转基因克隆法制作人溶酶体β-葡萄糖苷酶奶山羊乳腺生物反应器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人溶酶体β-葡萄糖苷酶(human lysosomal acidβ-glucosidase, GlcCerase)是糖蛋白降解途径的主要外糖苷酶,参与糖蛋白的回收利用。该酶减少或缺失会导致葡萄糖脑苷脂不能有效降解,在各器官中大量沉积,从而使机体发生广泛的病理变化,临床上称为“戈谢病”,酶替代法是目前该病的主要疗法。人体来源的GlcCerase获得极为困难,应用哺乳动物细胞和转基因植物表达系统生产重组人GlcCerase虽然已经有一些成功的报道,但也面临许多难以克服的问题,如在CHO细胞表达重组人GlcCerase,生产成本过于昂贵;在转基因植物中表达,存在重组蛋白质中糖链结构的改变以及下游加工处理困难等限制。如果应用转基因动物乳腺生物反应器生产重组人GlcCerase,在得到天然活性较高产品的同时,将极大地降低生产成本,具有其它表达系统所不能代替的优势。然而,显微注射法的高成本、低效率长期以来制约着转基因动物研究的发展,体细胞转基因与核移植相结合制备动物乳腺生物反应器是当今转基因整合表达的一种有效途径。因此,本研究选取人溶酶体β-葡萄糖苷酶作为研究对象,首先克隆人GlcCerase cDNA序列并对其在COS7细胞中的表达进行初步研究,然后构建含有人GlcCerase cDNA的乳腺表达载体,经体外培养的乳腺上皮细胞验证载体的有效性后,进一步将该载体转染奶山羊胎儿成纤维细胞,筛选稳定转基因细胞克隆株,通过体细胞核移植法生产转基因奶山羊克隆胚胎,以期获得乳腺特异性表达GlcCerase的转基因奶山羊乳腺生物反应器。
     本研究共分为六个部分,第一、二部分进行了人GlcCerase基因的克隆、表达载体的构建及体外细胞表达研究;第三、四部分主要是分离培养了奶山羊胎儿成纤维细胞,并优化了脂质体法转染该细胞的体系,获得了稳定整合人GlcCerase基因的供体细胞;第五部分利用转人GlcCerase基因的奶山羊胎儿成纤维细胞进行了核移植,研究转基因供体细胞对克隆胚胎体外发育的支持作用,并对克隆胚胎进行了胚胎移植;第六部分探讨了外源基因导入对奶山羊体细胞周期分布、细胞凋亡和基因表达水平的影响。主要的研究结果如下:
     第一部分人GlcCerase cDNA序列的克隆及真核细胞表达试验中,首先从人胎盘组织中分离提取得到总RNA,利用RT-PCR方法,直接获得人GlcCerase基因的编码序列,经测序分析,所得GlcCerase cDNA与GeneBank中同源性为99%,发现1个碱基差异,导致天冬氨酸到甘氨酸的改变。为了尽快检测所获得的目标基因是否能正常编码获得重组蛋白质,本试验以pEGFP-Cl为基础质粒,构建了含有人GlcCerase基因的真核表达载体pEGFP-GlcCerase。用脂质体介导法将该载体转染入COS7细胞中进行暂态表达研究,可见报告基因GFP顺利表达,经RT-PCR和荧光酶学法进行验证,在细胞中检测到了GlcCerase的mRNA表达,并在细胞裂解产物中检测到了GlcCerase的生物活性。这些结果表明所克隆的人GlcCerase cDNA能够正确编码蛋白,发挥生物学功能,可以用于下一步的乳腺表达载体构建。
     第二部分人GlcCerase基因乳腺特异性表达载体的构建及乳腺细胞表达试验中,将在体外经真核细胞表达验证正确的GlcCerase基因以及细胞筛选标记基因(Neor)插入含有山羊p-酪蛋白基因调控序列的pBC1载体中,经PCR和酶切鉴定,得到正确的重组质粒pBCl-GlcCerase-Neo。为了检测乳腺表达载体的有效性,将该载体转染入小鼠乳腺上皮细胞系——HC-11细胞中,经G418抗性筛选,获得阳性克隆细胞,将克隆细胞扩大培养后,经PCR检测结果表明,人GlcCerase基因己成功转入到HC-11细胞中。进一步用催乳素、胰岛素及氢化可的松诱导培养转基因细胞,经RT-PCR和Western-blot检测表明,山羊p-酪蛋白基因启动子驱动的人GlcCerase基因能够在乳腺上皮细胞中转录翻译并分泌到胞外。这些结果表明,所构建的人GlcCerase基因乳腺表达载体具有生物学功能,为下一步利用该载体进行转基因供体细胞的建立奠定了基础。
     第三部分奶山羊胎儿成纤维细胞的分离培养及脂质体法转染研究,采用组织块培养法结合胰蛋白酶消化法分离纯化得到奶山羊胎儿成纤维细胞,绘制了生长曲线,鉴定了胎儿细胞性别及核型特征,结果表明:该培养体系可以支持奶山羊胎儿成纤维细胞的体外生长,其细胞形态为梭形,高度汇合后呈火焰状,增殖特性以及核型特征均为正常,性别鉴定显示该奶山羊胎儿细胞为雌性,符合体细胞转基因克隆的基本要求。进一步利用脂质体法将pEGFP-Cl质粒转染入该细胞,研究了脂质体量、质粒量和转染时间对转染效率的影响,获得了脂质体转染该细胞的最佳条件:24孔细胞培养板中采用4.0μL脂质体转染试剂,1.2μg质粒DNA,细胞在复合物中孵育6 h。这为下一步目的基因转染奶山羊胎儿成纤维细胞的研究提供了参考依据。
     第四部分建立转人GlcCerase基因奶山羊胎儿成纤维细胞的试验,利用上述优化的转染体系,将线性化的乳腺特异性表达载体pBC 1-GlcCerase-Neo转染胎儿成纤维细胞,经G418筛选8-10天后,获得抗性细胞克隆,进一步通过96孔细胞培养板分离得到来源于单个转基因成纤维细胞的细胞克隆,经PCR扩增检测,得到稳定整人GlcCerase基因的转基因供体细胞8株,和对照组细胞比较,转基因过程中没有导致细胞的生长和核型异常。转基因细胞的核型(2n=58+XX)正常比例为66.8%,而第10-12代的非转染细胞核型正常率为70.9%,二者差异不显著(P>0.05)。这些结果表明可以利用这些阳性转基因细胞作供体细胞进行核移植研究。
     第五部分人GlcCerase转基因克隆胚胎的制备研究,采集屠宰山羊卵巢,获取卵母细胞并体外成熟培养,成熟率为63.3%。以100%汇合2天的转基因体细胞作核供体,以去核的MⅡ期卵母细胞作核受体进行核移植操作。完成核移植的卵母细胞采用122 kV/cm、20μs/次、间隔1s的直流电脉冲进行融合,融合率为83.3%,融合后的重构胚胎进一步用Ionomycin和6-DMAP进行激活处理,然后转移到SOFaa培养液中与单层卵丘细胞共培养,重构胚的卵裂率为89.1%,发育至桑葚胚/囊胚期的比例为36.4%。以正常体细胞来源的核移植胚胎作为对照,其融合率、卵裂率以及桑葚胚/囊胚率分别为77.8%、90.9%和38.9%,两种供体细胞来源的融合率和胚胎发育率差异不显著。手术法将发生卵裂且形态正常的转基因克隆胚(2-细胞期或以上)移植到同期发情的山羊输卵管中,16只受体山羊中有6只一直没有返情,在第40天经B超检测到2只妊娠的结果,但是最终妊娠没有发育到期,胎儿发生流产。
     第六部分探讨了外源基因转染对供体细胞生物学特性的影响。将构建的乳腺表达载体pBC1-GlcCerase-Neo分别转染体外培养的奶山羊乳腺上皮细胞、胎儿成纤维细胞以及成年皮肤成纤维细胞,获得整合有外源基因GlcCerase的转基因体细胞。以非转染的正常细胞为对照,利用流式细胞仪分析了转基因奶山羊体细胞的细胞周期分布和细胞凋亡的情况,研究结果显示:三种转基因细胞100%汇合2d后,G0/G1细胞的百分比都显著低于对照组细胞(P<0.05),其中转基因胎儿成纤维细胞的G0/G1期比例高于其它两种转基因细胞;转基因胎儿成纤维细胞凋亡率达22.56%,较对照组细胞有显著提高(P<0.05);然后进一步利用荧光定量PCR法探讨了外源基因转染对胎儿成纤维细胞基因表达模式的影响,检测的基因分别为基因印记基因(IGF2, IGF2R)、凋亡相关基因(Bax)、应激相关基因(热休克蛋白,Hsp70.1)、细胞连接相关基因(Cx43)和DNA甲基化转移酶1基因(DNMT1)。其中IGF2, IGF2R和Cx43mRNA的转录水平显著高于对照组非转染的对照组细胞(P<0.05)。本研究首次从细胞周期分布、细胞凋亡以及基因表达变化模式等方面探讨外源基因转染对奶山羊体细胞的影响,探索转基因克隆效率低的内在机制,为更好地促进供体细胞的重编程,进一步提高转基因克隆的效率奠定了基础。
Human lysosomal acidβ-glucosidase(G1cCerase) is responsible for the catabolism of glucosylceramide. Deficiency of GlcCerase activity results in the progressive accumulation of glucosylceramide, and it ultimately leads to clinical manifestations of anemia, hepatosplenomegaly, bonelesions, and in more severe cases, central nervous system impairment, which called Gaucher disease (GD) in clinical. GD is now treated mainly by administrating the missing enzyme (enzyme replacement therapy, ERT). Human GlcCerase is a difficult enzyme to be obtained, at present, CHO cells and transgenic plants systems are used for the production of recombinant G1cCerase, but which remian limited by their high cost in CHO cells and difficult purification and hypo-glycosylation in transgenic plants. Transgenic animal bioreactor offers particularly attractive possibilities to prepare recombinant G1cCerase, with the advantages of low cost production as well as high quality proteins. However, pronuclear microinjection have been used for more than two decades to produce transgenic animal, the low efficiency and high cost has been the main barrier for transgenic animal production. Nuclear transfer using transgenic donor cells has provided an alternative, efficient technique for the production of transgenic animals expressing a protein of interest. Therefore, we selected the human GlcCerase as the targeted object. Firstly, GlcCerase cDNA sequence was cloned and the biological activity of the protein was studied. Secondly, mammary-gland specific expression vector of GlcCerase cDNA was further constructed and the effectiveness of this vector was verified in in vitro mammary epithelial cells. Thridly, this mammary-gland expression vector was transfected into dairy goat fetal fibroblast cells, and stable transgenic cells integrated with G1cCerase gene were obtained by selection. Finally, the transgenic goat cloned embryos were produced by SCNT, in order to obtain transgenic goat mammary gland bioreactor expressing G1cCerase.
