-1650.
    [3]李建辉,李春峰,雷廷权,金属基复合材料成形加工研究进展,材料科学与工艺, 2002, 10 (2): 207-212.
    [4]王俊,李赤枫,孙宝德,等,自生金属基复合材料的研究进展,铸造技术, 2002, 23 (3): 142-144.
    [5]李奎,汤爱涛,潘复生,金属基复合材料原位反应合成技术现状与展望,重庆大学学报, 2002, 25 (9): 156-160.
    [6]平延磊,贾成厂,曲选辉,等, SiCp/Al复合材料的研究方法现状,粉末冶金技术, 2005, 23 (4): 296-300.
    [7]肖伯律,左涛,石力开,高能球磨制备15%SiC/2009Al复合材料的微观组织与断裂行为,稀有金属, 2005, 29 (1): 1-5.
    [8]黄明华,王浩伟,氧化铝短纤维增强铝基复合材料的蠕变破坏行为,复合材料学报, 2004, 21 (5): 7-10.
    [9]肖代红,陈康华,黄伯云, SiC颗粒增强铝基复合材料的显微组织与力学性能,特种铸造及有色合金, 2007, 27 (7): 508-510.
    [10]李斗星,周朝霞,通过基体合金化制备界面相容的Al2O3p/Al颗粒增强铝基复合材料,金属学报, 2002, 38 (6): 602-608.
    [11]姜龙涛,武高辉,河野纪雄,等,亚微米颗粒对铝基复合材料基体显微结构的影响,稀有金属材料与工程, 2007, 36 (6): 1002-1004.
    [12]赵明久,刘越,毕敬,碳化硅颗粒增强铝基复合材料(SiCp/2024A1)的热变形行为,金属学报, 2003, 39 (2): 221-224.
    [13] Hesabi Z R, Simchi A, Reihani S M S, Structural evolution during mechanical milling of nanometric and micrometric A12O3 reinforced A1 matrix composites, Mater. Sci. Eng. A, 2006, 428 (1-2): 159-168.
    [14]张国定,赵昌定,金属基复合材料,上海:上海交通大学出版社, 1996.
    [15]张雪囡,耿林,郑镇洙,等, SiCw和纳米SiCp混杂增强铝基复合材料的制备与评价,中国有色金属学报, 2004, 14 (7): 1101-1105.
    [16] Ying D Y, Zhang D L, Processing of Cu-Al2O3 metal matrix nanocomposite materials by using high energy ball milling, Mater. Sci. Eng. A, 2000, 286 (1): 152-156.
    [17]徐国财,张立德,纳米复合材料,北京:化学工业出版社, 2002.
    [18] Treacy M M J, Ebbesen T W, Gibson J M, Exceptional high Young’s modulus observed for individual carbon nanotubes, Nature, 1996, 381: 678-680.
    [19] Falvo M R, Clary G J, Taylor R M, et al., Bending and buckling of carbon nanotubes under large strain, Nature, 1997, 389: 582-584.
    [20]刘江,彭晓东,刘相果,权燕燕,原位合成铝基复合材料的研究现状,重庆大学学报, 2003, 26 (10): 1-5.
    [21] Li Y, Spraying-oxidation and deposition processing of Al/Al2O3 composites, Trans. Nonferrous Met. Soc. China, 1999, 19 (2): 184-190.
    [22] Murthy V S R, Rao B S, Microstructure development in the directed melt-oxidized (DIMOX) Al-Mg-Si alloys, J. Mater. Sci., 1995, 30 (6): 3091-3097.
    [23]陈洪美,于化顺,张静,等,原位反应法制备Al2O3-TiC/Al复合材料,特种铸造及有色合金, 2006, 26 (10): 674-675.
    [24] Cui C X, Kang S B, Shen Y T, et al., Review on fabrication methods of in situ metal matrix composites, J. Mater. Sci. Technol., 2000, 6: 619-626.
    [25]黄赞军,胡敦芜,张济山,原位Al2O3颗粒强化铝基复合材料的研究,金属学报, 2002, 38 (6): 568-574.
    [26]欧阳柳章,原位生成制备Al2O3增强铝基复合材料,中国有色金属学报, 2000, 10 (2): 159-162.
