用户名: 密码: 验证码:
碳纳米管在铝基体上原位合成及其复合材料的组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝基复合材料具有密度低、尺寸稳定、比强度高、耐腐蚀性强、高温性能好等优点,在各工业领域具有广泛应用前景,是当前金属基复合材料研究开发的重点。碳纳米管(CNTs)管径小、长径比大、物理和化学性能优异,是复合材料的理想增强相,也成为新型铝基复合材料开发和CNTs应用研究的热点。但传统粉末冶金法机械混合或铸造法机械搅拌制备的CNTs/Al基复合材料存在CNTs团聚、破损和界面污染等问题,因此,开发新型复合材料制备工艺并研究相关的组织、性能是推动该材料应用的关键。
     本文采用原位合成工艺制备了CNTs增强铝基复合材料,即在铝基体中原位合成CNTs增强相基础上,对复合粉末中CNTs的结晶程度、氧化稳定性及不同结构CNTs-Al的异质界面结合特征进行研究,并对CNTs原位增强铝基复合材料的制备工艺、组织、性能和强化机制进行探讨。
     本文首次对Fe、Co、Ni催化剂在铝基体上低温化学气相沉积(CVD)合成CNTs的可行性和合成效果进行系统研究;在优选催化剂类型基础上,对金属铝与传统Al2O3陶瓷基体的CNTs合成效果进行了对比分析,并探讨了合成条件对CNTs形态、结构、结晶程度等的影响。结果表明:不同含量Ni催化剂都能够在铝基体上CVD稳定合成产率高、形态良好、晶化程度高的CNTs,但Fe/Al、Co/Al催化剂的CNTs原位合成效果不佳,即Ni是铝基体上CNTs原位合成的最佳催化剂类型;与Al2O3陶瓷基体相比,金属Al基体具有抑制Ni催化剂颗粒团聚的作用,可实现CNTs低温高产率的稳定合成;本实验条件下,600℃时Ni催化剂合成的CNTs结构和形态较好,是CNTs/Al复合粉末合成的最佳温度。
     对不同条件合成CNTs的氧化稳定性、结晶程度、界面反应程度进行了对比,发现了不同温度条件下可获得鱼骨状和管状结构的CNTs,探讨了鱼骨状和管状CNTs-Al异质界面的结构特征,并从固相反应热力学和动力学角度分析了Al4C3的形成机理和不同类型CNTs-Al界面反应差异的原因。对CNTs的氧化稳定性研究表明,Ni含量可对CNTs管径、结构缺陷和氧化稳定性产生作用从而影响其热稳定性,Ni含量越高,CNTs稳定性越差,因此,CNTs/Al原位复合粉末制备过程中应控制Ni含量在较低范围。对CNTs-Al界面结构的研究表明,低温合成的鱼骨状CNTs结晶程度低、结构缺陷多、化学稳定性差,导致鱼骨状CNTs-Al之间出现Al4C3脆性界面反应层;较高温度合成管状CNTs的石墨基面结构及较高的结晶程度使其具有良好化学稳定性,可与铝基体形成无不良界面反应的直接结合型界面。
     本文对合成的复合粉末采用粉末冶金法制备了CNTs/Al基复合材料,分别研究了冷压-烧结-复压和冷压-烧结-热挤压两种工艺对该复合材料物理和力学性能的影响,对其微观组织结构进行了深入分析并探讨了该复合材料的强化机制。物理性能方面,与纯铝相比,CNTs原位增强铝基复合材料在密度、热膨胀系数、抗软化温度方面具有明显优势,但过高的CNTs含量对复合材料致密度、高温稳定性有不利影响。力学性能方面,随CNTs含量升高,CNTs对铝基体强化作用先升后降,0.5wt%CNTs/Al基复合材料的硬度、弹性模量、抗拉强度等综合力学性能较佳,这是载荷传递、位错强化、弥散强化等强化机制综合作用的结果,但其强度提高的同时,塑性降低。此外,热挤压变形具有减少孔隙、改变铝基体晶粒取向、实现CNTs弥散分布等优点,使CNTs/Al基复合材料具有较好的综合物理和力学性能,是该新型复合材料制备的较佳工艺。
With wide application potential in various industrial fields, aluminium matrix composite is always the focus of metal matrix composite development and research work, due to its distinct advantages including low density, size stability, high specific strength, corrosion resistance, excellent high temperature performance, and so on. Carbon nanotubes (CNTs) have been introduced as an ideal reinforcement phase of composites by their virtues of small diameter, high slenderness ratio, and outstanding physical and chemical properties. However, there are some inevitable problems, such as the agglomeration and breakage of CNTs and the interface pollution between CNTs and Al when using the traditional methods including powder metallurgy and casting. Thus, the development of new preparation process and the investigation about structure and property of CNTs/Al composite are essential to promote its application.
     The emphasis of this study was to prepare aluminum matrix composite reinforced by CNTs by the method of synthesis in-situ. On the basis of successful synthesis in-situ of CNTs over aluminium matrix, the crystallization and oxidative stability of CNTs in the composite powders, and the heterogeneous interfaces between different structural CNTs and Al were investigated. Further, the preparation process, structure, property and strengthening mechanism of aluminum matrix composite reinforced by CNTs in-situ were discussed.