     The study was divided into six parts, the first and second parts focused on the cloning of G1cCerase gene, construction of GlcCerase expression vector and its expression in vitro, which provided basis for the expression of this vector in the mammary gland; the third parts and fourth parts were to optimize the transfection system of dairy goat fetal fibroblasts using liposome, and obtain donor cell lines stablely integrated with humanβ-glucosidase gene; the fifth part consists of using the transgenic cells as donor cells of nuclear transfer and evaluating the developmental ability of goat cloned embryos derived from these transgenic cells in vitro and in vivo. The sixth part was to identify the effect of GlcCerase gene transfection into dairy goat somatic cells in terms of cell cycle distribution, chromosome abnormality, incidence of apoptosis, and the relative abundance of gene expression. The main results were as follows:
     1. We amplified human GlcCerase gene by RT-PCR from human placenta, and analyzed the sequence of the PCR product cloned in pMD-19T vector, the gene homology was 99% comparable to that of the reported human GlcCerase cDNA sequence in GeneBank, and one nucleotide difference was found, resulting in the change from aspartic acid to glycine. To test whether the cloned gene could encode the recombinant protein correctly, the GlcCerase gene was further subcloned into eukaryotic express vector pEGFP-C1 to generate recombinant expression vector pEGFP-G1cCerase. After the recombinant plasmid were identified by restriction enzyme digestion, we transfected pEGFP-G1cCerase into COS7 cells by liposome, GlcCerase mRNA was expressed and the activity of GlcCerase was also detected in COS7 cells. These results indicated that the cloned human GlcCerase gene could encode proteins correctly and play a biological function, which could be used in the next step of mammary gland expression vector.
     2. The GlcCerase verified by the eukaryotic expression and the neomycin resistance gene (Neor) to permit selection of transformed cells were subcloned into pBCl vector containing goat beta-casein promoter respectively, then the constructed vector pBC1-GlcCerase-Neo was then proved by enzyme digestion and PCR amplification. In order to analyze the bioactivity of the vector, pBC1-G1cCerase-Neo was transfected into mouse mammary epithelial cell line HC-11. Positive single clone cells were selected with G418 and by PCR. The transgenic cells were cultured in induction medium containing RPMI-1640 medium with prolactin, insulin and hydrocortisone, which could induce recombinant human GlcCerase expression. RT-PCR and Western-blotting analysis showed that goatβ-casein gene promoter could regulate the transcription and translation of human GlcCerase gene in mammary-gland epithelial cells.These results indicated that the constructed expression vector of pBC1-G1cCerase-Neo had biological function, and could be used for further establishing transgenic donor cells with human GlcCerase gene.
     3. In order to prepare donor cells for dairy goat transgenic cloning, goat fetal fibroblasts cells (gFFCs) were isolated by attaching tissue explants from a day 30 goat fetus and purified by trypsin. The gFFCs were examined by cell morphology, growth curve and karyotype of chromosome, sex-determined region Y gene (SRY) of the gFFCs was also identified, which indicated that it's suitable for the need of transgenic clone. Important factors involved in cationic liposome mediated gene transfer were also evaluated through in vitro transfection of gFFCs:the concentration of DNA and liposome, the effect of transfection time on the efficiency of gFFCs to express a reporter gene (GFP). The results showed that gFFCs cultured in 24-well culture plates with 4.0μL liposome and 1.2μg plasmid DNA for 6 hours resulted in the highest transfection efficiency, which was 4.21%. The parameters set in this study will establish a foundation for utilizing transfected fibroblast cells to generate transgenic animals through nuclear transfer.
     4. The dairy goat fetal fibroblasts were transfected with linearized plasmid pBC1-G1cCerase-Neo using liposome by the optimized procedure and selected with G418. Transgenic fibroblast clones from a single round of transfection were reliably isolated by 96-well cell culture plates. The expanded clones were identified by PCR, the results indicated that the transgene was stably integrated into the open region of the chromatin of G418 resistant fibroblast cells. And the transgene did not result in the abnormalities of cell growth and chromosome ploidy, the percentage of transgenic cells with normal chromosomal number (60) were similar (66.8±3.2%) to those in control cells (70.9±0.8%, P>0.05). The above results indicated that these transgenic cell clones may be competent as donor cells for creating a transgenic goat by SCNT.
     5. Goat ovaries were obtained from a local abattoir and the cumulus-oocyte complexes (COCs) were matured in vitro,63.3% COCs were matured. Following nuclear transfer, stable fibroblast cell lines and non-transfected cells as control synchronized in Go by fully confluency for two days were used as donor cells respectively, MⅡoocytes without nuclear and first polar bodies were used as receptor cells. These reconstructed embryos were fused for 20μs under 1.2 kv/cm voltage, and activated using ionomycin and 6-DMAP, then co-cultured with cumulus cells in SOFaa. Similar rates (P>0.05) of fusion (83.3 vs 77.8%), and developmental capability for 2-4 cells (89.1 vs 90.9%),8-16 cells (50.9 vs 53.2%) and morula/blastocyst rates (36.4 vs 38.9%) were found between these two groups. Moreover, a total of 98 well-developed reconstructed embryos derived from transgenic cells were transferred to 16 recipients with two goats showing pregnancy at day 40. Unfortunately, the pregnancies failed to maintain to term, and the two fetuses aborted.
     6. Our study attempted to indentify the effect of gene transfection of human G1cCerase gene into dairy goat somatic cells on the characteristics and the relative abundance of gene expression, pBC1-G1cCerase-Neo plasmid were transfected into goat fetal-derived fibroblast cells (FFC), mammary epithelial cells (MEC), and adult ear skin-derived fibroblast cells (AEFC) respectively, and then transgenic somatic cell lines integrated with G1cCerase genes were obtained.The results showed that lower percentage (P<0.05) of cells at G0/G1 in the transgenic FFC, MEC and AEFC (T-FFC, T-MEC and T-AEFC), and higher percentage (P<0.05) of apoptotic cells in T-FFC than the non-transfected controls were detected by the flow cytometric analysis. Further, we also examined the expression of genes involved in imprinting (IGF2, IGF2R), apoptosis (Bax), stress (heat shock protein, Hsp70.1), cellular connections (CX43) and DNA methylation (DNMT1) in transgenic T-FFC. Among the genes tested, the relative expressions of IGF2, IGF2R and transcripts of Cx43 were significantly higher (P<0.05) in T-FFC compared to non-transfected FFC.This is the first study evaluating the influence of foreign gene transfection on dairy goat somatic cells in terms of cell cycle distribution, chromosome abnormality, incidence of apoptosis, and the relative abundance of gene expression, for exploring the inherent mechanism of low efficiency in transgenic cloning, and promoting the programming of donor cells and further improving the efficiency of transgenic cloning.
引文
[1]Schnieke A E, Kind A J, Ritchie W A, et al. Human factor Ⅸ transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts[J]. Science,1997,278:2130-2133.
    [2]McCreath K J, Howcroft J, Campbell K H, et al. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells[J].Nature,2000,405:1066-1069.
    [3]Wall R J, Powell A M, Paape M J, et al. Genetically enhanced cows resist intramammary staphylococcus aureus infection[J]. Nat Biotechnol,2005,23:445-451.
    [4]Huang Y J, Huang Y, Baldassarre H, Wang B, Lazaris A, Leduc M, et al. Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning[J]. PNAS,2007,104(34):13603-13608.
    [5]Lai L, Kolber-Simonds D, Park K W, et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science,2002,295:1089-1092.
    [6]Lee G S, Kim H S, Hyun SH, et al. Production of transgenic cloned piglets from genetically transformed fetal fibroblasts selected by green fluorescent protein [J].Theriogenology, 2005,63:973-991.
    [7]成勇,王玉阁,罗金平,等.由成年转基因山羊体细胞而来的克隆山羊[J].生物工程学报,2002,18:79-83.
    [8]邹贤刚,袁三平,鲜建,等.转基因克隆奶山羊大量生产重组人的抗凝血酶Ⅲ蛋白(rhATⅢ)[J].生物工程学报,2008,24(1):117-123.
    [9]龚国春,戴蕴平,樊宝良等.利用体细胞核移植技术生产转基因牛[J].科学通报,2003,48:2528-2533.
    [10]刘忠华,宋军,王振坤等.体细胞核移植生产绿色荧光蛋白转基因猪[J].科学通报,2008,(53):556-560.
    [11]Gordon K,Lee E, Vitale J A, Smith A E, Westphal H, Hennighausen L. Production of human tissue plasminogen activator in transgenic mouse milk[J]. Bio Technology,1987,5:1183-1187.
    [12]Koles K, van Berkel P H, Pieper F R, Nuijens J H, Mannesse M L, Vliegenthart JF, Kamerling JP. N-and O-glycans of recombinant human C1 inhibitor expressed in the milk of transgenic rabbits [J]. Glycobiology,2004,14(l):51-64.
    [13]Rudolph N S. Biopharmaceutical production in transgenic livestock[J]. Trends Biotechnol,1999,17 (9):367-74.
    [14]Butler SP, van Cott K, Subrumanian A, Gwazduaskas FC, Velander WH. Current progress in the production of recombinant human fibrinogen in the milk of transgenic animals [J].Thromb Haemost, 1997,78(1):537-42.
    [15]Van Berkel PH, Welling MM, Geerts M, van Veen HA, Ravensbergen B, Salaheddine M, Pauwels EK, Pieper F, Nuijens JH, Nibbering PH.Large scale production of recombinant human lactoferrin in the milk of transgenic cows[J]. Nat Biotechnol,2002,20(5):484-7.
    [16]Wright G, Carver A, Cottom D, Reeves D, Scott A, Simons P, Wilmut I, Garner I, Colman A.High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep[J]. Biotechnology,1991,9(9):830-4.
    [17]Lavine G. FDA approves first biological product derived from transgenic animal [J]. Am J Health Syst Pharm,2009,66:5-18.
    [18]Harmanci O, Bayraktar Y. Gaucher disease:new developments in treatment and etiology[J]. World J Gastroenterol,2008,14(25):3968-3973.
    [19]Steet RA, Chung S, Wustman B, et al. The iminosugar isofagomine increases the activity of N370S mutant acid beta-glucosidase in Gaucher fibroblasts fibroblasts by several mechanisms[J].PNAS, 2006,103(37):13813-13818.
    [20]Hoppe H.Cerezyme-recombinant protein treatment for Gaucher's disease[J]. J Biotechnol,2000, 76(2-3):259-261.
    [1]Spemann H. Embryonic development and induction[M].New York:Hafner Publishing Co.1938, 210-211.
    [2]Briggs R, King TJ. Transplantation of living cell nuclei from blastula cells into enucleated frogs eggs [J]. PNAS,1952,38:455-436.
    [3]Illmensee K, Hoppe PC. Nuclear transplantation in the mouse muscullus:Development potential of nuclei from preimplantation embryos [J]. Cell,1981,23:9-18.
    [4]McGreath J, Solter D. Nuclear transplantation in the mouse embryos by microsurgery and cell fusion [J]. Science,1983,220:1300-1302.
    [5]Willadsen S M. Nuclear transplantation in sheep embryos[J]. Nature,1986,320:63-65.
    [6]Prather R S, Barnes F L, Sims M M, et al. Nuclear transplantation in the bovine embryo:assessment of donor nuclei and recipient oocyte[J]. Biol Reprod,1987,37:859-866.
    [7]Stice S L,Robl J M.Nuclear reprogramming in nuclear transplant rabbit embryos[J].Biol Reprod, 1988,39:657-664.
    [8]Prather R S,Sim M L,First N L.Nuclear transplantation in the early pig embryos [J].Biol Reprod, 1989,41:414-418.
    [9]张涌,王建辰,钱菊汾,等.山羊卵核移植的研究[J].中国农业科学,1991,24(5):1-6.
    [10]Li M, John J, Richard L, et al. Rhesus monkey produced by nuclear transfer [J]. Biol Reprod,1997, 57:454-459
    [11]Campbell K H S, Mc Whir J, Ritchie W A, et al. Sheep cloned by nuclear transfer from a cultured cell line[J].Nature,1996,380:64-66.
    [12]Wilmut I, Schnieke A E, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells[J]. Nature,1997,385:810-813.
    [13]Wakayama T, Perry A C F, Zuccotti M, et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei[J]. Nature,1998,394:369-374.
