用户名: 密码: 验证码:
力学环境下天然骨组织体外三维培养的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:
     用骨组织工程技术构建的人工骨在临床治疗中能对骨折和骨损伤病人能够起到修复和置换的作用,使其在体内能够部分或短期地代替患者原有骨的功能、维持基本的骨形态,然而,这种有生命的人工骨的生物活性、与机体天然骨的相容性、排异反应等诸多问题一直都没有解决,影响着人工骨研究的发展进程。因此,有必要首先对机体内的天然骨的结构、组成及其生长环境进行充分研究,利用天然骨的构成及生长的相关研究成果来开展骨组织工程的研究将会更有目的性和导向性。目前国内外就此方面的研究一致认为,骨是一种有生命的生物材料,又是能进行新陈代谢且具有重建行为的生物组织。这种活性组织在体内的生长和构建受力学因素作用明显。早在19世纪,Julis wolff就提出外部应力能影响骨的形状与结构;越来越多的研究也显示,骨组织的形状、骨量及其内部结构的变化取决于骨所处的应力环境的改变,在外来应力刺激下,其能自动地进行骨组织的聚集与吸收,形成完美的自控反馈系统,而其他的非生物力学因素则起辅助调控作用。然而,在机体内部对骨的力学环境研究受其它因素影响较多,因此,若能在体外制备骨生长的模型,并建立有效的力学培养环境,将有利于开展骨的生物力学研究;但至今,这方面的研究工作并不多见,而且难度也非常大。本项目以来自兔股骨头松质骨制备的骨组织体外模型进行体外力学刺激实验,目的是探讨在体外培养环境下,力学刺激对三维培养的骨组织及其内部相关骨细胞生长的影响,以便在组织层面对应力环境与骨生长的关系进行研究。
     研究方法:
     1.摘取3月龄新西兰大白兔的股骨,无菌处理后将股骨头的松质骨部分制备成直径为8mm,厚度为3mm的质骨体外培养模型;
     2.将制备好的松质骨体外培养模型放入含15%胎牛血清的DMEM培养基中,用本室设计的力学负载和循环灌流生物反应器系统进行培养,分别在培养3d、5d和7d后对其进行HE染色和电镜扫描,并和未培养的骨组织模型进行比较,评价模型在体外生长情况;
     3.利用Micro-CT对骨组织模型进行扫描及用Mimics、Gemagic等软件进行模型的3D重建,并用有限元分析软件分析表观应力1000με、2000με和3000με对模型内部的影响作用;然后结合骨组织在体内的生理应力作用情况及本课题组的前期研究结果,用动态负载和灌流生物反应器系统对体外培养的松质骨模型实施了1000με、2000με、3000με和4000με,频率为1Hz的表观应力刺激;
     4.分别在表观应力刺激5d和14d后,检测不同强度刺激组的碱性磷酸酶(AKP)的活性,并分析不同强度的表观应力刺激对松质骨内成骨细胞生长的影响作用;
     5.根据成骨细胞内AKP活性表达情况,分别设定1000με和2000με表观应力为力学负载组进行松质骨模型体外生长试验,然后用Instron5865力学性能测试机对其进行力学性能检测;用Micro-CT扫描对其进行骨密度(TMD)检测;依据Von-kossa染色试验和四环素钙黄绿素双标记试验评价力学刺激对新骨形成的影响;用ELISA、Western blot和qRT-PCR分别检测Collagen-I、OPG和BMP-2蛋白和基因在不同刺激组的表达变化;
     6.检测不同强度力学刺激对骨组织模型破骨细胞内抗酒石酸酸性磷酸酶(TRAP)活性表达的影响;分别在3000με和4000με,频率为1Hz的表观应力刺激下,用DNALadder试验检测骨组织模型细胞内DNA的变化,用Caspase活性试剂盒分别检测Caspase-3/8/9的活性。
     结果:
     1.制备好的松质骨体外培养模型经过修剪、去脂肪组织后,直径为8mm,厚度为3mm,大小均匀,表面平整,适合在动态力学负载系统上进行力学环境下培养;
     2.用力学负载和循环灌流生物反应器系统培养制备好的松质骨体外培养模型能够保证培养体上下各个面接受到均匀的培养基营养供应,分别培养3d、5d和7d后经过HE染色和扫描电镜检测显示,模型内活细胞形态明显,且分布密集,在细胞分布和形态上与未培养组无明显区别;
     3.松质骨培养模型经Micro-CT扫描后可以看见清晰的组织结构,完整密集,而通过对重建的3D模型有限元分析发现,当模型受到3000με的表观应力作用时,模型内超过4000με的节点数明显增加(1600个),而低于2000με的表观应力作用时,其内部多数节点受力保持在3000με以下;
     4.经过5d和14d的表观应力刺激培养,骨组织模型的AKP活性表达分别为27.350±0.071(控制组)、26.309±0.034U/gprot、28.121±0.212U/gprot、13.365±0.105U/gprot、10.161±0.121U/gprot和26.126±0.013U/gpro(t控制组)、29.181±0.041U/gprot、33.218±0.034U/gprot、11.151±0.108U/gprot、10.603±0.010U/gprot;分析显示,AKP活性在表观应力为1000με和2000με间呈递增趋势,而在3000με和4000με间呈递减趋势;
     5.在初步检测骨组织模型AKP活性基础之上,分别在培养14d和21d后,表观应力为1000με、2000με及未刺激组的其它检测结果是:弹性模量和最大受力负荷呈刺激强度和刺激时间递增,并且与未刺激组相比,2000με能显著增加模型的弹性模量和最大受力负荷,而1000με刺激时也已使模型的最大负荷发生显著变化;骨密度检测结果为模型培养21d后,刺激组的TMD都发生了显著增加,而培养14d则不能明显改善其骨密度;Von-kossa染色和钙黄绿素荧光双标记试验结果显示,力学负载刺激能促进新的类骨质形成,并随着负载强度和培养时间的增加,新生类骨质的生成也呈显著性增加,但Von-kossa染色和钙黄绿素荧光双标记的试验结果并未呈等量增加,显示出两种方法间又有一定的区别;分别对Collagen-I、OPG和BMP-2蛋白和基因表达的检测结果显示,三者都随刺激强度和时间增加呈依赖性,但在蛋白和基因层次的表达规律又不完全一致;