    [27]王渠东,固液反应合成铝基自生复合材料,特种铸造及有色合金, 1998, 6: 11-13.
    [28] Velasco F, Intergranular corrosion resistance of Fe3Al/2014Al particulate MMC, J. Mater. Sci. Lett., 2000, 19: 61-63.
    [29]陈东,乐永康,王浩伟,等,原位TiB2/7055铝基复合材料的力学性能与阻尼性能,功能材料, 2006, 37 (10): 1599-1602
    [30]阴瑜娟,赵玉厚,夏永喜,原位生成铝基复合材料增强相的研究现状,热加工工艺, 2006, 35 (17): 70-73.
    [31] Kocherginsky D M, In-situ reaction for synthesis of composites, U. S. A.: Lasegas, 1995, 1021-1032.
    [32]王自东,曾松岩,原位接触反应法制取TiC颗粒增强Al复合材料的研究,金属学报, 1994, 30 (7): 314-317.
    [33] Feng C F, Micrestructurcs of in situ Al/TiB2 MMCs prepared by a casting route, J. Mater. Sci., 2000, 35: 837-850.
    [34] Lewis D, Metal matrix composites: processing and interface, San Diego Academic,U. S. A, 1991: 12l-127.
    [35]赵玉厚,增强相Al3Ti状态对Al3Ti/ZL101原位复合材料力学性能的影响,材料工程, 2001, 5: 3-8.
    [36]陈子勇,陈玉勇,舒群,等,铸态Al-4.5Cu/Ti复合材料组织和性能的研究,复合材料学报, 2000, 17 (1): 76-80.
    [37]陈子勇,陈玉勇,舒群,等,盐类反应制备TiB2/Al-4.5Cu复合材料的研究,特种铸造及有色合金, 1997, 6: 1-4.
    [38]张淑英,陈玉勇,范洪波,等,喷射沉积Al-5.5Cu/TiAl3自生复合材料微观组织及界面结构,中国有色金属学报, 1999, 9 (1): 8-14.
    [39] Zhang E L, Zeng X C, Zeng S Y, Microstructure and property of Al/TiC composites prepared by reaction synthesis, Trans. Nonferrous Met. Soc. China, 1999, 6 (1): 114-119.
    [40] Zhang E D, Yang B, Zeng S Y, et al., Microstructures and mechanical properties of semi-solid extruded in-situ Al-4.5Cu-0.8Mg/TiC composites, Trans. Nonferrous Met. Soc. China, 1998, 8 (2): 292-296.
    [41]陈剑锋,武高辉,孙东立,姜龙涛,金属基复合材料的强化机制,航空材料学报, 2002, 22 (2): 49-53
    [42]魏建锋,宋余九,颗粒增强纯铝基复合材料的增强机制,稀有金属材料与工程, 1994, 23 (3): 17-22.
    [43]张力宁,王俊,颗粒增强金属基复合材料强化机制的探讨,东南大学学报, 1995, 25 (4): 77-82.
    [44]克莱茵I’W,威瑟斯P J,金属基复合材料导论:余永宁,房志刚译,北京:冶金工业出版社, 1996, 348-350.
    [45] Landis C M, Mcmeeking R M, A shear-lag model for a broken fiber embedded in a composite with a ductile matrix, Compos. Sci. Technol., 1999, 59: 447-457.
    [46] Narindne V C, Prewo K M, On the strength of discontinuous silicon carbide reinforced aluminum composites, Scr. Mater., 1986, 20 (1): 43-48.
    [47] Ramakrishnan N, An analytical study on the strengthening of particulate reinforced metal matrix composites, Acta Mater., 1996, 44 (1): 69-77.
    [48] Roatta A, Boimaro R E, An Eshelby inclusion-based model for the study of stresses and plastic strain localization in metal composites I: general formulation and its application to round particles, Mater. Sci. Eng. A, 1997, 229: 182-191.
    [49] Roatta A, Boimaro R E, An Eshelby inclusion-based model for the study of stresses and plastic strain localization in metal composites II: fiber reinforcement and lamellar inclusions, Mater. Sci. Eng. A, 1997, 229: 192-202.