    [14]Cibelli J B, Stice S L, Golucke P J. Cloned transgenic calves produced from nonquiescent fetal fibroblasts[J]. Science,1998,280:1256-1258.
    [15]Baguisi A. Production of goats by somatic cell nuclear transfer[J].Nat Biotechnol,1999,17(5): 456-61.
    [16]Polejaeva I A. Cloned pigs produced by nuclear transfer from adult somatic cells[J].Nature,2000, 407(6800):86-90.
    [17]Shin T, Kraemer D, Pryor J, et al. A cat cloned by nuclear transplantation[J]. Nature,2002,415: 859.
    [18]Chesne P,Adenot P G,Viglietta C,et al.Cloned rabbits produced by nuclear transfer from adult somatic cells[J]. Nature biotechnology,2002,4:366-369.
    [19]Constance H.First cloned mule races to finish line[J].Science,2003,300(30):1354.
    [20]Galli C, Lagutina I, Crotti G, et al. A cloned horse born to its dam twin[J]. Nature,2003,424:635.
    [21]Zhou Q,Generation of fertile cloned rats by regulating oocyte acivation[J].Science,2003,302 (5648):1179.
    [22]Lee B C.Dogs cloned from adult somatic cells[J].Nature,2005,436(7051):641.
    [23]Li Z, Sun X.Cloned ferrets produced by somatic cell nuclear transfer[J].Dev Biol,2006,293 (2):439-48.
    [24]Kim M K.Endangered wolves cloned from adult somatic cells [J].Cloning Stem Cells,2007,9(1): 130-7.
    [25]姚雅馨,李向臣,张勇,乔利敏,关伟军,马月辉.供体细胞的不同选择和处理对重编程过程的影响[J].遗传,2008,30(11):1392-1396.
    [26]Kubota C, Yamakuchi H, Todoroki J.Six cloned calves produced from adult fibroblast cells after long-term culture[J]. PN AS,2000,97(3):990-995.
    [27]Lee S L, Ock S A, Yoo J G, Kumar B M, Choe S Y, Rho G J.Efficiency of gene transfection into donor cells for nuclear transfer of bovine embryos[J]. Mol Reprod Dev,2005,72:191-200.
    [28]Kues W A, Anger M,Carnwath JW,et al.Cell cycle synchronization of porcine fetal fibroblasts: effect of serum deprivation and reversible cell cycle inhibitors[J]. Biol Reprod,2000,62(2):412-9.
    [29]Hayes O, Ramos B, Rodriguez LL, Aguilar A, Badia T, Castro FO.Cell confluency is as efficient as serum starvation for inducing arrest in the G0/G1 phase of the cell cycle in granulosa and fibroblast cells of cattle[J]. Anim Reprod Sci.2005,87(3-4):181-92.
    [30]Arat S, Rzucidlo S J, Gibbons J, et al. Production of transgenic bovine embryos by transfer of transfected granulosa cells into enucleated oocytes[J]. Mol Reprod Dev,2001,60(1):20-26.
    [31]Fahrudin M,Otoit T,Suzuki T.Developmental competence of bovine embryos reconstructed by the transfer of somatic cells derived from frozen tissues[J]. J Vet Med Sci,2001,63(10):1151-1154.
    [32]Ogura A, Inoue K, Ogonuki N.Production of male cloned mice from fresh,cultured and cryopreserved immature sertoli cells[J]. Biol Reprod,2000,62(6):1579-1584.
    [33]陈建泉,张爱民,陈娟,徐旭俊,刘国辉,朱敏,刘明刚,成国祥.奶山羊转基因供核细胞的再 饥饿对核移植胚胎发育的影响[J].实验生物学报,2005,38(3):241.
    [34]Reggio B C, Janes A N,Green H L,et al.Cloned transgenic offspring resulting from somatic cell nuclear transfer in the goat:oocytes derived from both follistimulating hormone-Stimulated and non-stimulated abattoir-derived ovaries[J]. Biol Reprod,2001,65(5):1528-1533.
    [35]Yang X, Jiang S, Farrell P, Foote R H, McGrath A B., et al.Nuclear transfer in cattle:effect of nuclear donor cells, cytoplast age, co-culture, and embryo transfer[J]. Mol Reprod Dev,1993,35(1): 29-36.
    [36]Kuhholzer B,Hawley R J,Lai L,et al.Clonal lines of transgenic fibroblast cells derived from the same fetus result in different development when used for nuclear transfer in pigs [J].Biol Reprod, 2001,64(6):1695-1698.
    [37]Yang X, Kubota C, Suzuki H,et al.Control of oocyte maturation in cow-biological factors[J]. Theriogenology,1998,49(2):471-482.
    [38]Grazul-Bilska A T, Choi J T, Bilski J J, Weigl R M, Kirsch J D, Kraft K C. Effects of epidermal growth factor on early embryonic development after in vitro fertilization of oocytes collected from ewes treated with follicle stimulating hormone [J]. Theriogenology,2003,59(5-6):1449-57.
    [39]梁素丽,李向臣,白修云,王有柱,关伟军.影响卵母细胞体外成熟的因素[J].中国农业科学,2007,3(9):36-39
    [40]韦精卫,韦英明,孟凡丽,杨素芳,石德顺.牛卵母细胞的体外成熟[J].中国兽医学报,2008,28(2):216-219.
    [41]杨东山.转基因克隆法制作人胰岛素原牛乳腺生物反应器的研究[D].呼和浩特:内蒙古大学,2005.
    [42]Fulka J,Notarianni E,Passoni L,Moor R M.Early changes in embryonic nuclei fused to chemically enucleated mouse oocytes [J]. Int J Dev Biol,1993,37(3):433-439.
    [43]潘晓燕.盘羊-绵羊异种核移植技术程序的优化研究[D].南京:南京农业大学,2008.
    [44]Zhou Q, Jouneau A, Borcbard V, et al. Developmental potential of mouse embryos reconstructed from metaphase embryonic stem cell nuclei [J].Biol Reprod,2001,65:412-419.
    [45]Sims M, First N L.Production of calves by transfer of nuclei from cultured inner cell mass cells[J]. Proc Natl Acad Sci USA,1994,91(13):6143-6147.
    [46]McGrath J D, Solter D.Nuclear transplantation in the mouse embryo by microsurgery and cell fusion[J]. Science,1983,220:1300-1302.
    [47]Rohl J M,Prater R,Barnes F,et al.Nuclear transplantation in bovine embryos [J].J Anim Sci,1987,64: 642-647.
    [48]丁向彬.牛体细胞核移植胚胎表观遗传修饰研究[D].陕西杨凌:西北农林科技大学,2008.
    [49]刘风军.优化核移植方案并生产转hLF基因山羊的研究[D].陕西杨凌:西北农林科技大学,2007.
    [50]Kato Y,Tani T,Sotomam Y,et al.Eight calves cloned from somatic cells of single adult [J].Science, 1998,282:2095-2098.
    [51]Liu L, Yang X.Interplay of maturation-promoting factor and nitrogen-activated kinase inactivation during metaphase to interphase transition of activated bovine oocytes [J]. Biol Reprod,1998,59: 537-545.
    [52]陈大元.受精生物学[M].北京:科学出版社,2000:426-427.
    [53]石德顺.动物克隆技术研究的现状与展望[C].广西畜牧兽医学会第八届代表大会暨学术研究会论文,1998.
    [54]Joo B S,Kim M K,NaY J,et al.The mechanism of action of culture on embryo development in the mouse model:direct embryo to cell contact and there moval of deleterious components[J].Fertility and Sterility,2001,75(1):193-199.
    [55]Satoh T,Kobayashi K,Yamashita S,et al. Tissue inhibitor of metal proteinases (TIMP21) produced by granulose and oviduct cells enhance in vitro development of bovine embryos[J].Biol Reprod, 1994,50:835-844.
    [56]Sela A S, Edry I,Galiani D,et al.Disruption of gap junctional communication with in the ovarian follicle induces oocyte maturation[J].Endocrinology,2006,147(5):2280-2286.
    [57]Gandolfi,et al.Current status of IVM/IVF and embryo culture in humans and farm animals[J]. Theriogenoloy,1987,41:57-66.
    [58]邓守龙,吕自力,王亮,王安江,曹文广.转GFP基因核移植牛胚胎的研究[J].中国畜牧兽医,2009,3(8):73-78.
    [59]杨一华,冯云,高文学.不同受体胞质对哺乳动物核移植效果的影响[J].生殖与避孕,2008,28(7):424—428.
    [60]Gurdon J B, Melton D A. Nuclear reprogramming in cells[J]. Science.2008,19;322(5909):1811-5.
    [61]Moon J H, Lee B, Jee B,Ku S Y,et al.Spindle position and their distribution in invivo and in vitro matured mouse oocytes[J]. Hum Reprod,2005,20(8):207-10.
    [62]Onishi A, Iwarnoto M, Akita T, Mikawa S, Takeda K, Awata T, Hanada H, Perry AC. Pig cloning by microinjection of fetal fibroblast nuclei[J]. Science,2000,289(5482):1188-90.
    [63]Zheng P,Si W,Wang H,Zou R,Bavister B D,Ji W. Effect of age and breeding season on the development capacity of oocytes from unstimulated and FSH-stimulated rhesus monkeys[J].Biol Reprod,2001,64(5):1417-21.
    [64]Miyoshi K, Rzucidlo S J, Pratt S L, et al. Improvement in cloning efficiencies may be possible by increasing uniformity in recipient oocytes and donor cells[J]. Biol Reprod,2003,68(4):1079-1086.
    [65]Kuhholzer B,Hawley R J,Lai L,Kolber-Simonds D,Prather RS.Clonal lines of transgenic fibroblasts cells derived from the same fetus result in different development when used for nuclear transfer in pigs[J]. Biol Reprod,2001,64(6):1695-8.
    [66]Vajta G,Holm P,Kuwayama M, et al. Open Pulled Straw (OPS) vitrification:a way to reduce cryoinjuries of ova and embryos [J]. Mol Reprod Dev,1998,51:53-58.
    [67]Wells D N, Laible G, Tucker F C, et al. Coordination between donor cell type and cell cycle stage improves nuclear cloning efficiency in cattle [J]. Theriogenology,2003,59(1):45-59.
    [68]Miyamoto K, Hoshino Y, Minami N, Yamada M, Imai H. Effects of synchronization of donor cell cycle on embryonic development and DNA synthesis in porcine nuclear transfer embryos[J]. Reprod Dev,2007,53(2):237-246.
    [69]Dean W, Santos F, Reik W. Epigenetic reprogramming inearly mammalian development and following somatic nuclear transfer[J]. Semin Cell Dev Biol,2003,14(1):93-100.
    [70]Dean W, Santos F, Stojkovic M,et al.Conservation of methylation reprogramming in mammalian development:aberrant reprogramming in cloned embryos[J]. PNAS,2001,98:13734-8.
    [71]Han Y M, Kang Y K, Koo DB, et al. Nuclear reprogramming of cloned embryos produced in vitro[J]. Theriogenology,2003,59(1):33-44.
    [72]Kang Y K, Park J S, Koo D B, et al. Limited demethylationleaves mosaictype methylation states in cloned bovine pre-implantation embryos[J]. Embo J,2002,21:1092-100.
    [73]Kang Y K, Koo D B, Park J S, et al. Aberrant methylation of donor genome in cloned bovine embryos[J]. Nat Genet,2001,28(2):173-177.
    [74]Chung YG, Ratnam S, Chaillet JR, et al. Abnomal regulation of DNA methyltransferase expression in cloned mouse embryos[J]. Biol Reprod,2003,69(1):146-153.
    [75]Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development[J]. Science, 2001,293(5532):1089-1093.