     In this paper, the feasibility and effectiveness of CNTs synthesized using Fe, Co, Ni as catalysts over Al matrix at low temperature by chemical vapor deposition (CVD) were researched systematically for the first time. In addition to the optimization of catalyst type, a comparative analysis for CNTs synthesized over metal Al and the traditional Al2O3 ceramic matrix was investigated, and the influences of synthesis parameters on the morphology, structure and crystallization of CNTs were also studied. The results showed that, CNTs with high yield, good shape and high crystallization could be always obtained using different Ni contents by CVD, while Fe/Al and Co/Al catalysts did not work well, that is, Ni is the fittest catalyst for the synthesis in-situ of CNTs over aluminum matrix. Compared with Al2O3 matrix, Al matrix realized the high yield of CNTs at low temperature by preventing Ni catalyst particles from agglomerating. Under our experimental conditions, CNTs synthesized by Ni catalyst at 600℃always have ideal structure and morphology, which is the fittest temperature for the preparation of CNTs/Al composite powders.
     The oxidative stability, crystallization and interface reaction of CNTs synthesized at different conditions were compared. It was found that herringbone and tubular CNTs could be synthesized under different temperatures and the heterogeneous interface characteristics between herringbone and tubular CNTs with Al were investigated. And the formation mechanism of Al4C3 and the difference in interface reaction between different structural CNTs with Al were analyzed by both solid-state reaction thermodynamics and kinetics. The study on oxidative stability showed that, Ni content could affect its thermal stability by controlling CNTs diameter, structural defect and oxidative stability, namely, the higher Ni content, the poorer of CNTs stability. So CNTs/Al composite powders should be prepared by low Ni content. The results also showed lower crystallization, more structural defects and poorer chemical stability of herringbone CNTs synthesized at low temperature resulted in obvious formation of Al4C3, the brittle interface reaction layer, along CNTs-Al interface. In reverse, the graphite basis plane and high crystallization of tubular CNTs obtained at high temperature led them outstanding chemical stability, and the direct bonding interface was formed without detected interface reaction.
     Using composite powders synthesized in-situ, CNTs/Al composite was prepared by powder metallurgy. The influences of two different processes, multiple compression or hot extrusion after cold molding and sintering, on the physical and mechanical properties of the composite were systematically studied, as well as the microstructures and strengthening mechanisms. To the physical properties, CNTs/Al composite gains the advantages over pure aluminum in density, coefficient of thermal expansion and resistive softening temperature, but too high content of CNTs will negatively affect the tightness and high temperature stability of the composite. To the mechanical properties, the strengthening effect of CNTs on aluminum matrix went up firstly and then down with the content of CNTs rising. The composite with 0.5wt%CNTs showed the best performance on hardness, elastic modulus, tensile strength, and so on, which is the result of combined effects of several reinforcement mechanisms, including effective load transmission, dislocation strengthening, dispersion strengthening, etc. But the plasticity of the composite decreased with its strength rising. Furthermore, the process of hot extrusion deformation could improve the physical and mechanical properties of CNTs/Al composite by reducing the porosity, changing grain orientation of aluminum and dispersing the CNTs, so that, it is a positive technology for the preparation of this new composite.
引文
[1]Ralph B, Yuen H C, Lee W R, The processing of metal matrix composites-an overview, J. Mater. Proc. Tech., 1997, 63(1): 339~353