    [50] Leggoe J W, Mammoli A A, Bush M B, et al, Finite element modelling of deformation in particulate reinforced metal matrix composites with random local microstructure variation, Acta Mater., 1998, 46 (17): 6075-6088.
    [51]樊建中,姚忠凯,李义春,等,颗粒增强铝基复合材料研究进展,材料导报, 1997, 11 (3): 48-51.
    [52] Wu Y, Lavernia J, Strengthening behavior of particulate reinforced MMCs, Scr. Mater., 1992, 7 (2): 173-178.
    [53] Evans A G, Hutchinson J W, Mcmeeking R M, Stress-strain behavior of metal matrix composites with discontinuous reinforcements, Scr. Mater., 1991, 25: 3-8.
    [54] Arsnault R J, Shi N, Dislocation due to differences between the coefficients of thermal expansion, Mater. Sci. Eng., 1986, 81: 175-187.
    [55] Arsnault R J, Wang L, Feng C R, Strengthenging of composites due to microstructural changes in the matrix, Acta Metall. Mater., 1991, 39 (1): 47-57.
    [56] Shibata S, Taya M,Mori T, et al., Dislocation punching from spherical inclusions in a metal matrix composite, Acta Metall. Mater., 1992, 40 (11): 3141-3148.
    [57] Dunand D C, Morfensen A, Dislocation emission at fibers: I, theory of longitudinal punching by thermal stresses, Acta Metall. Mater., 1991, 39 (7): 1405-1416.
    [58] Taya M,Mori T, Dislocations punched-out around a short fiber in a short fiber metal matrix composite subjected to uniform temperature change, Acta Metall., 1987, 35 (1): 155-162.
    [59]董尚利,杨德庄,江中浩,短纤维增强铝基复合材料强化机制评述,材料科学与工程, 2000, 18 (1): 121-130.
    [60] Ibrahim I A, Mohamed F A, Lavernia E J, Particulate reinforced metal matrix composites: a review, J. Mater. Sci., 1991, 26: 1137-1156.
    [61] Miller W S, Humphreys F J, Strengthening mechanism in particulate metal matrix composites, Scripta Metal. et Mater., 1991, 25: 33-38.
    [62]吴承建,陈国良,强文江,金属材料学,北京:冶金工业出版社, 2000, 282-306.
    [63]崔春翔,吴人洁,王浩伟,金属基复合材料界面特征与力学性能,宇航材料工艺, 1997, 1: 1-6.
    [64] Povirk G L, Horton J A, McKamey C G, et al., Interfaces in nickel aluminide/alumina fibre composites, J. Mater. Sci., 1988, 23 (11): 3945-3950.
    [65] Pantano C G, Chen G, Qi D, Interface reactions and wetting in carbon fiber reinforced glass matrix composites, Mater. Sci. Eng. A, 1990, 126: 191-201.
    [66] IiJima S, Helical microtubules of graphitic carbon, Nature, 1991, 354: 56-58.
    [67] Service R F, Superstrong nanotubes show they are smart, too, Science, 1998, 281: 940-942.
    [68] Da H J, Carbon nanotubes: Synthesis, integration, and properties, Acc. Chem. Res.,2002, 35 (12): 1035-1044.
    [69] Baughman R H, Zakhidov A A, de Heer W A, Carbon nanotubes-the route toward applications, Science, 2002, 297: 787-792.
    [70] Kroto H W, Heath J R, O’Brien S C, et al., C60: Buckminsterfullerene, Nature, 1985, 318: 162-163.
    [71] Kratschmer W, Lamb L D, Fostiropoulos K, et al., Solid C60: a new form of carbon, Nature, 1990, 347: 354-358.
    [72]徐明君,碳纳米管力学性能的研究进展及应用,北京工商大学学报(自然科学版), 2005, 23 (4): 32-35.
    [73] Treacy M M J, Ebbesen T W, Gibson J M, Exceptionally high young’s modulus observed for individual carbon nanotubes, Nature, 1996, 381: 678-680.
    [74] Li W Z, Xie S S, Qian L X, et al., Large-scale synthesis of aligned carbon nanotubes, Science, 1996, 274: 1701-1704.
    [75] Cornwell C F, Wille L T, Critical strain and catalytic growth of single-walled carbon nanotubes, J. Chem. Phys., 1998, 109 (2): 763-767.