    [76]Dean W, Santos F, Stojkovic M, et al. Conservation of methylation reprogramming in mammalian development:aberrant reprogramming in cloned embryos[J]. PNAS,2001,98:13734-13738.
    [77]Cezar G G, Bartolomei M S, Forsberg E J, et al. Genome-wide epigenetic alterations in cloned bovine fetuses[J]. Biol Reprod,2003,68(3):1009-1014.
    [78]Yang X, Smith S L, Tian X C, Lewin H A, Renard J P, Wakayama T. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning[J]. Nat Genet,2007,39(3):295-302.
    [79]李世杰,杜卫华,李宁.体细胞克隆中核的重编程.科学通报,2004,49(8):721-726.
    [80]Kim J M, Liu H L, Tazaki M, et al. Changes in histone acetylation during mouse oocyte meiosis[J]. J Cell Biol,2003,62:37-46.
    [81]Enright B P, Jeong B S, Yang X, et al. Epigenetic characteristics of bovine donor cells for nuclear transfer:levels of histone acetylation[J]. Biol Reprod,2003,69:1525-1530.
    [82]Enright B P, Kubota C, Yang X, et al. Epigenetic characteristics and development of embryos cloned from donor cells treater by trichostatin A or S-aza-2'-deoxycytidine[J].Biol Reprod, 2003,69:896-901.
    [83]Kishigami S, Mizutani E, Ohta H, et al. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer[J]. Biochem Biophys Res Commun, 2006,340:183-189.
    [84]万永杰,张艳丽,祝铁钢,王锋.体细胞核移植的不完全核重编程与克隆动物的发育异常[J].畜牧与兽医,2008,40(8):98-101.
    [85]Jaenisch R. DNA methylation and imprinting:why bother? [J]. Trends Genet,1997,13:323-329.
    [86]Ogawa H, Ono Y, Shimozawa N,et al.Disruption of imprinting in cloned mouse fetuses from embryonic stem cells[J]. Reproduction,2003,126:549-557.
    [87]Mann M R, Chung Y G, Nolen L D, et al. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos[J]. Biol Reprod,2003,69:902-914.
    [88]Young L E, Schnieke A E, McCreath K J, et al. Conservation of IGF2-H19 and IGF2R imprinting in sheep:effects of somatic cell nuclear transfer[J]. Mech Dev,2003,120:1433-1442.
    [89]Eggan K, Akutsu H, Hoc hedlinger K,et al.X-Chromosome inactivation in cloned mouse embryos [J]. Science,2000,290:1578-1581.
    [90]Nolen L D, Gao S, Han Z, et al. X chromosome reactivation and regulation in cloned embryos[J]. Dev. Biol,2005,279:525-540.
    [91]Smith S L, Everts R E, Tian X C, et al. Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning[J].PNAS,2005,102:17582-87.
    [92]Xue F, Tian X C, Du F, et al. Aberrant patterns of X chromosome inactivation in bovine clones[J]. Nat.Genet,2002,31:216-220.
    [93]Bortvin A, Eggan K, Skaletsky H, et al. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei[J]. Development,2003,130:1673-80.
    [94]Suteevun T, Smith SL, Muenthaisong S, et al.Anomalous mRNA levels of chromatine remodeling genes in swamp buffalo (Bubalus bubalis) cloned embryos [J].Therigenology,2006,65:1704-15.
    [1]吴应积,张学明,杨东山,罗奋华,旭日干.药用蛋白质乳腺生物反应器的制作技术及新方法进展[J].生物技术通报,2009增刊,95-100.
    [2]张健.转基因动物技术[M].北京:科学出版社,2009.
    [3]肖洁,郭刚,邹全明.提高大肠杆菌分泌表达重组蛋白的研究进展[J].微生物杂志,2007,27(2):73--77.
    [4]Houdebine,L M.Production of pharmaceutical proteins by transgenic animals[J].Comp Immunol Microbiol Infect Dis,2009,32:107-121.
    [5]余露露,关伟军,马月辉,卿素珠.动物乳腺生物反应器的应用与展望[J].现代生物医学进展,2009,9(9):1773-1774.
    [6]Gordon K, Lee E,V itale J, et al. Production of human tissue plasminogen activator in transgenic mouse milk [J]. Biotechnology,1987,5(3):1183-1187.
    [7]潘凌霄,杜启科,陆家海.转基因牲畜乳腺生物反应器的发展及应用[J].生物技术通报,2008,3:25-29.
    [8]Palmiter RD, BrinsterR L, Hammer RE, et al. Dramatic Growth of Mice That Develop From Eggs Micro-injected with Metallothionein Growth Home Fusion Genes [J]. Nature,1982,4(300):611-615.
    [9]Wright G, Carver A, Cottom D, et al. High expression of a hetero logous protein in the mick of transgenic sheep [J]. Biotechnology,1991,9(9):830-834.
    [10]Rudolph NS. Biopharmaceutical production in transgenic livestock[J]. Trends Biotechnol,1999,17 (9):367-74.
    [11]Niemann H, Kues WA. Transgenic livestock:premises and promises[J].Anim Reprod Sci,2002, 60-61:277-93.
    [12]Velander WH, Johnson JL, Page RL, Russell CG, Subramanian A, Wilkins TD,Gwazdauskas FC, Pittius C, Drohan WN. High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C[J].PNAS,1992,89(24):12003-7.
    [13]Krimpenfort P,Rademakers A,Eyestone W.Van der Schans A,Van den Broek S,KooimanP,Kootwijk E, Platenburg G, Pieper F, Strijker R, et al. Generation of transgenic dairy cattle using'in vitro' embryo production[J].Biotechnology (N Y),1991,9(9):844-7.
    [14]Paleyanda RK, Velander WH, Lee TK, Scandella DH, Gwazdauskas FC, Knight JW, Hoyer LW, Drohan WN, Lubon H. Transgenic pigs produce functional human factor VIII in milk[J]. Nat Biotechnol,1997,15(10):971-5.
    [15]Lavine G. FDA approves first biological product derived from transgenic animal [J]. Am J Health Syst Pharm,2009,66:5-18.
    [16]袁建民,胡建宏,李青旺,贾永红,王立强.动物乳腺生物反应器研究进展[J].畜牧兽医科学,2006,22(2):20-23.
    [17]黄淑帧,陈美玉,黄英.乳汁中分泌有活性的人凝血因子Ⅸ的转基因羊的研制[J].科学通报,1998,48:783-784.
    [18]成勇,成国祥,张靖溥等.牛asl-酪蛋白-乙肝病毒表面抗原融和基因在转基因羊中的表达[J].生物工程学报,1997,13(2):154-159.
    [19]Yang P, Wang J, Gong Q Sun X, Zhang R, Du Z, Liu Y, Li R, Ding F, Tang B, Dai Y, Li N. Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin[J].PLos One,2008,3(10):e3453.
    [20]邹贤刚,袁三平,鲜建,赵雅琳,李狄尔,等.转基因克隆奶山羊大量生产重组人的抗凝血酶Ⅲ蛋白质(rhATⅢ) [J].生物工程学报,2008,25(1):117-123.
    [21]郑月茂.转基因山羊乳腺上皮细胞系建立与转基因克隆胚胎的发育[D].陕西杨凌:西北农林科技大学,2005.
    [22]Maga EA, Shoemaker C F, Rowe J D, Bondurant R H, Anderson G B, Murray J D. Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland[J]. Dairy Sci,2006,89:518-24.
    [23]Huang Y J, Huang Y,Baldassarre H,Wang B,Lazaris A,Leduc M,et al.Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning[J]. PNAS,2007,104:13603-13608.
    [24]Zhang J, Li L, Cai Y, Xu X, Chen J, Wu Y, et al. Expression of active recombinant human lactoferrin in the milk of transgenic goats[J]. Protein Expression and Purification,2008,57:127-35.
    [25]Wang Z G, Yu S D. Research progress in mammary gland bioreactor [J]. Shanghai Animal and Veterinary Communic Ation,2004,2(2):11-13.
    [26]Skrzyszowska M, Smorag Z, Slomski R, Katska-Ksiazkiewicz L, Kalak R, Michalak E, Wielgus K,et al.Generation of transgenic rabbits by the novel technique of chimeric somatic cell cloning[J]. Biol Reprod,2006,74(6):1114-1120.
    [27]Wang L, Bhattacharyya N, Rabi T, Wang L, Banerjee S.. Mammary carcinogenesis in transgenic mice expressing a dominant-negative mutant of DNA polymerase beta in their mammary glands [J]. Carcino genesis,2007,28(5):1356-1363.
    [28]Liu Z, Zhao C J, Fan B,et al. Variable expression of human lactofer rin gene in mice milk driven by its 90 Kb upstream flanking sequences [J]. Animal Biotechnology,2004,15(1):21-31.
    [29]Gehrke S, Jerome V, Muller R.Chimeric transcriptional control units for improved liver-specific transgene expression [J]. Gene,2003,322:137-143.
    [30]Hennighausen L.The prospects for domeaticationg milk protein genes[J].Cell Biochem,1992, 49(4):325-332.
    [31]舒建洪.转tPA基因牛胎儿成纤维细胞系的建立及转基因牛克隆胚的构建[D].陕西杨凌:西北农林科技大学,2007.
    [32]Martin D I,Friering S,Groudine M,et al. Regulation of beta-globin gene expression:straightening out the locus[J]. Curr Opin Genet Dev,1996,6(4):488-495.
    [33]Taboit-Dameron F,Malassagne B,Viglietta C,Puissant C,Leroux-Coyau M,Chereau C,Attal J, et al. Association of the 5'HS4 sequence of the chicken beta-globin locus control region with human EF1 alpha gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits[J]. Transgenic research,1999,8(2):223-225.
    [34]Klehr D, Schlake T, Maass K, et al. Scafflod-attached regions(SAR element)mediate transcriptional effects due to butyrate[J].Biochemistry,1992,31(12):3222-3229.
    [35]陈红星,程萱,杨晓,等.牛β-乳球蛋白基因调控序列指导组织型纤溶酶原激活剂在小鼠乳腺中的表达[J].生物工程学报,2001,17(2):135-139.
    [36]Li S.Nuclear factor I and mammary gland factor (STATS) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice[J].Mol.Cell.Biol,1995,15:2063-2069.
    [37]Uusi-Oukavi M.Bovine as 1-casein gene sequence direct high level expression of human granulocyte-macrophage colony-stimulating factor in the milk of transgenic mice[J].Transgenic Research,1997,6:75-84.
    [38]Dale T C, Kmacik M J,Schmidhauser C, et al.High-level expression of the rat when acidic protein protein gene is mediated by elements in the promoter and 3'untrasnlated region[J].Mol Cell Biol,1992,12(3):905-914.
    [39]Kondo T, Matsumoto K, Sugimoto K. Role of a complex containing Rad17, Mec3, and Ddcl in the yeast DNA damage checkpoint pathway[J]. Mol Cell Biol,1999,19(2):1136-1143.
    [40]Shimomura T, Ando S, Matsumoto K, Sugimoto K. Functional and physical interaction between Rad24 and Rfc5 in the yeast checkpoint pathways[J]. Mol Cell Biol,1998,18(9):5485-5491.
    [41]Rydziel S, Delany AM, Canalis E.. AU-Rich Elements in the collagenase 3'mRNA mediate stabilization of the transcript by cortisol in osteoblasts[J].J Biol Chem,2004,279:5397-5404.
    [42]Kothandharaman S, Kenneth C, Kusumam J.The 3'-untranslated region of the beta-adrenergic receptor mRNA regulates receptor synthesis[J]. J Biol Chem,2004,10:1074-1076.