    [2]Yamamoto H, Nishimura H, Miyazaki A, et al., Formation of superplastic aluminum alloy composites reinforced with SiC particles, J. Mater. Proc. Tech., 2000, 101(1): 198~208
    [3]国家自然科学基金委员会,金属材料科学,北京:科学出版社,1995,74
    [4]Fisherman S G, Dhingra A K, Cast reinforced metal composites, New York: ASM, 1988, 347
    [5]颜鸣皋,中国航空材料手册,北京:中国标准出版社,1989
    [6]曾汉民,高技术、新材料要览,北京:科学出版社,1993
    [7]Lloyd D J, Particle reinforced aluminium and magnesium matrix composites, Inter. Mater. Rev., 1994, 39(1): 1~23
    [8]Wei Z J, Fang W B, Wang H W, et al., Microstructure and microhardness of Ti3Al matrix composites produced by XDTM synthesis, Trans. Nonferrous Met. Soc. China, 2002, 12(6): 1138~1141
    [9]刘白,邓福铭,曲敬信,碳纳米管增强铝基复合材料的设计与研究,兵器材料科学与工程,2003,26(6):54~57
    [10]Sivakumar R, Nishikawa T, Honda S, et al., Processing of mullite-molybdemn graded hollow cylinders by centrifugal molding technique, J. Euro. Cer. Soc., 2003, 23(5): 765~772
    [11]Lindroos V K, Tolvitie M J, Recent advances in metal matrix composites, J. Mater. Proc. Tech., 1995, 53(1): 273~284
    [12]Pradeep P, Cast aluminium matrix composites for automotive application, JOM, 1991, 43(4): 10~15
    [13]机械工程手册编辑委员会,机械工程手册,北京:机械工业出版社,1996,6-11~6-33
    [14]周世权,沈预云,王从祥,铝基复合材料及其在汽车零件中的应用,武汉工学院学报,1993,15(1):23~30
    [15]张国定,赵昌正,金属基复合材料,上海:上海大学出版社,1996,175
    [16]Abdulhaqq A Hamid, Ghosh P K, Jain S C, et al., The influence of porosity and particles content on dry sliding wear of cast in situ Al(Ti)–Al2O3(TiO2) composite, Wear, 2008, 265(1): 14~26
    [17]Lee K B, Kwon H, Interfacial reaction in SiCp/Al composite fabricated by pressureless infiltration, Scri. Mater., 1997, 36(8): 847~852
    [18]周曼娜,魏建峰,Al2O3颗粒增强纯铝基复合材料的研究,复合材料学报,1993,10(3):51~56
    [19]郝斌,王洪斌,蔡元华,等,颗粒增强金属基复合材料制备工艺评述,热加工工艺,2005,4:62~66
    [20]Hanumanth G S, Particle incorporation by melt stirring for the production of metal matrix composites, J. Mater. Sci., 1993, 28: 2459~2468
    [21]Li Y L, Spraying-oxidation and deposition processing of Al/Al2O3 composites, Trans. Nonferrous Met. Soc. China, 1999, 19(2): 184~190
    [22]Dhandapani S P, Jayaram V, Surappa M K, Growth and microstructure of Al2O3-SiC-Si(A) composites prepared by reactive infiltration of silicon carbide performs, Acta Metall. Mater., 1994, 42(3): 649~656
    [23]Andrew B, Metal matrix composites on the road, Mater. World, 1993, 20(1): 14
    [24]崔岩,碳化硅颗粒增强铝基复合材料在航空航天应用,材料工程,2002, 6:3~6
    [25]Tohgo K, Weng G J, A progressive damage mechanics in particle-reinforced metal matrix composites under high triaxial tension, Trans. ASME, 1994, 116(7): 414~420
    [26]Boey F Y C, Yuan Z, Khor A, Mechanical alloying for the effective dispersion of submicron reinforcement in Al-Li alloy composites, Mater. Sci. Eng. A, 1998, 252(2): 276~287
    [27]Morteza E, Joel R, Nasser A, Preparation of aluminum/silicon carbide metal matrix composites using centrifugal atomization, Powder Tech., 2008, 184(1): 11~20
    [28]郝元恺,肖加余,高性能复合材料学,北京:化学工业出版社,2004,16~23
    [29]Cai J, Chen Y J, Vitali F, et al., Effect of strain rate on the compressive mechanical properties of aluminum alloy matrix composite filled with discontinuous carbon fibers, Mater. Sci. Eng. A, 2008, 485(1): 681~689
    [30]董天顺,崔春翔,刘双劲,等,纤维增强铝基复合材料的发展现状,热加工工艺,2006,35(6):49~51
    [31]Woo K D, Zhang D L, Fabrication of Al-7wt%Si-0.4wt% Mg/SiC nanocomposite powders and bulk nanocomposites by high energy ball milling and powder metallurgy, Curr. Appl. Phys., 2004, 4(2): 175~178
    [32]师昌绪,李恒德,周廉,材料科学与工程手册,北京:化学工业出版社,2004,9~11
    [33]Yu Y X, Tai J H, Tang X Y, et al., Continuous Si-C-O-Al fiber derived fromaluminum-containing polycarbosilane precursor, Compos. Part A, 2008, In press, doi: 10.1016/j.compositesa.2008.04.008
    [34]Partridge P G, WardClose C M, Processing of advanced continuous fiber composite: current practice and potential developments, Inter. Mater. Rev., 1999, 38(1): 1~23
    [35]Cao Z K, Li B, Yao G C, et al., Fabrication of aluminum foam stabilized by copper-coated carbon fibers, Mater. Sci. Eng. A, 2008, 486(1): 350~356