    [76] Yakobson B I, Brabec C J, Bernoholc J, Nanomechanics of carbon tubes: instabilities beyond linear response, Phys. Rev. Lett., 1996, 76 (14): 2511-2514.
    [77] Hernande E, Goze C, Bernier P, et al., Elastic properties of C and BxCyNz composite nanotubes, Phys. Rev. Lett., 1998, 80 (20): 4502-4505.
    [78] Walters D A, Erison L M, Casavant M J, et al., Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett., 1999, 74 (25): 3803-3805.
    [79] Wagner H D, Lourie O, Feldman Y, et al., Stress induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Appl. Phys. Lett., 1998, 72 (2): 188-190.
    [80] Belytschko T, Xiao S P, Schatz G C, et al., Atomistic simulation of the fracture of nanotubes, Phys. Rev. B, 2002, 62 (20): 235430.
    [81] Zhong R, Cong H T, Hou P X, Fabrication of nano-Al based composites reinforce by single-walled carbon nanobubes, Carbon, 2003, 41 (4): 848-851.
    [82] Zhou S M, Zhang X B, Ding ZP, et al., Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique, Compos. Pt. A-Appl. Sci. Manuf., 2007, 38 (2): 301-306.
    [83] Laha T, Agarwal A, McKechnie T, et al., Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite. Mater. Sci. Eng. A, 2004, 381: 249-258.
    [84] Laha T, Kuchibhatla S, Seal S, et al., Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite. Acta Mater., 2007, 55:1059-1066.
    [85] Li Y H, Housten W, Zhao Y M, et al., Cu/single-walled carbon nanotube laminate composites fabricated by cold rolling and annealing, Nanotechnology, 2007, 18 (20): 1-6.
    [86] Dong S R, Tu J P, Zhang X B, An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes, Mater. Sci. Eng. A, 2001, 313 (1-2): 83-87.
    [87] Dong S R, Mechanical properties of Cu-based composites reinforced by carbon nanotubes, Trans. Nonferrous Met. Soc. China, 1999, 9 (3): 457-461.
    [88]董树荣,张孝彬,纳米碳管增强铜基复合材料的滑动磨损特性研究,摩擦学学报, 1999, 19 (1): 1-6.
    [89]王浪云,涂江平,杨友志,等,多壁纳米碳管/Cu基复合材料的摩擦磨损特性,中国有色金属学报, 2001, 11 (3): 367-371.
    [90] Cha S I, Kim K T, Arshad S N, et al., Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv. Mater., 2005, 17 (11): 1377-1381.
    [91] Flahaut E, Peigney A, Laurent C, et al., Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties, Acta Mater., 2000, 48 (14): 3803-3812.
    [92] Laurent C, Peigney A, Dumortier O, et al., Carbon nanotubes Fe alumina nanocomposites. Part II: Microstructure and mechanical properties of the hot-pressed composites, J. Eur. Ceram. Soc., 1998, 18 (14): 2005-2013.
    [93] Laurent C, Peigney A, Rousset A, Synthesis of carbon nanotube Fe-Al2O3 nanocomposite powders by selective reduction of different Al1.8Fe0.2O3 solid solutions, J. Mater. Chem., 1998, 8 (5): 1263-1272.
    [94]张继红,魏秉庆,粱吉,等,激光熔覆巴基管/球墨铸铁的研究,金属学报, 1996, 32 (9): 980-984.
    [95]马仁志,朱艳秋,铁-巴基管复合材料的研究,复合材料学报, 1997, 14 (2): 92-96.
    [96]李圣海,李四年,张友寿,等,镁/碳纳米管复合材料的力学性能初探,铸造设备研究, 2003, 1: 9-11.
    [97] Ci L J, Ryu Z Y, Jin-Phillipp N Y, et al., Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum, Acta Mater., 2006, 54 (20): 5367-5375.
    [98] Deng C F, Zhang X X, Wang D Z, Chemical stability of carbon nanotubes in the 2024Al matrix, Mater. Lett., 2007, 61 (3): 904-907.