    [43]Imtiaz A, Mawji G, Brett R. Role of the 3'-untranslated region of human endothelin-lin vascular endothelial cells:contribution to transcript lability and the cellular heat shock response[J].J Biol Chem,2004,279:8655-8667.
    [44]李志沭,仇志琴,黄玉政,胡礼仪,成勇.提高动物乳腺生物反应器表达水平的策略[J].现代生物医学进展,2009,9(15):2977-2979.
    [45]Cohen-Tannoudji M, Babinet C, Morello D. Lac Z and ubiquitously expressed genes:should divorce be pronounced[J].Transgenic Res,2000,9(1):233-235.
    [46]Platenburg G J, Kootwijk E A,Kooiman P M, et al. Expression of human lactoferrin in milk of transgenic mice[J].Transgenic Res,1994,3:99-108.
    [47]Barash I, Faerman A, Baruch A,et al. Synthesis and secretion of human serum albumin by mammary gland exlants of virgin and lactating transgenic mice [J].Transgenic Res,1993,2:266-276.
    [48]Archibald A L, Mcclenaghan M, Hornsey V,et al.High level expression of biologically active human al antitrypsin in milk of transgenic mice[J].PNAS,1990,87:5178-5182.
    [49]Jakobovits A, Moore A L, Green L L,et al.Germ-line transmission and expression of a human derivedyeast aritfical chromosone.Nature,1993,362(6417):255-258.
    [50]Choi T K, Hollenbach P W, Peason R,et al.Transgenic mice containing a human heavy chain immunoglobin gene fragment cloned in a yeast artificial chromosome[J].Nat Genet,1993,4 (2):117-123.
    [51]Peterson K R,Clegg C H,Huxley C, et al.Transgenic mice containing a 248 kb yeast artificial chromosome carrying the human beta-globin locus display proper developmental control of human globin gene[J]. PNAS,1993,90(16):7593-7597.
    [52]Strauss W M, Dausman J, Beard C,et al.Germ line transmission of a yeast artificial chromosome spanning the alpha I collagen locus[J].Science,1993,259(5103):1904-1907.
    [53]Fujiwara Y, Miwa M, Takahasbi R,et al.High-level expressing YAC vector for transgenic animal bioreactors[J].Mol Reprod Dev,1999,52(4):414-420.
    [54]丛彦龙,孙玉章,丁壮.细菌人工染色体载体系统在反向遗传学中的应用研究进展[J].动物医学进展,2009,30(8):81-84.
    [55]Feng D X, Liu D P, Huang Y, et al. The expression of human α-like globin genes in t ransgenic mice mediated by bacterial artificial chromosome[J].PNAS,2001,98:15073-15077.
    [56]Gutierrez-Adan A, Pintado B.Effect of flanking matrix attachment regions on the expression of microinjected transgenes during preimplantation development of mouse embryos [J].Transgenic Res,2000,9(2):81-9.
    [57]Wallace H, Ansall R, Clark J,et al.Preselection of integration sites inparts repeatable transgene expression[J].Nucleic acids res,2000,28(6):1455-1464.
    [58]McCreath K J,Howcroft J,Campbell K H,Colman A,Schnieke A E,Kind AJ.Production of gene-targeted sheep by nuclear transfer from cultured somatic cells[J]. Nature,2000,405(2):1066-1069.
    [59]Kolb A F,Ansell R, Mcwhir J,et al.Insertion of a foreign gene into the beta-caseion locus by cre-mediated site-specific recombination[J].Gene,1999,227(1):21-31.
    [60]Brinster, R L,Allen, J M,Behringer R R,Gelinas R E,and Palmiter R D. Introns increase transcriptional efficiency in transgenic mice[J]. Proceedings of the National Academy of Sciences, 1988,85:836-840.
    [61]熊继红,江黎明.转基因技术在制备动物乳腺生物反应器中的应用和发展[J].生物技术通讯,2006,17(4):647-649.
    [62]Yant S R, Meuse L,Chiu W,et al. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system[J].Nature Genetic,2000,251:35-41.
    [63]DupuyA J, Clark K,Carlson C M,et al.Mammalian germ-line transgenesis by transposition[J]. PNAS,2002,99(7):4495-4499.
    [64]Fischer S E J, Wienholds E, Plasterk R H. Regulated transposition of a fish transposon in the mouse germ line[J].PNAS,2001,98(12):6759-6764.
    [65]Dupuy A J, Fritz S, Largaespada D A.Transposition and gene disruption in the male germ line of the mouse[J].Genesis,2001,30(2):82-88.
    [66]Horie K, Kuroiwa A, Ikawa M, et al.Efficient chromosoml transposition of a Tcl/mariner like transposon sleeping beauty in mice[J]. PNAS,2001,98(16):9191-9196.
    [67]Hofmann A, Kessler B, Ewerling S, et al. Efficient transgenesis in farm animals by lentiviral vectors [J]. Embo reports,2003,4 (11):1054-1060.
    [68]Chan A W S, Homan E J,Bahowlh, et al.Transgenic cattle produced by reverse-transcribed gene transfer in oocytes[J]. PNAS,1998,95:14082-14033.
    [69]Chan A W S, Chong K Y, Martinovich, et al. Transgenic monkey produced by retroviral gene transfer into mature oocytes[J]. Science,2001,291:309-312.
    [70]Anthony W S C, Homan E G, Ballou G C. Transgenic cattle produced by reverse transcriped gene transfering in oocyte[J]. PNAS,1998,95:14028-14033.
    [71]Brackett B G, Baranska W, Sawicki W, Koprowski H. Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertilization[J]. PNAS,1971,68:353-7.
    [72]Lavitrano M, Camaioni A, Fazio V M, Dolci S, Farace M G, Spadafora C. Sperm cells as vectors for introducing foreign DNA into eggs:genetic transformation of mice[J]. Cell,1989,57:717-23.
    [73]Lavitrano M,Bacci M L,Forni M,Lazzereschi D,Di Stefano C,Fioretti D, et al.Efficient production by sperm-mediated gene transfer of human decay accelerating factor (hDAF) transgenic pigs for xenotransplantation[J]. PNAS,2002;99:14230-5.
    [74]Schellander K, Peli J, Schmoll F, Brem G. Artificial inseminationin cattle with DNA-treated sperm[J]. Anim Biotechnol,1995,6:41-50.
    [75]Perry A C, Wakayama T,Kishikawa H,Kasai T, Okabe M, Toyoda Y, et al. Mammalian transgenesis by intracytoplasmic sperm injection [J]. Science,1999,284:1180-3.
    [76]Lai L, Sun Q, Wu G, Murphy CN, Kuhholzer B, Park KW, et al.Development of porcine embryos and offspring after intracytoplasmic sperm injection with liposome transfected or non-transfected sperm into invitromatured oocytes[J]. Zygote,2001,9:339-46.
    [77]Kurome M, Ueda H, Tomii R, Naruse K, Nagashima H. Production of transgenic-clone pigs by the combination of ICSI mediated gene transfer with somatic cell nuclear transfer[J]. Transgenic Res, 2006,15:229-40.
    [78]Kato M, Ishikawa A, Kaneko R, Yagi T, Hochi S, Hirabayashi M. Production of transgenic rats by ooplasmic injection of spermatogenic cells exposed to exogenous DNA:a preliminary study[J]. Mol Reprod Dev,2004,69:153-8.
    [79]Hirabayashi M, Kato M, Ishikawa A, Kaneko R, Yagi T, Hochi S. Factors affecting production of transgenic rats by ICSI-mediated DNA transfer:effects of sonication and freeze-thawing of spermatozoa, rat strains for sperm and oocyte donors, and different constructs of exogenous DNA[J]. Mol Reprod Dev,2005,70:422-8.
    [80]Schwenk F,Zevnik B,Bruning J,Rohl M,Willuweit A,Rode A,Hennek T,Kauselmann G, Jaenisch R, Kuhn R.Hybrid embryonic stem cell-derived tetraploid mice show apparently normal morphological, physiological, and neurological characteristics[J].Molecular and Cellular Biology, 2003,23:3982-3989.
    [81]Brinster R L, Avarbock M R.Germline Transmission of donor haplotype following spermatogonial transplantation[J]. Proceedings of the National Academy of Sciences,1994,91:11303-11307.
    [82]Naito M, Tajima A, Yasuda Y, Kuwana T. Production of germline chimeric chickens, with high transmission rate of donor-derived gametes, produced by transfer of primordial germ cells [J]. Mol Reprod Dev,1994,39:153-161.
    [83]Schnieke A E, Kind A J, Ritchie W A, Mycock K, Scott A R, Ritchie M, Wilmut I,Colman A, and Campbell K H. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts[J]. Science,1997,278(5346):2130-2133.
    [84]Cibelli J B, Stice S L, Golueke P J, Kane J J, Jerry J, Blackwell C, Ponce D L,and Robl J M. Cloned transgenic calves produced from nonquiescent fetal fibroblasts[J].Science,1998,280:1256-1258.
    [85]Van Berkel P H, Welling M M,Geerts M,et al.Large scale peoduction of recombinant human lactoferrin in the milk of transgenic cows[J]. Nature Biotechnology,2002,20:484-487.
    [86]Denning C, Burl S, Ainslie A, Bracken J, Dinnyes A, Fletcher J, et al. Deletion of the a(1,3) galactosyl transferase (GGTAI) gene and the prion protein (PrP) gene in sheep [J].Nature Biotechnology,2001,19(6):559-62.
    [87]Zhu C, Li B, Yu G, Chen J, Yu H, Chen J, Xu X, Wu Y, Zhang A, Cheng G Production of Prnp-/- goats by gene targeting in adult fibroblasts[J]. Transgenic Res,2009,18(2):163-71.
    [88]Graham C, Cole S, Laible G. Site-specific modification of the bovine genome using Cre recombinase-mediated gene targeting[J]. Biotechnol J,2009,4(1):108-18.
    [89]Vasquez K M, Marburger K, Intody Z, Wilson J H. Manipulating the mammalian genome by homologous recombination[J]. PNAS,2001,98(15):8403-8410.
    [90]Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell,2006,126(4):663-676.
    [91]Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Yanagimachi R, Jaenisch R. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation [J]. PNAS,2001,98(11):6209-6214.
    [92]Yang XZ, Smith SL, Tian XC, Lewin HA, Renard JP, Wakayama T. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning[J]. Nature,2007,39(3):295-302.
    [93]Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin 11, Thomson J A. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science,2007,318(5858):1917-1920.
    [94]Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell,2007,131(5): 861-872.
    [95]Okita K, Ichisaka T, Yamanaka S. Generation of germline competent induced pluripotent stem cells[J]. Nature,2007,448(7151):313-317.
    [96]Qin D J, Gan Y. Mouse meningiocytes express Sox2 and yield high efficiency of chimeras after nuclear reprogramming with exogenous factors[J]. Cell research,2008,283(48):959-962.
    [1]Grabowski G A.Gaucher disease.enzymology, genetics,and treatment [J].Adv Hum Genet,1993,21: 377-441.
    [2]Sawkar A R,D'Haeze W,Kelly J W.Therapeutic strategies to ameliorate lysosomal storage disorders-a focus on Gaucher disease[J]. Cell Mol Life Sci,2006,63(10):1179-192.
    [3]Steet R A,Chung S,Wustman B,et al.The iminosugar isofagomine increases the activity of N370S mutant acid beta-glucosidase in Gaucher fibroblasts by several mechanisms[J].PNAS,2006,103(37): 13813-13818.
    [4]Harmanci O, Bayraktar Y. Gaucher disease:new developments in treatment and etiology[J]. World J Gastroenterol,2008,14(25):3968-3973.