    [36]Li J H, Ning X G, Ye H Q, et al., Characterization of the whisker-matrix interfacial reactions K2O·6TiO2 whisker-reinforced aluminium matrix composites, J. Mater. Sci., 1997, 32(2): 543~547
    [37]徐兆瑜,晶须的研究和应用新进展,化学技术与开发,2005,34(2):11~17
    [38]Imai T, Nishida Y, Yamamada M, K2O·6TiO2 whisker-reinforced aluminium composite by a powder metallurgical method, J. Mater. Sci. Lett., 1987, 6(11): 1257~1258
    [39]Suganuma K, Fujita T, Suzuki N, aluminum composites reinforced with a new aluminum borate whisker, J. Mater. Sci. Lett., 1990, 9(6): 633~635
    [40]岳涛,朱黎霞,杨荣榛,等,无机镁盐晶须的应用研究进展,无机盐工业,2003,35(4):11~13
    [41]王丽雪,曹丽云,刘海鸥,铝基复合材料研究的进展,轻金属加工技术,2005,33(8):10~12
    [42]Mei Z, Yan Y M, Cui K, Effect of matrix composition on the microstructure of in-situ synthesized TiC particulate reinforced iron based composites, Mater. Lett., 2003, 57(21): 3157~3181
    [43]Huang Y D, Hort N, Dieringa H, et al., Microstructural investigations of interfaces in short fiber reinforced AlSi12CuMgNi composites, Acta Mater., 2005, 53(14): 3913~3923
    [44]王倩,高建国,马伟民,金属基复合材料的发展与应用,沈阳大学学报,2007,19(2):10~15
    [45]Iijima S, Helical microtubes of graphitic carbon, Nature, 1991, 354(6348): 56~58
    [46]Peter J F Harris, Carbon nanotubes and related structures, London: Cambridge University Press, 1999
    [47]Iijima S, Growth of carbon nanotube, Mater. Sci. Eng. B, 1993, 19(1): 172~180
    [48]Saito R, Dresselhaus M S, Dresselhaus G, Physical properties of carbon nanotubes, London: Imperial Cooege Press, 1998
    [49]Takizawa M, Bandow S, Torii T, et al., Effect of environment temperature for synthesizing SWCNTs by arc vaporization method, Chem. Phys. Lett., 1999,302(1): 146~150
    [50]Iijima S, Ichihashi T, Signal-shell carbon nanotubes of 1nm diameter, Nature, 1993, 363(6430): 603~605
    [51]Bethune D, Kiang C H, Viries M de, et al., Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls, Nature, 1993, 363(6430): 605~607
    [52]Journet C, Maser W K, Large-scale production of single-walled carbon nanotubes by electric-arc technique, Nature, 1997, 388(6644): 756~758
    [53]Zhang Y, Gu H, Iijima S, Single-wall carbon nanotubes synthesized by laser ablation in a N2 atomsphere, Appl. Phys. Lett., 1998, 73(26): 3827~3829
    [54]Thess A, Lee R, Nikolaev P, et al., Crystalline ropes of metallic carbon nanotubes, Science, 1996, 273(5274): 483~487
    [55]Guo T, Nikolaev P, Rinzler A G, et al., Self-assembly of tubular fullerenes, J. Phys. Chem., 1995, 99(27): 10694~10697
    [56]Yacaman M J, Yoshide M M, Catalytic growth of carbon microtubes with fullerene structure, Appl. Phys. Lett., 1993, 62(2): 202~204
    [57]张爱民,王仰东,谢德,等,过渡金属氧化物和金属负载型沸石催化剂上合成纳米碳管及其表征,化学学报,2000,58(7):876~883
    [58]Ivanov V, Nagy J B, Lambin P H, et al., The study of carbon nanotubes produced by catalytic method, Chem. Phys. Lett., 1994, 223(4): 329~335
    [59]Ivanov V, Fonseca A, Nagy J B, et al., Catalytic production and purification of nanotubules having fullerene-scale diameters, Carbon, 1995, 33(12): 1727~1738
    [60]Flahaut E, Govindaraj A, Peigney A, et al., Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions, Chem. Phys. Lett., 1999, 300(1): 236~242
    [61]Hernadi K, Fonseca A, Nagy J B, et al., Production of nanotubes by the catalytic decomposition of different carbon-containing compounds, Appl. Catal. A: General, 2000, 199(2): 245~255
    [62]Nikolaev P, Bronikowski M J, Bradley R K, et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett., 1999, 313(1): 91~97
    [63]Cho W S, Hamada E, Kondo Y, et al., Synthesis of carbon nanotubes from bulk polymer, Appl. Phys. Lett., 1996, 69(2): 278~279
    [64]Richter H, Hernadi K, Caudano R, et al., Formation of nanotubes in low pressure hydrocarbon flames, Carbon, 1996, 34(11): 427~428
    [65]Chernozatonskii L A, Kosakovskaja I J, Fedorov E A, et al., New carbon tubelite-ordered film structure of multilayer nanotubes, Phys. Lett. A, 1995,197(1): 40~46
    [66]Chernozatonskii L A, Val’chuk K P, Kiselev N A, et al., Synthesis and structure investigations of alloys with fullerence and nanotube inclusions, Carbon, 1997, 35(6): 749~753