     6.分别经1000με、2000με、3000με和4000με表观应力刺激5d后,骨组织模型破骨细胞内TRAP活性变化结果分别为19.261±0.103(控制组)、18.911±0.081、18.126±0.134、15.961±0.089和16.023±0.101;而在3000με和4000με刺激下,DNA Ladder结果显示,细胞内DNA表达为明显的梯形条带,呈180-200bp大小;Caspase-3/8/9活性检测结果发现,3000με和4000με表观应力都能显著增强三者的表达活性。
     结论:
     1.在无菌条件下,采用三月龄新西兰大白兔股骨头松质骨制备的骨组织体外培养模型,结构和大小能够保持一致,适于用力学负载和循环灌流生物反应器系统进行培养;
     2.通过Micro-CT对松质骨体外培养模型的扫描可以对其进行3D模型的重建及有限元分析,后者从理论上分析了模型在不同力学强度刺激作用下,其内部的应力分布及结构变化,从而为探讨该骨组织模型实体在体外合适力学环境的培养奠定了理论基础;
     3.通过对不同表观应力(1000με、2000με、3000με和4000με)刺激作用下骨组织体外培养模型内AKP和TRAP的检测分析,以及一系列的力学性能、TMD、新骨形成、分子表达和细胞凋亡实验评价,初步认为体外培养该模型时,低强度(1000με和2000με)力学刺激可能会促进其内部的骨组织生长,并呈剂量和时间的依赖性;相反,高强度(3000με和4000με)的力学刺激则抑制了其内部细胞(Osteoblasts和Osteoclasts)的增殖和分化,这可能与高强度的力学刺激引起其内部细胞凋亡有关。
     4.该骨组织模型的成功制备及体外力学环境的培养是骨的体外细胞培养研究与体内整体研究的有效桥梁,对深入研究骨生长及发育与力学环境之间的关系具有基本的平台作用。
Background and objective:
     In orthopedic therapy, the artificial bone produced by bone tissue engineering technology isgenerally used to repair bone defects, which can replace original bone in function and appearacepartially or short-time. However, advancement of this artificial bone is limited due to its someissues,such as its bioactive in body, compatibility with the natural bone, rejection by the body,and so on. Therefore, it is necessary first of all to adequately study the structure, compositionand growth environment of natural bone in vivo and vitro, then basing on these research ofnatural bone, the related research in bone tissue engineering will be more purposeful andoriented.At present, studies indicated that bone is a biological material with bioactive, and hasthe characteristics of metabolism and reconstruction. In body, growth and remodeling of thesebioactive tissue could be apparently affected by mechanics, and in1900s, a researcher, Juliswolff, suggested that stress load toward bone could lead its development of appearance andstructure, other studies also agreed that the development of bone in appearance, bone mass andits structure would be affected by stress environment. In reponse to the external mechanicsstimulus, there is a self-control feedback system in bone which can antomatically regulate thefunction of bone formation or bone absorption,but non-biomechanical factors play only asupporting role in this self-feedback system. However,growth environment of bone in body iscomplex which is not towardly for research on effects of stress load to bone, so it is a good ideafor research of mechanics stimulus on bone with bone tissue vitro cultivation model. In thisstudy, we established cancellous bone explant models made from rabbit femur head, and bycultivation of models in a new stress load and circulatory perfusion biological reactor, the effectsof stress load stimulus on bone tissue were studied.