    [5]Reggi S, Marchetti S, Patti T, et al. Recombinant human acid beta-glucosidase stored in tobacco seed is stable, active and taken up by human fibroblasts [J]. Plant Molecular Biology,2005,57(1): 101-113.
    [6]Grabowski G A, Barton N W, Pastores G, et al. Enzyme Therapy in Type 1 Gaucher Disease: Comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources[J]. Ann Intern Med,1995,122(1):33-39.
    [7]Wang J, Ling Y C. Advance in the gene therapy of Gauchers disease[J]. ChinJ Clin Pharmacol Ther, 2002,7(2):181-183.
    [8]Guggenbuhl P, Grosbois B, Chales G, et al. Gaucher disease[J]. Joint Bone Spine,2008,75(2):116-124.
    [9]Sidransky E. Gaucher disease:complexity in a'simple'disorder[J]. Mol Genet Metab,2004,83(1-2): 615.
    [10]Grace M E,Newman K M,Scheinker V,et al. Analysis of human acid beta-glucosidase by site-directed mutagenesis and heterologous expression[J]. J.Biol.Chem,1994,269(3):2283-2291.
    [11]Rogaeva E, Hardy J. Gaucher and Parkinson diseases:unexpectedly related[J]. Neurology,2008, 70(24):2272-2273.
    [12]Leonova T,Grabowski G A.Fate and sorting of acid P-Glucosidase in transgenic mammalian cells[J]. Molecular Genetics and Metabolism,2000,70(4):281-294.
    [13]Shaaltiel Y,Bartfeld D,Hashmueli S. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher's disease using a plant cell system[J].Plant Biotechnol J,2007,5(5):579-590.
    [14]Hoppe H.Cerezyme--recombinant protein treatment for Gaucher's disease[J].J Biotechnol,2000, 76(2-3):259-261.
    [15]Zhang J,Li L,Cai Y,Xu X,Chen J,Wu Y,et al.Expression of active recombinant human lactoferrin in the milk of transgenic goats[J].Protein Expression and Purification,2008,57:127-35.
    [16]Lazaris A, Arcidiacono S, HuangY, Zhou JF, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells [J]. Science, 2002,295(18):472-476.
    [17]Cho S K,Hwang K C,Choi Y J,Bui H T,Nguyen V T,Park C,Kim J H,Kim J H.Production of transgenic pigs harboring the human erythropoietin (hEPO) gene using somatic cell nuclear transfer[J]. J Reprod Dev 2008,55:128-36.
    [18]李永明,赵玉琪等译.实用分子生物学方法手册[M].北京:科学出版社,1998,366-368.
    [19]韩增胜.腺病毒介导的人乳铁蛋白基因在兔和羊乳腺中高效表达的研究[D].陕西杨凌:西北农林科技大学,2006.
    [1]Keefer C L. Production of bioproducts through the use of transgenic animal models [J]. Animal Reproduction Science,2004,82-83:5-12.
    [2]Houdebine, L M. Production of pharmaceutical proteins by transgenic animals[J]. Comp Immunol Microbiol Infect Dis,2009,32:107-121.
    [3]黄英,张克忠,黄文英,等.乳腺表达人凝血因子Ⅸ的转基因小鼠的研究[J].科学通报,1998,43(7):732-735.
    [4]刘思国.人溶菌酶转基因山羊乳腺生物反应器的研制[D].上海:华东师范大学,2004.
    [5]Zhang J, Li L, Cai Y, Xu X, Chen J, Wu Y, et al. Expression of active recombinant human lactoferrin in the milk of transgenic goats[J]. Protein Expression and Purification,2008;57:127-35.
    [6]Maga E A, Shoemaker C F, Rowe J D, Bondurant R H, Anderson G B, Murray J D. Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland[J]. J Dairy Sci,2006,89:518-24.
    [7]Wright G, Carver A, Cottom D, Reeves D, Scot A,Simons P, et al. High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep[J]. Biotechnology,1991,9:830-834.
    [8]Persuy M A, Stinnakre M G, Printz C, et al. High expression of the caprine beta-casein gene in transgenic mice[J]. E u r J B iochem,1992,205 (3):887-93.
    [9]Huang Y J, Huang Y, Baldassarre H, Wang B, Lazaris A, Leduc M, et al.Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning[J]. PNAS,2007,104:13603-8.
    [10]邹贤刚,袁三平,鲜建,赵雅琳,李狄尔等.转基因克隆奶山羊大量生产重组人的抗凝血酶Ⅲ蛋白质(rhATⅢ) [J].生物工程学报,2008,25(1):117-123.
    [11]俞慧清,李志国,刘红茹,吴国祥,成国祥.山羊β-casein位点打靶载体在乳腺上皮细胞中的表达研究[J].生物工程学报,2004,20(1):21-24.
    [12]徐曼妮,厉曙光,赵建阳等.乳腺生物反应器表达载体的检测方法[J].生物技术通报,2003,5:4144.
    [13]Velander W H, Johnson J L, Page R L, Russell C G, Subramanian A, Wilkins T D, et al. High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C[J]. PNAS,1992,89:12003-12007.
    [14]孙怀昌,于峰,苏建华等.人溶菌酶基因治疗奶牛乳腺炎的初步研究[J].畜牧兽医学报,2004,35(2):227-232.
    [15]卢一凡,邓继先.乳腺直接注射质粒DNA的转基因暂时性表达研究进展[J].国外医学遗传学分册,1998,21(6):310-312.
    [16]李震,陈永福.乳腺生物反应器细胞模型建立的问题探讨[J].农业生物技术学报,1997,5(2):148-152.
    [17]Yang G Q,Dai Y P,Zhu B L et al. Clone of 5'regluatory fragment of bovine BLG gene and studies of animal mammary gland reactor[J].Sciencein China.Series C,1996,26(5):463-469.
    [18]宁云山,李妍,周明乾,等.TPO内含子V可显著增强人血小板生成素基因在乳腺细胞中的表达[J].中国生物化学与分子生物学报,2007,23(7):537-541.
    [19]Cho S K, Hwang K C, Choi Y J, Bui H T, Nguyen V T, Park C, Kim J H, Kim JH. Production of transgenic pigs harboring the human erythropoietin (hEPO) gene using somatic cell nuclear transfer[J]. J Reprod Dev,2008,55:128-36.
    [20]Robert E, Rhoads, Ewa GN. Translational regulation of milk protein synthesis at secretory activation[J]. J Mammary Gland Biol Neoplasia,2007,12:283-292.
    [21]Groner B. Transcription factor regulation in mammary epithelial cells[J]. Domestic Animal Endocrinlogy,2002,23:25-32.
    [22]Doppler W, Groner B, Ball RK. Prolactin and glucocorticoid hormones synergistically induce expression of transfected rat β-casein gene promoter constructs in a mammary epithelial cell line[J].PNAS,1988,86:104-108.
    [23]Lechner J, Welte T, Tomasi JK, Bruno P, Cairns C, Gustafsson J, Doppler W. Promoter-dependent synergy between glucocorticoid receptor and Stat5 in the activation of beta-casein gene transcription[J]. J Biol Chem,1997,272,20954-20960.
    [24]Akers R M.Major advances associated with hormone and growrh factor regulation of mammary growth and lactation in dairy cows[J].J Dairy Sci,2006,89:1222-1234
    [25]Roskelley C D, Srebrow A, Bissell M J. A hierarchy of ECM-mediated signaling regulates tissue-specisic gene expression[J].Curr Opin Cell Boil,1995,7:736-747.
    [26]Merlo G R, Graus-porta D, Cella N, et al. Growth, differentiation and survival of HC11 mammary epithelial cells:diverse effectes of receptor tyrosine kinase-activating peptitide growth factors[J].Eur J Cell Biol,1996,70:97-105.
    [27]张学明.人gdnf在牛胎儿成纤维细胞基因座的定位整合及基因打靶克隆囊胚的制备[D].内蒙古呼和浩特:内蒙古大学,2009.
    [1]Kato Y, Tani T, Tsunoda Y. Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows[J]. J Reprod Fertil,2000,120(2):231-237.
    [2]Kato Y, Tani T, Sotomaru Y, Kurokawa K,Kato J, DoguchiH, Yasue H,Tsunoda Y. Eight calves cloned from somatic cells of a single adult[J]. Science,1998,282:2095-2098.
    [3]Wilmut I, Schnieke A E, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells[J]. Nature,1997,385:810-813.
    [4]Shiga K, Fujita T, Hirose K, Sasae Y, Nagai T. Production of calves by transfer of nuclei from cultured somatic cells obtained from Japanese black bulls[J]. Theriogenology,1999,52:527-53.
    [5]Zakhartchenko V, Durcova-Hills G, Stojkovic M, Schernthaner W, Prelle K, Steinborn R, Muller M, Brem G, Wolf E. Effects of serum starvation and re-cloning on the efficiency of nuclear transfer using bovine fetal fibroblasts[J]. J Reprod Fertil,1999,115:325-331.
    [6]Yoo J G, Choe S Y, Rho G J. Efficient production of cloned bovine embryos using CDC2 kinase inhibitor[J]. Reprod Domest Anim,2003,38:444-450.
    [7]Lan G C,Chang Z L,Luo M I, et al. Production of cloned goats by nuclear transfer of cumulus cells and long-term cultured fetal fibroblast cells into abattior-derived oocytes[J].Mol Repro Dev,2006, 73(7):834-840.
    [8]Kubota C, Yamakuchi H, Todoroki J, et al. Six cloned calves produced from adult fibroblast cells after long-term culture[J].Proc Natl Acad Sci USA,2000,97(3):990-995.
    [9]Zakhartchenko V, Durcova-Hills G, Stojkovic M, Schernthaner W,Prelle K, Steinborn R, Muller M, Brem G, Wolf E. Effects of serum starvation and re-cloning on the efficiency of nuclear transfer using bovine fetal fibroblasts[J]. J Reprod Fertil,1999a,115:325-331.
    [10]Schnieke A E, Kind A J, Ritchie W A, et al. Human factor Ⅸ transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts[J]. Science,1997,278:2130-2133.
    [11]Cibelli J B, Stice S L, Golueke P J,et al.Cloned transgenic calves produced from nonquiescent fetal fibrobalsts[J].Science,1998,280:1256-1258.
    [12]龚国春,戴蕴平,樊宝良等.利用体细胞核移植技术生产转基因牛[J].科学通报,2003,48(24):2528-2533.
    [13]Keefer C L, Baldassarre H, Keyston R, Wang B, Bhatia B, Bilodeau AS.Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes[J]. Biol Reprod,2001,64(3):849-56.
    [14]McCreath K J, Howcroft J, Campbell K H, et al. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells [J].Nature,2000,405:1066-1069.
    [15]Lai L, Kolber-Simonds D, Park K W, et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science,2002,295:1089-1092.
    [16]Keefer C L. Production of bioproducts through the use of transgenic animal models [J]. Animal Reproduction Science,2004,82-83:5-12.
    [17]Sakurai F, Inoue R, Nishino Y, Okuda A, Matsumoto O, Taga T, Yamashita F, Takakura Y, Hashida M. Effect of DNA/liposome mixing ratio on the physicochemical characteristics,cellular uptake and intracellular trafficking of plasmid DNA/cationic liposome complexes and subsequent gene expression[J]. J Controlled Release,2000,66:255-269.
    [18]Simberg, D., Danino, D., Talmon, Y, Minsky, A., Ferrari, M.E., Wheeler, C.J. and Barenholz, Y. Phase behavior, DNA ordering, and size instability of cationic lipoplexes. Relevance to optimal transfection activity[J]. J. Biol. Chem,2001,276:47453-47459.