    [67]Hsu W K, Terrones M, Hare J P, et al., Electrolytic formation of carbon nanostructures, Chem. Phys. Lett., 1996, 262(1): 161~166
    [68]Kyotani T, Tsai L F, Tomita A, Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film, Chem. Mater., 1996, 8(8): 2109~2113
    [69]Treacy M M J, Ebbesen T W, Gibsom J M, et al., Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 1996, 381(6584): 678~680
    [70]Cornwell C F, Wille L T, Critical strain and catalytic growth of single-wall carbon nanotubes, J. Chem. Phys., 1998, 109(2): 763~767
    [71]Kim P, Shi L, Majumdar A, et al., Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett., 2001, 87(21): 2155021~2155024
    [72]Berber S, Kwon Y K, Tomanek D, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett., 2000, 84(20): 4613~4616
    [73]刘天贵,陈传盛,陈小华,碳纳米管增强金属基复合材料,化学通报,2006,69(3):1~8
    [74]Nardelli M B, Yakobson B I, Bernholc J, Mechanism of strain release in carbon nanotubes, Phys. Rev. B, 1998, 57(8): 4277~4280
    [75]Dumont A L, Bonnet J P, Chartier T, et al., MoSi2/Al2O3 FGM: elaboration by tape casting and SHS, J. Euro. Cer. Soc., 2001, 21(13): 2353~2360
    [76]Ruoff R S, Lorents D C, Chan B, et al., Single crystal metals encapsulated in carbon nanoparticles, Science, 1993, 259(5093): 346~348
    [77]Saito Y, Nanoparticles and filled nanocapsules, Carbon, 1995, 33(7): 979~988
    [78]Yosida Y, Synthesis of CeC2 crystals encapsulated within gigantic super fullerences, Appl. Phys. Lett., 1993, 62(26): 3447~3448
    [79]Jiao J, Seraphin S, Wang X, et al., Preparation and properties of ferromagnetic carbon-coated Fe, Co and Ni nanoparticles, J. Appl. Phys., 1996, 80(1): 103~108
    [80]Seshadri R, Sen R, Subbanna G N, et al., Iron, cobalt and nickel nanoparticles encapsulated in carbon obtained by arc evaporation of graphite with the metals, Chem. Phys. Lett., 1994, 231(2): 308~313
    [81]Burch W M, Sullivan P J, Mclaren C J, Technegas- a new ventilation agent forlung scanning, Nucl. Med. Commun, 1986, 7(12): 865~871
    [82]Cuo T, Diener M D, Chai Y, et al., Uranium stabilization of C28: a tetravalent fullerene, Science, 1992, 257(5077): 1661~1664
    [83]Mamedov A A, Kotov N A, Prato M, et al., Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites, Nat. Mater., 2002, 1(3): 190~194
    [84]Niu C M, Sichel E K, Hoch R, et al., High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett., 1997, 70(11): 1480~1482
    [85]Rinzler A G, Hafner J H, Nikolaev P, et al., Unraveling nanotubes-field-emission from an atomic wire, Science, 1995, 269(5230): 1550~1553
    [86]沈金龙,李四年,余天庆,等,粉末冶金法制备镁基复合材料的力学性能和增强机理研究,铸造技术,2005,26(4):309~312
    [87]Goh C S, Wei J, Lee L C, et al., Ductility improvement and fatigue studies in Mg-CNT nanocomposites, Compos. Sci. Tech., 2008, 68(6): 1432~1439
    [88]马仁志,朱艳秋,魏秉庆,等,铁-巴基管复合材料的研究,复合材料学报,1997,14(2):92~96
    [89]Chen X H, Peng J C, Li X Q, et al., Tribological behavior of carbon nanotubes-reinforced nickel matrix composite coatings, J. Mater. Sci. Lett., 2001, 20(22): 2057~2060
    [90]王浪云,涂江平,杨志友,等,多壁纳米碳管/Cu基复合材料的摩擦磨损特性,中国有色金属学报,2001,11(3):367~371
    [91]Dong S R, Tu J P, Zhang X B, An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes, Mater. Sci. Eng. A, 2001, 313(1): 83~87
    [92]汤齐华,周晓华,碳纳米管/锌基复合材料摩擦性能研究,南方冶金学院学报,2004,25(5):14~17
    [93]Li Y B, Xu C L, Wei B Q, et al., Physical properties of Fe80P20 glass-carbon nanotubes composites, J. Mater. Sci., 1999, 34(21): 5281~5284
    [94]李玉宝,解思深,周维亚,等,碳纳米管对Fe-P非晶的力学性能和晶化行为影响的研究,新型炭材料,2000,15(3):7~12
    [95]Sun X C, Sun X K, Wei W D, Synthesis and microstructure of AlNp/Al nanocomposite, Chinese Sci. Bull., 1998, 43(6): 642~645
    [96]Zhu S J, Iizuka T, Fabrication and mechanical behavior of Al matrix composites reinforced with porous ceramic of in situ grown whisker framework, Mater. Sci. Eng. A, 2003, 354(1): 306~314
    [97]Swaminathan S, Srinivasa R B, Jayaram V, The influence of oxygen impurities on the formation of AlN-Al composites by infiltration of molten Al-Mg, Mater. Sci. Eng. A, 2002, 337(1): 134~139
    [98]钟蓉,从洪涛,成会明,等,单壁纳米碳管增强纳米铝基复合材料的制备,材料研究学报,2002,16(4):344~348