    [99] Lim B, Kim C J, Kim B, et al., The effects of interfacial bonding on mechanical properties of single-walled carbon nanotube reinforced copper matrix nanocomposites, Nanotechnology, 2006, 17 (23): 5759-5764.
    [100]陈贵如,徐才录,毛宗强,等,碳纳米管上的沉积铂,科学通报, 1999, 44 (11): 1154-1157.
    [101]易国军,陈小华,蒋文忠,等,碳纳米管的表面改性与镍的包覆,中国有色金属学报, 2004, 14 (3): 479- 483.
    [102] Chen X H, Xia J T, Peng J C, et al., Carbon-nanotube metal-matrix composites prepared by electroless plating, Compos. Sci. Tech., 2000, 60: 301-306.
    [103] Ang L M, Hor T S A, Xu G Q, et al., Decoration of activated carbon nanotubes with copper and nickel, Carbon, 2000, 38: 363-372.
    [104] Arai S, Endo M, Kaneko N, Ni-deposited multi-walled carbon nanotubes by electrodeposition, Carbon, 2004, 42: 641-644.
    [105] Zhang Y, Franklin N W, Chen R J, et al., Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction, Chem. Phys. Lett., 2000, 331: 35-41.
    [106] Banerjee S, Wong S S, Synthesis and characterization of carbon nanotube-nanocrystal heterostructures, Nano Lett., 2002, 2: 195-200.
    [107] Fu Q, Lu C G, Liu J, Selective coating of single wall carbon nanotubes with thin SiO2 layer, Nano Lett., 2002, 2(4): 329-332.
    [108] Xu C L, Wu G W, Liu Z, et al., Preparation of copper nanoparticles on carbon nanotubes by electroless plating method, Mater. Res. Bull., 2004, 39: 1499-1505.
    [109]刘天贵,陈传盛,陈小华,碳纳米管增强金属基复合材料,化学通报, 2006, 69: 1-8.
    [110] Journet C, Bernier P, Production of carbon nanotubes, Appl. Phys. A, 1998, 67: 1-9.
    [111] Journet C, Master W K, Bernier P, et al., Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature, 1997, 388: 756-758.
    [112] IiJima S, Ichihashi T, Single-shell carbon nanotubes of 1-nm diameter, Nature, 1993, 363: 603-605.
    [113] Enouz S, Stephan O, Cochon J L, et al., C-BN patterned single-walled nanotubes synthesized by laser vaporization, Nano Lett., 2007, 7 (7): 1856-1862.
    [114] Guo T, Nikolaev P, Rinzler A G, et al., Self-assembly of tubular fullerences, J. Phys. Chem., 1995, 99: 10694-10697.
    [115] Seo J W, Magrez A, Milas M, et al., Catalytically grown carbon nanotubes: from synthesis to toxicity, J. Phys. D: Appl. Phys., 2007, 40: R109-R120.
    [116] Ural A, Li Y M, Dai H J, Electric-field-aligned growth of single-walled carbon nanotubes on surfaces, Appl. Phys. Lett., 2002, 81 (18): 3464-3466.
    [117] Huang S M, Cai X Y, Liu J, Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates, J. Am. Chem. Soc., 2003, 125: 5636-5637.
    [118] Huang S M, Woodson M, Smalley R, et al., Growth mechanism of oriented long single walled carbon nanotubes using "fast-heating" chemical vapor deposition process, Nano Lett., 2004, 4 (6): 1025-1028.
    [119] Kohno M, Orii T, Hirasawa M, et al., Growth of singlewalled carbon nanotubes from size-selected catalytic metal particles, Appl. Phys. A, 2004, 79: 787-790.
    [120] Kong J, Sob H T, Cassell A M, et al., Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature, 1998, 395: 878-881.
    [121] Zheng B, Lu C G, Gu G, et al., Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor, Nano Lett., 2002, 2 (8): 895-898.
    [122] Zhu H W, Xu C L, Wu D H, et al., Direct synthesis of long single-walled carbon nanotube strands, Science, 2002, 296: 884-886.
    [123] Li Y L, Kinloch I A, Windle A H, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis, Science, 2004, 304: 276-278.
    [124]耿晓菊,王蜀霞,冯明海,催化剂在碳纳米管制备中的影响,材料导报, 2006, 20(7): 112-114.