     Methods:
     1. The femur were extracted from3-month-old New Zealand white rabbit, then after beingsteriled with75%alcohol,the femur heads were made into cancellous bone explant models withdiameter of8mm and3mm thickness.
     2. The bone explant models were cultured used a new stress load and circulatory perfusionbiological reactor made by ourself in DMEM medium containing15%fetal bovine serum(FBS).Then, in3d,5d and7d of cultivation respectively, the effects of these models cultured in vitro were evaluated and comparing to the uncultured models by HE staining and scanning electronmicroscope.
     3. The bone tissue models were scaned by Micro-CT, then the computer3D model was rebuiltand analyzed by Mimics snd finite elememt(FEM) analysis. Considering the effects of FEManalysis and bone physiological stress in vivo,these bone tissue explant models were cultured inthe new stress load and circulatory perfusion biological reactor with1000με,2000με,3000μεand4000με in frequency of1Hz.
     4. After stress load stimuls for5d and4d, activity of AKP in these bone tissue models weretested, by activity of AKP, it would be understanded whether stress load could affectdifferentiation and growth of osteoblasts in these bone tissue models.
     5. Based on the expression of AKP activity in osteoblasts,bone explant models were designed incultivation with unstress load(control),1000με,2000με,3000με and4000με respectively infrequency of1Hz. Then,the bone tissue models cultured with1000με and2000με for14d and21d were evaluated by the following assay:mechanical propterties by Instron5865, bone mineraldensity(BMD) by Micro-CT, fresh bone formation by Von-kossa staining and tetracyclinecalcein double labeling assay, and expressing of Collagen-I, OPG and BMP-2in protein andgene detected by ELISA assay, Western-blot assay and Quantitative real time PCR assay.
     6. To bone explant models with3000με and4000με, the apoptosis occuring in these modelswere detected by activity of tartrate resistant acid phosphatase(TRAP), DNA expressing byDNA Ladder assay and caspase-3/8/9activity in5d.
     Results:
     1. The bone explant models which have been prepared from rabbit femur head have an uniformsize(diameter of8mm, thickness of3mm) and a smooth surface, it is suitable for cultivation inthe new stress load and circulatory perfusion biological reactor.