    [99]An J W, You D H, Lim D S, Tribological properties of hot-pressed alumina–CNT composites, Wear, 2003, 255(1): 677~681
    [100]Kuzumaki T, Miyazawa K, Ichinose H, et al., Processing of carbon nanotube reinforced aluminum composite, J. Mater. Res., 1998, 13(9): 2445~2449
    [101]Xu C L, Wei B Q, Ma R Z, et al., Fabrication of aluminum-carbon nanotube composites and their electrical properties, Carbon, 1999, 37(5): 855~858
    [102]Zhou S M, Zhang X B, Ding Z P, et al., Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique, Compos. Part A, 2007, 38(2): 301~306
    [103]George R, Kashyap K T, Rahul R, et al., Strengthing in carbon nanotube/aluminium (CNTs/Al) composites, Scri. Mater., 2005, 53(10): 1159~1163
    [104]黄培云,粉末冶金原理,北京:冶金工业出版社,2004
    [105]Esawi A, Morsi K, Dispersion of carbon nanotubes (CNTs) in aluminum powder, Compos. Part A, 2007, 38(2): 646~650
    [106]Carreno-Morelli E, Yang J, Couteau E, et al., Carbon-nanotube/magnesium composites, Phys. Stat. Sol., 2004, 201(8): 53~55
    [107]丛洪涛,钟蓉,成会明,等,单壁碳纳米管/纳米铝基复合材料的增强效果,材料研究学报,2003,17(2):132~137
    [108]吴人杰,金属基复合材料的现状与展望,金属学报,1997,33(1):78~82
    [109]Hu L X, Wang E, Fabrication and mechanical properties of SiCw/ZK51A magnesium matrix composite by two step squeeze casting, Mater. Sci. Eng. A, 2000, 278(1): 267~271
    [110]丁志鹏,张孝彬,许国良,等,碳纳米管/铝基复合材料的制备及摩擦性能研究,浙江大学学报(工学版),2005,39(11):1811~1815
    [111]Toru N, Akira M, Shigeru F, et al., Carbon nanotube/aluminium composites with uniform dispersion, Mater. Trans., 2004, 45(2): 602~604
    [112]Merzhanov A G, Borovinskaya I P, Surbrahmanyam J, et al., Self-propagating high-temperature synthesis, Mater. Sci., 1992, 27(23): 6249~6273
    [113]Sahoo P, Koczak M J, Microstructure-property relationships of in situ reacted TiC/Al-Cu metal matrix composites, Mater. Sci. Eng. A, 1991, 131(1): 69~76
    [114]廖恒成,铝原位合成复合材料的反应模式与机理,铸造,1999,48(1):43~47
    [115]何春年,赵乃勤,纳米相增强铝基复合材料制备技术的研究进展,兵器材料科学与工程,2005,28(3):53~56
    [116]Tjong S C, Ma Z Y, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng. A, 2000, 29(3): 49~113
    [117]董晟全,郭永春,李高宏,等,纳米AlN颗粒增强铝基复合材料的制备与力学性能研究,热加工工艺,2002,3:43~47
    [118]詹美燕,陈振华,SiCP颗粒增强铝基复合材料塑性变形中过程的强化机制与断裂机制,材料导报,2004,18(1):57~60
    [119]Zaklina G, Dusan B, Mirjana M, The influence of SiC particles on the compressive properties of metal matrix composite, Mater. Charact., 2001, 47(2): 129~138
    [120]Zhang Y C, Wang X, Hygrothermal effects on interfacial stress transfer characteristics of carbon nanotubes-reinforced composites system, J. Reinf. Plast. Compo., 2006, 25(1): 71~88
    [121]Landis C M, McMeeking R M, A shear-lag model for a broken fiber embedded in a composite with a ductile matrix, Compos. Sci. Tech., 1999, 59(3): 447~457
    [122]Roatta A, Bolmaro R E, An Eshelby inclusion-based model for the study of stresses and plastic strain localization in metal composites I: general formulation and its application to round particles, Mater. Sci. Eng. A, 1997, 229(1): 182~191
    [123]Leggoe J W, Mammoli A A, Bush M B, et al., Finite element modeling of deformation in particulate reinforced metal matrix composites with random local microstructure variation, Acta Mater., 1998, 46(17): 6075~6088
    [124]Monoharan M, Lim S C V, Gupta M, Application of a model for the work hardening behavior to Mg/SiC composites synthesized using a fluxless casting process, Mater. Sci. Eng. A, 2002, 333(1): 243~249
    [125]Nishida M, Yamamuro T, Nagano M, et al., Electron microscopy study of microstructure modifications in RS P/M Mg97Zn1Y2 alloy, Mater. Sci. Forum, 2003, 421: 715~720
    [126]Yosuke T, Tadashi H, Eiji Y, et al., Grain refinement of high purity Mg-Al alloy ingots and influences of minor amounts of iron and manganese on cast grain size, Mater. Trans., 2002, 43(11): 2784~2788
    [127]Miller W S, Humphreys F J, Strengthening mechanism in particulates reinforced metal matrix composites, Script. Metal. et Mater., 1991, 25(1):33~38
    [128]Arsenault R J, Shi N, Dislocation generation due to differences between the coefficients of thermal expansion, Mater. Sci. Eng. A, 1986, 81(8): 175~187