    [125] Deng W Q, Xu X, Goddard W A, A two-stage mechanism of bimetallic catalyzed growth of single-walled carbon nanotubes, Nano Lett., 2004, 4 (12): 2331-2335.
    [126]唐长兴,瞿美臻,周固民,等, Cu-Ni/La2O3热解C2H2制备碳纳米管的研究,无机化学学报, 2003, 19 (9): 1025-1029.
    [127]王必本,王万录,赵作峰,等,催化剂厚度对碳纳米管直径的影响,重庆大学学报, 2003, 26 (7): 59-62.
    [128] Taniguchi M, Nagao H, Hiramatsu M, et al., Preparation of dense carbon nanotube film using microwave plasma-enhanced chemical vapor deposition, Diamond Relat. Mater., 2005, 14 (3-7): 855-858.
    [129] Miao H Y, Lue J T, Chen S Y, et al., Growth of carbon nanotubes on transition metal alloys by microwave-enhanced hot-filament deposition, Thin Solid Films, 2005, 484 (1-2): 58-63.
    [130] Kong J, Cassell A M, Dai H J, Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett., 1998, 292 (4-6): 567-574.
    [131] Pan Z W, Xie S S, Chang B H, et al., Direct growth of aligned open carbon nanotubes by chemical vapor deposition, Chem. Phys. Lett., 1999, 299: 97-102.
    [132] Lee C J, Park J, Growth model for bamboolike structured carbon nanotubes synthesized using thermal chemical vapor deposition, J. Phys. Chem. B, 2001, 105: 2365-2368.
    [133] Tjong S C, Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R-Rep., 2006, 53 (3-4): 73-197.
    [134] Kuzumaki T, Miyazawa K, Ichinose H, et al., Processing of carbon nanotube reinforced aluminum composite, J. Mater. Res., 1998, 13 (9): 2445-2449.
    [135] Xu C L, Wei B Q, Ma R Z, et al., Fabrication of aluminum-carbon nanotube composites and their electrical properties, Carbon, 1999, 37 (5): 855-858.
    [136] Deng C F, Wang D Z, Zhang X X, et al., Processing and properties of carbon nanotubes reinforced aluminum composites, Mater. Sci. Eng. A, 2007, 444: 138-145.
    [137] Khalid F A, Beffort O, Klotz U E, et al., Study of microstructure and interfaces in an aluminium-C60 composite material, Acta Mater., 2003, 51 (15): 4575-4582.
    [138]丁志鹏,张孝彬,许国良,等,碳纳米管/铝基复合材料的制备及摩擦性能研究,浙江大学学报, 2005, 39 (11): 1811-1814.
    [139] Tang Y B, Cong H T, Zhong R, et al., Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum, Carbon, 2004, 42 (15): 3260-3262.
    [140] Nasibulin A G, Pikhitsa P V, Jiang H, et al., Correlation between catalyst particle and single-walled carbon nanotube diameters, Carbon, 2005, 43 (11): 2251-2257.
    [141] Kang H S, Yoon H J, Kim C O, et al., Low temperature growth of multi-wall carbon nanotubes assisted by mesh potential using a modified plasma enhanced chemical vapor deposition system, Chem. Phys. Lett., 2001, 349 (3-4): 196-200.
    [142] Flahaut E, Agnoli F, Sloan J, et al., CCVD synthesis and characterization of cobalt-encapsulated nanoparticles, Chem. Mater., 2002, 14 (6): 2553-2558.
    [143] Nemanich R J, Solin S A F, First- and second-order Raman scattering from finite-size crystals of graphite, Phys. Rev. B, 1979, 20: 392-401.
    [144] Ivanov V, Nagy J B, Lambin Ph, et al., The study of carbon nanotubes produced by catalytic method, Chem. Phys. Lett., 1994, 223: 329-335.
    [145] Rodríguez R, Velasco Santos C, Martínez A L, et al., Naturally produced carbon nanotubes, Chem. Phys. Lett., 2003, 373 (3-4): 272-276.
    [146]刘伟,张澜萃,碳簇分子和离子的合成及质谱研究,辽宁师范大学学报:自然科学版, 2000, 23 (3): 289-291.