    [19]刘忠华,宋军,王振坤,田江天,孔庆然,郑重等.体细胞核移植生产绿色荧光蛋白转基因猪[J].科学通报,2008,53(5):556-560.
    [20]He S, Pant D, Schiffinacher A, Bischoff S, Melican D, Gavin W, Keefer C. Developmental expression of pluripotency determining factors in dairy goat embryos:novel pattern of NANOG protein localization in the nucleolus[J].Mol Reprod Dev,2006,73:1512-22.
    [21]Baguisi A, Behboodi E, Melican DT, Pollock JS, Destrempes MM,Cammuso C, Williams JL, Nims SD, Porter CA, Midura P, PalaciosMJ, Ayres SL, Denniston RS, Hayes ML, Ziomek CA, Meade HM,Godke RA, Gavin WG, Overstrom EW, Echelard Y. Production of goats by somatic cell nuclear transfer[J]. Nat Biotech,1999; 17:456-61.
    [22]萨姆布鲁克,拉塞尔DW.3版.黄培堂等译.分子克隆实验指南[M].北京:科学出版社2002:463-470.
    [23]潘求真,田亮,徐曙光,等.体外培养山羊成纤维细胞系方法的建立[J].中国农业大学学报,2006,11(1):29-34.
    [24]Westhusin ME, Long CR, Shin T, et al. Cloning to reproduce desired genotypes[J]. Theriogenology, 2001,55:35-49.
    [25]Oliveira R R, Carvalho D M, Lisauskas S, et al. Effectiveness of liposomes to transfect livestock fibroblasts[J]. Genetics and Molecular Research,2005,4 (2):185-196.
    [26]Kitamura T. New experimental approaches in retrovirus-mediated expression screening[J]. Int J Hematol,1998,67(4):351-359.
    [27]Colosimo A F, Goncz K K, Holmes A R, Kunzelmann K, Novelli G, Malone R W, Bennett M J, Gruenert D C. Transfer and expression of foreign genes in mammalian cells[J]. Biotechniques, 2000,29:314-318.
    [28]Zabner J, Fasbender A J,Moninger T,et al.Cellular and molecular barrier to gene transfer by a cationic lipid[J].J Biol Chem,1995,270(32):18997-19007.
    [29]于建宁,苗德强,马所峰,等.影响小鼠体细胞脂质体转染效率的因素[J].实验生物学报,2005,38(5):404-409.
    [1]Lazaris A, Rebecca K, Karatzas C N, Keefer CL. Transgensis using nuclear transfer in goats[J]. Methods Mol Biol,2006;348:213-25.
    [2]Bassarre H, Keefer C, Wang B, Lazaris A, Karatzas C N.Nuclear transfer in goats using in vitro matured oocytes recovered by laparoscopic ovum pick-up[J]. Cloning Stem Cells,2003,5:279-85.
    [3]Schnieke A E, Kind A J, Ritchie W A, et al. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts[J].Science,1997,278:2130-2133.
    [4]Van Berkel P H, Welling M M, Geerts M, et al. Largre scale peoduction of recombinant human lactoferrin in the milk.of transgenic cows[J]. Nature Biotechnology,2002,20:484-487.
    [5]Maga E A, Shoemaker C F, Rowe J D, Bondurant R H, Anderson G B, Murray JD. Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland[J]. J Dairy Sci,2006,89:518-24.
    [6]邹贤刚,袁三平,鲜建,赵雅琳,李狄尔等.转基因克隆奶山羊大量生产重组人的抗凝血酶Ⅲ蛋白质(rhATⅢ) [J].2008,25(1):117-123.
    [7]Huang Y J, Huang Y, Baldassarre H, Wang B, Lazaris A, Leduc M, et al.Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning[J]. Proc Natl Acad Sci,2007; 104:13603-13608.
    [8]张传山,郭毅,谷瑞环,李善刚,李峰,王伟,丁雷,邢凤英,姚刚,陈学进.成体兔转基因成纤维细胞的克隆分离及其核移植研究[J].生物化学与生物物理进展,2009,36(9):1186-1192.
    [9]Farin P W, Crosier A E, Farin C E. Influence of in vitro systems on embryo survival and fetal development in cattle [J]. Theriogenology,2001,55:151-170.
    [10]Young L E, Fernandes K, McEvoy T G, et al. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture [J]. Nat Genet,2001,27:153-154.
    [11]Bertolini M, Beam SW, Shim H, et al. Growth, development, and gene expression by in vivo-and in vitro-produced day 7 and 16 bovine embryos [J]. Mol Reprod Dev,2002,63:318-328.
    [12]Park K W, Lai L, Cheong H T, Cabot R, Sun Q Y, Wu G, et al. Mosaic gene expression in nuclear transfer-derived embryos and the production of cloned transgenic pigs from ear-derived fibroblasts[J]. Biol Reprod,2002,66:1001-1005.
    [13]Keefer C L, Baldassarre H, Keyston R, Wang B, Bhatia B, Bilodeau AS, Zhou JF, Leduc M, Downey BR, Lazaris A, Karatzas CN. Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes[J]. Biol Reprod,2001,64:849-56.
    [14]Park K W, Choi K M, Hong S P, Han G S, Yoo J Y, Jin D I, Seol J G, Park C S. Production of transgenic recloned piglets harboring the human granulocyte-macrophage colony stimulating factor (hGM-CSF) gene from porcine fetal fibroblasts by nuclear transfer[J]. Theriogenology, 2008;70:1431-38.
    [15]Lazaris A, Rebecca K, Karatzas CN, Keefer CL. Transgensis using nuclear transfer in goats [J]. Methods Mol Biol,2006,348:213-25.
    [16]Melo E O, Sousa R V, Igum L T, Franco M M, Rech E L, Rumpf R. Isolation of transfected fibroblast clones for use in nuclear transfer and transgene detection in cattle embryos [J]. Genet. Mol. Res,2005,4:812-21.
    [17]Takehara K. Growth regulation of skin fibroblasts [J]. J Dermatol Sci,2000,1:S70-S77
    [18]Rubin J S, Osada H, Finch P W. Purification and characterization of a newly identified growth factor specific for epithelial cells[J]. Proc Natl Acad Sci USA,1989,3:802-806
    [19]Chen S H,Vaughut T D, Monahan J A,Boone J,Emslie E,Jobst P M, et al.Efficient production of transgenic cloned calves using preimplantation screeing[J].Biol Reprod,2002,67:1488-1492.
    [20]Hyun S,Lee G,Kim H,Lee S,Nam D,Jeong Y, et al.Production of nuclear transfer-derived piglets using porine fetal fibtoblasts transfected with the enhanced green fluorescent protein[J].Biol Reprod,2003,69:1060-1068.
    [21]Park K W,Lai L,Cheong HT,Cabot R,Sun QY,Wu G, et al.Mosaic gene expression in nuclear transfer-derived embryos and the production of cloned transgenic pigs from ear-derived fibroblasts[J].Biol reprod,2003,66:1001-1005.
    [22]Liu H S,Jan MS,Chou CK,Chen PH,Ke NJ.Is green fluorescent protein toxic to the living cells? [J].Biochem Biophys Res Commun1999;260:712-717.
    [23]Arat S, Gibbons J,Rzucidlo S J,et al. In vitro development of bovine nuclear transfer embryos from transgenic clonal lines of adult and fetal fibroblast cells of the same genotype[J].Biol Reprod,2002, 66 (6):1768-1774.
    [24]Cho S K, Hwang K C, Choi Y J, Bui H T, Nguyen V T, Park C, Kim J H, Kim J H. Production of transgenic pigs harboring the human erythropoietin (hEPO) gene using somatic cell nuclear transfer[J]. J Reprod Dev,2008,55:128-36.
    [25]李兰,沈伟,潘庆玉,闵令江,孙玉江,房勇为,邓继先,潘庆杰.整合人lactoferrin基因的山羊体细胞支持核移植克隆胚的体外发育[J].遗传,2006,28(12):1513-1519.
    [26]李扬,吴凯峰,郭旭东,等.脂质体介导外源基因体外转染牛胎儿成纤维细胞条件的优化[J].遗传,2002,24(6):653-655.
    [27]Zhao M T, Lin H, Liu F J, Quan FS, Wang G H, Liu J, Hua S, Zhang Y. Efficiency of human lactoferrin transgenic donor cell preparation for SCNT[J].Theriogenology,2009,71:376-84.
    [1]Campbell K H S, McWhir J, Ritchie W A, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line[J]. Nature,1996,380:64-65.
    [2]Wilmut I, Schnieke A E, McWhir J, Kind A J, Campbell K H.Viable offspring derived from fetal and adult mammalian cells [J].Nature,1997,385:8101-8103.
    [3]Schnieke A, Kind A J, Ritchie W A, Mycock K, Scott A R, Ritchie M, Wilmut I, Colman A, Campbell K H S. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts[J]. Science,1997,278:2130-2133.
    [4]Zou X G, Wang Y G, Cheng Y, Yang Y, Ju H, Tang H, Shen Y, Mu Z, Xu S, Du M. Generation of cloned gouts (Gapra hircus) from transfected fetal fibroblast cell, the effect of donor cell cycle[J].Mol Reprod Dev,2002,61:164-172.
    [5]Keefer C L, Baldassarre H, Keyston R, Wang B, Bhatia B, Bilodeau A S, Zhou J F, Leduc M, Downey B R, Lazaris A, Karazas C N. Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes[J]. Biol Reprod,2001,64:849-856.
    [6]Baguisi A, Behboodi E, Melican D T, Pollock J S, Destrempes MM, Cammuso C, Williams J L, Nims S D, Porter C A, Midura P, Palacios M J, Ayres S L, Denniston R S, Hayes M L, Ziomek C A, Meade H M, Godke R A, Gavin W G, Overstrom E W, Echelard Y.Production of goats by somatic cell nuclear transfer[J]. Nat Biotechnol,1999,17:456-461.
    [7]Chen L H, Behboodi E, Reggio B C, Destrempes M M, Green H L, Ziomek C A, Denniston R S, Echelard Y, Godke R A, Meade H M. Production of transgenic goats from a transfected fibroblast cell line[J]. Theriogenology,2001,55:259.
    [8]Schnieke A E, Kind A J, Ritchie W A, et al. Human factor Ⅸ transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts[J]. Science,1997,278:2130-2133.
    [9]McCreath K J, Howcroft J, Campbell K H, et al. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells [J].Nature,2000,405:1066-1069.
    [10]Wall R J, Powell A M, Paape M J, et al. Genetically enhanced cows resist intramammary staphylococcus aureus infection[J]. Nat Biotechnol,2005,23:445-451.
    [11]Huang YJ, Huang Y, Baldassarre H, Wang B, Lazaris A, Leduc M,Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning[J].PNAS,2007,104(34):13603-13608.
    [12]Lai L, Kolber-Simonds D, Park K W, et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science,2002,295:1089-1092.
    [13]Lee G S, Kim H S, Hyun SH,et al. Production of transgenic cloned piglets from genetically transformed fetal fibroblasts selected by green fluorescent protein[J]. Theriogenology,2005,63:973-991.
    [14]Yin X J, Lee H S, Yu X F, et al. Generation of cloned transgenic cats expressing red fluorescence protein[J]. Biol Reprod,2008,78(3):425-31.
    [15]成勇,王玉阁,罗金平,等.由成年转基因山羊体细胞而来的克隆山羊[J].生物工程学报,2002,18:79-83.
    [16]邹贤刚,袁三平,鲜建等.转基因克隆奶山羊大量生产重组人的抗凝血酶快Ⅲ蛋白(rhATⅢ)[J],生物工程学报,2008,24(1):117-123.