    [129]Orowan E Z, Zur Kristallplastizit?t.über den Mechanismus des Gleitvorganges, Z. Phys., 1934, 89: 605~659
    [130]Taya M, Arsenault R J, A comparison between a Shear Lag type and an Eshelby type model in predicting the mechanical properties of a short fiber composite, Script. Metal., 1987, 21(3): 349~354
    [131]毕豫,朱鸣峰,王日初,等,SiCp(w)/Al复合材料的研究现状,材料导报,2004,18(6):51~54
    [132]He C N, Zhao N Q, Shi C H, et al., An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites, Adv. Mater., 2007, 19(8): 1128~1132
    [133]中华人民共和国国家技术监督局,GB1966-1996,中华人民共和国国家标准,北京:中国标准出版社,1997-04-01
    [134]Delzeit L, McAninch I, Cruden B A, et al., Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor, J. Appl. Phys., 2002, 91(9): 6027~6033
    [135]de Los Arcos T, Vonau F, Garnier M G, et al., Influence of iron-silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition, Appl. Phys. Lett., 2002, 80(13): 2383~2385
    [136]Zhao N Q, He C N, Jiang Z Y, et al., Fabrication and growth mechanism of carbon nanotubes by catalytic chemical vapor deposition, Mater. Lett., 2006, 60(2): 159~163
    [137]Hsu C M, Lin C H, Lai H J, et al., Root growth of multi-wall carbon nanotubes by MPCVD, Thin Solid Films, 2005, 471(1): 140~144
    [138]Tran K Y, Heinrichs B, Colomer J F, et al., Carbon nanotubes synthesis by the ethylene chemical catalytic vapor deposition (CCVD) process on Fe, Co, and Fe-Co/Al2O3 sol-gel catalysts, Appl. Catal. A Gen., 2007, 318: 63~69
    [139]Lee K M, Han H J, Choi S, et al., Effects of metal buffer layers on the hot filament chemical vapor deposition of nanostructured carbon films, J. Vac. Sci. Technol. B, 2003, 21(1): 623~626
    [140]Jay F, Gauthier V, Dubois S, Iron particles coated with alumina: Synthesis by a mechanofusion process and study of the high-temperature oxidation resistance, J. Am. Ceram. Soc., 2006, 89(11): 3522~3528
    [141]Saito Y, Yoshikawa T, Okuda M, Cobalt particles wrapped in graphitic carbon prepared by an arc discharge method, J. Appl. Phys., 1994, 75(1): 134~137
    [142]Jiao J, Seraphin S, Wang X, et al., Preparation and properties of ferromagneticcarbon-coated Fe, Co, and Ni nanoparticles, J. Appl. Phys., 1996, 80(1): 103~108
    [143]Baker R T K, Rodriguez N, Catalytic growth of carbon nanofibers and nanotubes, Mater. Res. Soc. Symp. Proc., 1994, 349: 251~256
    [144]Amelinckx S, Zhang X B, Bernaerts D, et al., A formation mechanism for catalytically grown helix-shaped graphite nanotubes, Science, 1994, 265(5172): 635~639
    [145]Pan Z W, Xie S S, Chang B H. Direct growth of aligned open carbon nanotubes by chemical vapor deposition, Chem. Phys. Lett., 1999, 299(1): 97~102
    [146]Yang X G,Li C, Wang W, et al., A chemical route from PTFE to amorphous carbon nanospheres in supercritical water, Chem. Commun., 2004, 3: 342~343
    [147]Curl R F, Smalley R E, Fullerenes, Sci. Am., 1991, 265(4): 54~63
    [148]Zhao N Q, He C N, Ding J, et al., Bamboo-shaped carbon nanotubes produced by catalytic decomposition of methane over nickel nanoparticles supported on aluminum, J. Alloys Compd., 2007, 428(1): 79~83
    [149]Baker R T K, Barber M A, Harris P S, et al., Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene, J. Catal., 1972, 26(1): 51~62
    [150]贾志杰,碳纳米管/高分子复合材料的研究:[博士学位论文],北京:清华大学,1999
    [151]Liu K, Jiang K L, Feng C, et al., A growth mark method for studying growth mechanism of carbon nanotube arrays, Carbon, 2005, 43(14): 2850~2856
    [152]Jost W, Diffusion in solids, liquids, gases, New York: Academic, 1960, 470~473
    [153]Dobson D P, Wiedenbeck M, Fe- and C-self-diffusion in liquid Fe3C to 15GPa, Geophys Res. Lett., 2002, 29(21): 2-1~2-4
    [154]Smoluchowski R, Diffusion rates of carbon in iron-molybdenum and iron-tungsten alloys, Phys. Rev., 1943, 63(11): 438~440
    [155]张志杰,材料物理化学,北京:化学工业出版社,2006,160~162
    [156]梁英教,车荫昌,无机物热力学数据手册,沈阳:东北大学出版社,1993,16~442
    [157]Kim N S, Lee Y T, Park J, et al., Vertically aligned carbon nanotubes grown by pyrolysis of iron, cobalt, and nickel phthalocyanines, J. Phys. Chem. B, 2003, 107(35): 9249~9255