    [147] Wakabayashi,Y, Hideo N, Keiki Y, et al., Catalytic hydrogenation of carbon dioxide into C2+ alcohols with Ir-Mo/SiO2, Energy Conv. Manag., 1995, 36 (6-9): 657-660.
    [148] Rostrup-Nielsen J R, Trimm D L, Mechanisms of carbon formation on nickel-containing catalysts, J. Catal., 1977, 48: 155-165.
    [149] Ugarte D, Curling and closure of graphitic networks under electron beam irradiation, Nature, 1992, 359: 707-708.
    [150] Gavillet J, Loiseau A, Journet C, et al., Root-growth mechanism for single-wall carbon nanotubes, Phys. Rev. Lett., 2001, 87: 275501-275504.
    [151] Chen X H, Wang R M, Xu J, et al., TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition, Micron, 2004, 35 (6): 455-460.
    [152] Wang X, Hu W, Bamboo-like carbon nanotubes produced by pyrolysis of iron (II) phthalocyanine, Carbon, 2001, 39: 1533-1536.
    [153] Fan S, Kim M G, Catalytic growth of single-wall carbon nanotubes: an ab initio study, Phys. Rev. Lett., 1997, 78: 2393-2396.
    [154] Landry K, Kalogeropoulou S, Eustathopoulos N, Wettability of carbon by aluminum and aluminum alloys, Mater. Sci. Eng. A, 1998, 254 (1-2): 99-111.
    [155] Eustathopoulos N, Dynamics of wetting in reactive metal ceramic systems, Acta Mater., 1998, 46 (7): 2319-2327.
    [156] Lancin M, Marhic C, TEM study of carbon fibre reinforced aluminium matrix composites: influence of brittle phases and interface on mechanical properties, J. Eur. Ceram. Soc., 2000, 20 (10): 1493-1503.
    [157] Urena A, Rams J, Escalera M D, et al., Characterization of interfacial mechanical properties in carbon fiber/aluminium matrix composites by the nanoindentation technique, Compos. Sci. Technol., 2005, 65 (13): 2025-2038.
    [158] He P, Liu Y Z, Liu D, Interfacial microstructure and forming mechanism of brazing Cf/Al composite with Al-Si filler, Mater. Sci. Eng. A, 2006, 422 (1-2): 333-338.
    [159] Deng C F, Zhang X X, Wang D Z, et al., Calorimetric study of carbon nanotubes and aluminum, Mater. Lett., 2007, 61 (14-15): 3221-3223.
    [160] Zhang H F, Dohnalkova A C, Wang C M, et al., Lithium-assisted self-assembly of aluminum carbide nanowires and nanoribbons, Nano Lett. 2002, 2 (2):105-108.
    [161]王正烈,周亚平,李松林,等,物理化学(第四版)上册,北京:高等教育出版社, 2001. 79-135.
    [162]伊赫桑?巴伦,纯物质热化学数据手册,北京:科学出版社, 2003. 17-44.
    [163] Landry K, Rado C, Voitovich R, Eustathopoulos N, Mechanisms of reactivewetting: the question of triple line configuration, Acta Mater., 1997, 45: 3079-3085.
    [164] Zhang X F, Sixta M E, De Jonghe L C, Diffusion controlled responses to heat treatment of toughened silicon carbide, Defect Diffus. Forum, 2000, 186 (1): 45-59.
    [165] Davies J T, Rideal E K, Interfacial phenomena, New York: Academic Press, 1961. 34.
    [166] De Hosson J Th M. In: Dahotre N B, Sudarshan T S, editors. Intermetallic and ceramic coatings, New York: Marcel Dekker, 1999. 307.
    [167]黄培云,粉末冶金原理,北京:冶金工业出版社, 1981.
    [168] George R, Kashyap K T, Rahul R, et al., Strengthening in carbon nanotube/aluminium (CNT/Al) composites, Scr. Mater., 2005, 53: 1159-1163.
    [169] Orowan E, Zur Kristallplastizitat.III. Uber den Mechanismus des Gleitvorganges, Z. Phys., 1934, 89:634-659.
    [170] Clyne T W, An Introduction to Metal Matrix Composites, Cambridge: Cambridge University Press, 1995. 26.