     2. With cultivation in the new stress load and circulatory perfusion biological reactor, these boneexplant models received an uniform nutrient supply,by the detection of HE staining andscanning electron microscopy in cultivation of3d,5d and7d, it indicated that there were livingcells which were intensive distribution in the models, but between unculture models and culturemodels, there were no significant about distribution and morphology of cells in it.
     3. By Micro-CT scaning, the clear tissue architecture could be found in the bone tissue models,and from the FEM analysis, we knew that there were majority of node in the3D models with4000με stress load when the3D model were stimulated with3000με, in turn, there weremajority of node with lower2000με stress load when the3D model were stimulated with lower2000με.
     4. By cultivation of5d and14d with mechanical load, AKP activity in bone tissue models were27.350±0.071U/gprot(unload),26.309±0.034U/gprot(1000με),28.121±0.212U/gprot(2000με),13.365±0.105U/gprot(3000με),10.161±0.121U/gprot(4000με) and26.126±0.013U/gprot,29.181±0.041U/gprot,33.218±0.034U/gprot,11.151±0.108U/gprot,10.603±0.010U/gprot; andit showed an increasing trend in the AKP activity of bone tissue models stimulated betweent1000με and2000με, in turn, it showed a decreasing trend between3000με and4000με.
     5. Many effects of mechanical load(1000με and2000με) stimulus on bone tissue vitrocultivation models in14d and21d were found as following:the elastic modulus and themaximum stress load were increasing with stimulus intensity increasing,and compared with thecontrol groups, there had been significant improvement in maximum stress load to1000μεstimulus; To BMD,there were all significant in1000με and2000με with cultivation of21d, butwith cultivation of14d, it wasn t;In Von-kossa staining and tetracycline calcein double labelingassay, there were all fresh osteoid to be found,and it is particularly obvious and widely incultivation for21d with2000με; To protein and gene expression of Collagen-I, OPG and BMP-2,it showed a positive correlation between protein expression or gene expression and stimuluslevel, but between ptotein expression and gene expression, it not appeard the same pattern.
     6. In the cultivation with3000με and4000με for5d, TRAP activity was obviously inhibitedcomparing to the control group; DNA ladder bands could also observate after agarose gelelectrophoresis, it appeared more DNA fragmentation in180-200bp; Compared with the control,Caspase-3/8/9activity were apparently improved by the mechanical stimulus.
     Conclusion:
     1. The bone tissue explant models which were prepared from the3month-old New Land rabbitfemur head under sterile conditions were consistent in structure and size, and suitable forcultivation in vitro with a new stress load and circulatory perfusion bioreactor.
     2. The3D models were rebuilt from the bone tissue explant models and treated by FEMananlysis after Micro-CT scanning. The FEM analysis revealed in theory the effect of stress loadto bone tissue explant models.So we consider that it will help to culture the bone tissue explantmodels in vitro by the above work.
     3. These bone tissue explant models were tested in activity of AKP and TRAP after stressstimulus of1000με,2000με,3000με and4000με, and evaluated by some other assays, includingmechanical propties, BMD, fresh bone formation, molecular expression and apoptosis. From it,we knew that it could promote the growth of bone tissue explant models under low mechanicallevels such as1000με and2000με in a dose-and time-dependent manners. On the contrary, thedifferentiation and proliferation of cells(osteoblasts and osteoclasts) in the bone tissue explant models could be inhibited under high mechanical levels such as3000με and4000με,which maybe related with apoptosis caused by mechanical stimulus.4. It was a effective bridge between research of bone cells cultured in vitro and bone study inbody to bone explant models successfully prepared in vitro and cultured in mechanicalenvironment which plays an important role in the association research between bone growth andmechanical environment.
引文
[1]赵玉堂主编。骨矿与临床,济南,黄河出版社,1995:33-34。
    [2]Frost H M. Bone“mass”and the“mechanostat”: a pro-posal.The Anatomical Record.1987,219(1):1-9.
    [3]Wolff J. Das Gesetz der Transformation der Knochen. Berlin: Kirschwald,1892:110-157.