    [158]Lee C J, Park J, Yu J A, Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition, Chem. Phys. Lett., 2002, 360(3): 250~255
    [159]Smithells C J, Metals Reference Book, London: Butterworth-Heinemann Ltd., 1992
    [160]Buffat P H, Borel J P, Size effect on the melting temperature of gold particles, Phys. Rev. A, 1976, 13(6): 2287~2298
    [161]Choi Y C, Shin Y M, Lee Y H, et al., Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition, Appl. Phys. Lett., 2000, 76(17): 2367~2369
    [162]Schmid G, Large clusters and colloids metals in the einbryonic state, Chem. Rev., 1992, 92(8): 1709~1727
    [163]Yang R T, Chen J P, Mechanism of carbon filament growth on metal catalysts, J. Catal., 1989, 115(1): 52~64
    [164]Ichihashi T, Fujita J, Ishida M, et al., In situ observation of carbon-nanopillar tubulization caused by liquid-like iron particles, Phys. Rev. Lett., 2004, 92(21): 215702-1~215702-4
    [165]Rodriguez N M, Commentaries and reviews, J. Mater. Res., 1993, 8(12): 3233~3250
    [166]Tsang S C, Chen Y K, Harris P J F, et al., A simple chemical method of opening and filling carbon nanotubes, Nature, 1994, 372(6502): 159~162
    [167]Gao Y H, Bando Y, Carbon nanothermometer containing gallium, Nature, 2002, 415(6872): 599~599
    [168]Liang C H, Meng G W, Zhang L D, et al., Carbon nanotubes filled partially or completely with nickel, J. Cryst. Growth, 2000, 218(1): 136~139
    [169]Dumont A L, Bonnet J P, Chartier T, et al., MoSi2/Al2O3 FGM: elaboration by tape casting and SHS, J. Euro. Cer. Soc., 2001, 21(13): 2353~2360
    [170]Ebbesen T W, Takada T, Topological and sp3 defect structures in nanotubes, Carbon, 1995, 33(7): 973~978
    [171]Morishita K, Takarada T, Gasification behavior of carbon nanotubes, Fuel and Energy Abstract, 1997, 38(5): 316~316
    [172]Yao N, Lordi V, Ma S X C, et al., Structure and oxidation patterns of carbon nanotubes, J. Mater. Res., 1998,13(9): 2432~2437
    [173]Sinnott S B, Andrews R, Carbon nanotubes: synthesis, properties, and applications, Crit. Rev. Solid State Mater. Sci., 2001, 26(3): 145~249
    [174]Mizoguti E, Nihey F, Yudasaka M, et al., Purification of single-wall carbon nanotubes by using ultrafine gold particles, Chem. Phys. Lett., 2000, 321(3): 297~301
    [175]McCulloch D G, Prawer S, Hoffman A, Structural investigation of xenon-ion-beam-irradiated glassy carbon, Phys. Rev. B, 1994, 50(9): 5905~5917
    [176]Tuinstra F, Koening J L, Raman spectrum of graphite, J. Chem. Phys., 1970, 53(3): 1126~1130
    [177]Zhong R, Cong H T, Hou P X, Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes, Carbon, 2003, 41(4): 848~851
    [178]Lijie C, Zhenyu R, Neng Y J P, et al., Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum, Acta Mater., 2006, 54(20): 5367~5375
    [179]Landry K, Kalogeropoulou S, Eustathopoulos N, Wettability of carbon by aluminum and aluminum alloys, Mater. Sci. Eng. A, 1998, 254(1): 99~111
    [180]Meguid S A, Sun Y, On the tensile and shear strength of nano-reinforced composite interfaces, Mater. Des., 2004, 25(4): 289~296
    [181]Abrahamson J, The surface energies of graphite, Carbon, 1973, 11(4): 337~362
    [182]凤仪,应美芳,王成福,碳纤维不同分布的碳纤维-铜复合材料的电导率,复合材料学报,1998,15(4):38~42
    [183]Saito R, Fujita M, Dresselhaus G, et al., Electronic structure of chiral graphene tububles, Appl. Phys. Lett., 1992, 60(18): 2204~2206
    [184]Dai H J, Wong E W, Lieber C M, Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes, Science, 1996, 272(5261): 523~526
    [185]Tang Y B, Cong H T, Zhong R, et al., Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum, Carbon, 2004, 42(15): 3260~3262
    [186]Kuzumaki T, Hayashi T, Miyazawa K, et al., Processing of ductile carbon nanotube/C60 composite, Mater. Trans. -JIM, 1998, 39(5): 574~577
    [187]Cox H L, The elasticity and strength of paper and other fibrous materials, Br. J. Appl. Phys., 1952, 3(3): 72~79
    [188]Dujardin E, Ebbesen T W, Hiura H, et al., Wetting and nanocapillarity of carbon nanotubes, Science, 1994, 265(5180): 1850~1852

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700