    [171] Dujardin E, Ebbesen T W, Hiura H, et al., Capillarity and wetting of carbon nanotubes, Science, 1994, 265: 1850-1851.
    [172] Ebbsen T W, Wetting, filling and decorating carbon nanotubes, J. Phys. Chem. Solids, 1996, 57 (6-8): 951.
    [173] Kroto H W, Carbon onions introduce new flavor to fullerene studies, Nature, 1992, 359: 670-671.
    [174] Kuznetsov V L, Chuvilin A L, Butenko Y V, et al., Onion-like carbon from ultra-disperse diamond, Chem. Phys. Lett., 1994, 222: 243-245.
    [175] Ruoff R S, Lorents D C, Chan B, et al., Single-crystal metals encapsulated in carbon nanoparticles, Science, 1993, 259 (5093):346-348.
    [176] Tomita M, Saito Y, Hayashi T, LaC2 encapsulated in graphite nano-particles, Jpn J. Appl. Phys., 1993, 32 (1): L280-282.
    [177] Saito Y, Yoshikawa T, Inagaki M, et al., Growth and structure of graphitic tubules and polyhedralparticles in arc-discharge, Chem. Phys. Lett., 1993, 204 (3/4): 277-282.
    [178]闫小琴,张瑞珍,卫英慧,等,富勒烯制备方法的研究进展,新型炭材料, 2000, 15(3): 63-69.
    [179]徐正,徐大鹏,富勒烯的化学和物理,新型炭材料, 2001, 16 (4): 79-80.
    [180] Portet C, Yushin G, Gogotsi Y, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors, Carbon, 2007, 45 (13): 2511-2518.
    [181] Yan Y, Yang H F, Zhang F Q, et al., Low-temperature solution synthesis of carbon nanoparticles, onions and nanoropes by the assembly of aromatic molecules, Carbon, 45 (11): 2209-2216.
    [182] Fukuda T, Watabe N, Whitby R, et al., Creation of carbon onions and coils at low temperature in near-critical benzene irradiated with an ultraviolet laser, Nanotechnology, 2007, 18 (41): 415604.
    [183] Blank V D, Denisov V N, Kirichenko A N, et al., High pressure transformation of single-crystal graphite to form molecular carbon-onions, Nanotechnology, 2007, 18 (34): 345601.
    [184] Rettenbacher A S, Perpall M W, Echegoyen L, et al., Radical addition of a conjugated polymer to multilayer fullerenes (carbon nano-onions), Chemistry of Materials, 2007, 19 (6): 1411-1417.
    [185] Owens W T, Rodriguez N M, Baker R T K, Carbon filament growth on platinum catalysts, J. Phys. Chem., 1992, 96: 5048-5053.
    [186] Baker R T K, Chludzinski J J, Sherwood R D, A comparison of the catalytic influence of nickel, iron and nickel-iron on the gasification of graphite in various gaseous environments, Carbon, 1985, 23: 245-254.
    [187] Cui S, Lu C Z, Qiao Y L, et al., Large-scale preparation of carbon nanotubes by nickel catalyzed decomposition of methane at 600 degrees C, Carbon, 1999, 37 (12): 2070-2073.
    [188]孙晓刚,曾效舒,空气氧化法提纯碳纳米管的研究,新型炭材料, 2004, 19(1): 65-68.
    [189] Liang J E, Ding P, Zlaang H R, et al., Synthesis and correlation study on the morphology and Raman spectra of CNx nanotubes by thermal decomposition of ferrocene/ethylenediamine, Diam. Relat. Mat., 2004, 13: 69-73.
    [190] Cardona M, Guntherodt G, Light Scatterering in SolidsⅢ, Berlin: Springer-Verlag, 1982.
    [191] Hiula H, Ebbesen T W, Tanigaki K, et al., Raman studies of carbon nanotubes, Chem. Phys. Lett., 1993, 202: 509-512.
    [192] Oliete P B, Rojas T C, Fernandez A, et al., Characterisation and magnetic behaviour of nickel nanoparticles encapsulated in carbon, Acta Mater., 2004, 52: 2165-2171.
    [193]董国军,罗云霞,曲建俊,纳米金属粉在润滑中的应用,润滑与密封, 2004, 6: 115-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700