    [17]龚国春,戴蕴平,樊宝良等.利用体细胞核移植技术生产转基因牛[J].科学通报,2003,48:2528-2533.
    [18]刘忠华,宋军,王振坤等.体细胞核移植生产绿色荧光蛋白转基因猪[J].科学通报,2008,(53):556-560.
    [19]李世杰,杜卫华,李宁.体细胞克隆中核的重编程[J].科学通报,2004,49(8):721-725.
    [20]万永杰,张艳丽,祝铁钢,王锋.体细胞核移植的不完全核重编程与克隆动物的发育异常[J].畜牧与兽医,2008,40(8):98-101.
    [21]Yang X Z, Smith S L, Tian X C, Lewin H A, Renard J P, Wakayama T. Nuclear reprograming of cloned embryos and its implications for therapeutic cloning[J]. Nature,2007,39(3):295-302.
    [22]Wells D N, Misica P M, Tervit H R. Production of cloned calves following nuclear transfer with cultured adult mural granulose cells[J]. Biol. Reprod.,1999,69:996-1005.
    [23]Arat S, Gibbons J, Rzucidlo SJ, Respess DS, Tumlin M, Stice SL. In vitro development of bovine nuclear transfer embryos from transgenic clonal lines of adult and fetal fibroblast cells of the same genotype[J]. Biol Reprod,2002,66:1768-74.
    [24]Bhuiyan M M, Cho J, Jang G, Park E, Kang S, Lee B, Hwang W.Effect of transfection and passage number of ear fibroblasts on in vitro development of bovine transgenic nuclear transfer embryos [J]. J Vet Med Sci,2004,66:257-61.
    [25]Iguma L T, Lisauskas S F, Melo E O, Franco M M, Pivato I, Vianna G R, Sousa R V, Dode M A, Aragao F J,Rech E L,Rumpf R. Development of bovine embryos reconstructed by nuclear transfer of transfected and non-transfected adult fibroblast cells[J]. Genet Mol Res,2005,4:55-66.
    [26]Yang Z T, Shen W, Deng J X. Nuclear reprogramming of somatic nuclear transfer embryos[J]. Acta Genetic Sinica,2004,31(5):486-491.
    [27]沈伟,ht-PAm在山羊β-casein基因座定位整合与中靶体细胞核移植的研究[D].陕西杨凌:西北农林科技大学,2004.
    [28]Kues W A, Anger M, Carnwath J W, Paul D, Motlik J, Niemann H.. Cell cycle synchronization 1g porcine fetal fibroblasts:effects of serum deprivation and reversible cell cycle inhibitors[J]. Biol Reprod,2000,62(2):412.
    [29]Holker M, Petersen B, Hassel P, et al. Duration of in vitro maturation of recipient oocytes affects blastocyst development of cloned porcine embryos[J].Cloning Stem Cells,2005,7(l):35.
    [30]Hayes O, Ramos B, Rodr'iguez LL, Aguilar A, Bad'ia T, Castro FO. Cell confluency is as efficient as serum starvation for inducing arrest in the G0/G1 phase of the cell cycle in granulosa and fibroblast cells of cattle[J]. Animal Reproduction Science,2005 (87):181-192.
    [31]Dominko T, Chan A, Simerly C, Luetjens CM, Hewitson L, Martinovich C, Schatten G Dynamic imaging of the metaphase II spindle and maternal chromosomes in bovine oocytes: implications for enucleation efficiency verification, avoidance of parthenogenesis, and successful embryogenesis[J]. Biol Reprod,2000,62(1):150-154.
    [32]Smith LC, Membrance.Intracelluar effects of ultraviolet irradiation with Hochst 33342 on bovine aecondary oocytes matured in vitro[J]J Repro, Fertil,1993,99:39-44.
    [33]张学明,人gdnf在牛胎儿成纤维细胞基因座的定位整合及基因打靶克隆囊胚的制备[D].内蒙古呼和浩特:内蒙古大学,2009.
    [34]叶荣,陈学进,郭宪,杨利国.牛体外成熟卵母细胞孤雌激活的研究[J].南京农业大学学报,2004,27(3):133-135.
    [35]Loi P, ClintonM, Barboni B, et al. Nuclei of nonviable ovine somatic cells develope into lambs after nucler transplantation[J]. Biol Reprod,2002,67(1):126-132.
    [36]Tervit H R, Whittingham D G, Rowson L. Successful culture in vitro of sheep and cattle ova[J]. J Reprod Fertil,1972,30:493-497.
    [37]郭继彤,李煜,安志兴,等.成年耳细胞克隆山羊[J].中国科学C辑:生命科学,2002,32(1):77-83
    [38]郑月茂,刘凤军,安志兴,李向臣,赵晓娥,权富生,张涌.转EGFP基因山羊克隆胚的发育[J].畜牧兽医学报,2007,38(5):458-463.
    [39]Roblero L S, Guadarrama A, Ortiz M E, et al. High potassium concentration and the cumulus corona oocyte complex stimulate the fertilizing capacity of human spermatozoa[J]. Fertil Steril, 1990,54:328-332.
    [40]邓守龙,吕自力,王亮,王安江,曹文广‘.转GFP基因核移植牛胚胎的研究[J].中国畜牧兽医,2009,3(8):73-78
    [41]Joo B S, Kim M K, NaY J,et al.The mechanism of action of culture on embryo development in the mouse model:direct embryo to cell contact and there moval of deleterious components[J].Fertility and Sterility,2001,75(1):193-199.
    [1]Lee S L, Kumar B M, Kim J G, Ock S A, Jeon B G, Balasubramanian S, et al. Cellular composition and viability of cloned bovine embryos using exogene-transfected somatic cells [J]. Reprod Domest Anim,2007,42:44-52.
    [2]Jang G, Bhuiyan M M, Jeon H Y, Ko K H, Park H J, Kim M K, Kim J J, Kang S K, Lee B C, Hwang W S. An approach for producing transgenic cloned cows by nuclear transfer of cells transfected with human alpha 1-antitrypsin gene[J]. Theriogenology,2006,65:1800-1812.
    [3]Forsberg E L, Betthauser J, Strelchenko N, Golueke P, Childs L,Jurgella G, et al. Cloning non-transgenic and transgenic cattle[J]. Theriogenology,2001,55:269 Abstr.
    [4]Zhang L, Wang, S H, Dai Y P, Li N, Aberrant gene expression in deceased transgenic cloned calves[J]. Anim Reprod Sci,2009,112:182-89.
    [5]张传山,郭毅,谷瑞环,李善刚,李峰,王伟,丁雷,邢凤英,姚刚,陈学进.成体兔转基因成纤维细胞的克隆分离及其核移植研究[J].生物化学与生物物理进展,2009,36(9):1186-1192.
    [6]Campbell K H S, Fisher P, Chen W C, Choi I, Kelly R D W, Lee JH, Xhu J, Somatic cell nuclear transfer:Past, present and future perspectives[J]. Therigenology,2007,68(1):S214-S231.
    [7]Han Z M, Chen DY, Li JS, Sun Q Y, Wang P Y, Du J, Zhang H M.Flow cytometric cell-cycle analysis of cultured fibroblasts from the giant panda, Ailuropoda melanoleuca L[J]. Cell Biol Int.,2003,27(4):349-53.
    [8]Fahrudin M, Otoi T, Karja N W, Mori M, Murakami M, Suzuki T. Analysis of DNA fragmentation in bovine somatic nuclear transfer embryos using TUNEL[J]. Reproduction,2002,124:813-19.
    [9]Yang X Z, Smith S L, Tian X C, Lewin H A, Renard J P, Wakayama T. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning[J]. Nature,2007,39(3):295-302.
    [10]Dean W, Santos F, Reik W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer[J]. Cell Dev. Biol,2003,14:93-100.
    [11]Lin L, Xu W, Dai Y, Li N. DNA methylation changes in cell line from beta-lactoglobulin gene targeted fetus[J].Anim Reprod Sci,2009,112(3-4):402-8.
    [12]Jang G, Bhuiyan MM, Jeon HY, Ko KH, Park HJ, Kim MK, Kim JJ, Kang SK, Lee BC, Hwang WS. An approach for producing transgenic cloned cows by nuclear transfer of cells transfected with human alpha 1-antitrypsin gene[J]. Theriogenology,2006,65:1800-1812.
    [13]Arat S, Gibbons J, Rzucidlo SJ, Respess DS, Tumlin M, Stice SL. In vitro development of bovine nuclear transfer embryos from transgenic clonal lines of adult and fetal fibroblast cells of the same genotype[J]. Biol Reprod,2002,66:1768-74.
    [14]Bhuiyan M M, Cho J, Jang G, Park E, Kang S, Lee B, Hwang W.Effect of transfection and passage number of ear fibroblasts on in vitro development of bovine transgenic nuclear transfer embryos [J]. J Vet Med Sci,2004,66:257-61.
    [15]Ma H, Lu Z, Sun Y, Peng T, Shuai Z, Ma Y, et al. Selection of donor nuclei in somatic cell-mediated gene transfer using a co-transfection method[J]. J. Reprod. Dev,2007,53:95-104.
    [16]Campbell K H,Ritchie W A,Wilmut I.Nuclear cytoplasmic interactions during the first cell cycle of nuclear transfer reconstructed bovine embryos:Implications for deoxyribonucleicacid replication and development[J].Bio Reprod,1993,49:933-942.
    [17]Campbell K H,Loi P, Otaegui P J,et al.Cell cycle coordination in embryo cloning by nuclear transfer[J].Rev Reprod,1996,1:40-46.
    [18]孙国杰,李荣,戴蕴平,王海平,王莉莉,刘颖,丁方荣,卫恒习,李宁.转基因和再克隆对克隆胚胎细胞凋亡的影响[J].白然科学进展,2009,3:266-270.
    [19]Lee S L, Ock S A, Yoo J G, Kumar B M, Choe S Y, Rho G J.Efficiency of gene transfection into donor cells for nuclear transfer of bovine embryos [J]. Mol Reprod Dev,2005,72:191-200.
    [20]Zhao M T, Lin H, Liu F J, Quan F S, Wang G H, Liu J, Hua S, et al.Efficiency of human lactoferrin transgenic donor cell preparation for SCNT[J]. Theriogenology,2009,71:376-84.
    [21]Yang Z T, Shen W, Deng J X. Nuclear reprogramming of somatic nuclear transfer embryos [J]. Acta Genetica Sinica,2004,31(5):486-491.
    [22]DeChiaraT M, Efstratiadis A, Robertson E J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted By targeting[J].Nature,1990,345:78-80.
    [23]Burns J L, Hassan A B.Cell survival and proliferation are modified by insulin-like growth factor between days 9 and 10 of mouse gestation[J].Development,2001,128:3819-3830.
    [24]Barlow D P, Stoger R, Herrmann B G, et al. The mouse insulin-like growth factor-type 2 receptor is imprinted and closely linked to the Tme locus [J]. Nature,1991,349(1):84-87.
    [25]Wylie A A, Pulford D J, McVie-Wylie A J, et al. Tissue specific inactivation of murine M6P/IGF2R [J]. Am J Pathol,2003,162(1):321-328.
    [26]Liu C L, Huang Y S, Hosokawab M, Miyashita K, Hua M L. Inhibition of proliferation of a hepatoma cell line by fucoxanthin in relation to cell cycle arrest and enhanced gap junctional intercellular communication[J]. Chem Biol Interact,2009,182:165-72.
    [27]Aldea C, Alvarez C P, Folgueira L,et al.Rapid detection of herpes simplex virus DNA in genital ulcers by real-time PCR using SYBR green I dye as the detection signal [J].J Clin Microbiol,2002, 40(3):1060-1062.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700