    [4]Teitelbaum S. L., Ross F. P. Genetic regulation of osteoclast development and function. NatRev Genet,2003,4(8):638-649.
    [5]Karsenty G. Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet,2008,9:183-196.
    [6]Palumbo C. A three-dimensional ultrastructural study of osteoid-osteocytes in the tibia ofchick embryos. Cell Tissue Res,1986,246(1):125-131.
    [7]Bonewald LF. Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci.,2007,1116:281-290.
    [8]Verborgt O., Tatton N. A, Majeska R. J,et al. Spatial distribution of Bax and Bcl-2inosteocytes after bone fatigue: complementary roles in bone remodeling regulation? J BoneMiner Res,2002,17(5):907-914.
    [9] Fredric L Coe, Murray J. Favus Disorders of Bone and Mineral Metabolism. LippincottWilliams&Wilkins,2002:96-103.
    [10]Hauge E M, Qvesel D, Eriksen E F, et al. Cancellous bone remodeling occurs in specializedcompartments lined by cells expressing osteoblastic markers. J Bone Miner Res,2001,16,1575-1582.
    [11]Andersen T. L, Sondergaard T. E, Skorzynska K. E, et al. A physical mechanism forcoupling bone resorption and formation in adult human bone. Am. J. Pathol,2009,174,239-247.
    [12]Jüppner H, Abou-Samra A B, Freeman M, et al. A G protein-linked receptor for parathyroidhormone and parathyroid hormone-related peptide. Science,1991,15,254(5034):1024-1026.
    [13]Swarthout J. T, D'Alonzo R. C, Selvamurugan N, et al. Parathyroid hormone-dependentsignaling pathways regulating genes in bone cells. Gene,2002,9,282(1-2):1-17.
    [14] Li X, Qin L, Bergenstock M, Bevelock LM, et al. Parathyroid hormone stimulatesosteoblastic expression of MCP-1to recruit and increase the fusion of pre/osteoclasts. J BiolChem.2007282(45):33098-33106.
    [15]Ma Y. L, Cain R. L, Halladay D. L, et al. Catabolic effects of continuous human PTH (1-38)in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin andgene-associated bone formation. Endocrinology,2001,142(9):4047-4054.
    [16]Yang C. M, Chien C. S, Yao C. C, et al. Mechanical strain induces collagenase-3(MMP-13)expression in MC3T3-E1osteoblastic cells. J Biol Chem,2004,21,279(21):22158-22165.
    [17]McHugh K. P, Hodivala-Dilke K, Zheng M. H,et al. Mice lacking beta3integrins areosteosclerotic because of dysfunctional osteoclasts. J Clin. Invest,2000,105(4):433-440.
    [18]Everts V, Delaissé J.M, Korper W, et al. The bone lining cell: its role in cleaning Howship'slacunae and initiating bone formation. J Bone Miner Res,2002,17(1):77-90.
    [19]Tran Van P, Vignery A, Baron R. An electron-microscopic study of the bone-remodelingsequence in the rat. Cell Tissue Res,1982,225(2):283-292.
    [20]Tang Y, Wu X, Lei W, et al. TGF-beta1-induced migration of bone mesenchymal stem cellscouples bone resorption with formation. Nat Med,2009,15(7):757-765.
    [21]Pederson L, Ruan M, Westendorf J J, et al. Regulation of bone formation by osteoclastsinvolves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc. Natl. Acad. Sci.U.S.A.,2008,30,105(52):20764-20769.
    [22]Zhao C, Irie N, Takada Y, et al. Bidirectional ephrinB2-EphB4signaling controls bonehomeostasis. Cell Metab,2006,4(2):111-121.
    [23]van Bezooijen R. L, Roelen B. A, Visser A, et al. Sclerostin is an osteocyte-expressednegative regulator of bone formation,but not a classical BMP antagonist. J Exp Med,2004,15,199(6):805-814.
    [24]Li X, Zhang Y, Kang H, et al. Sclerostin binds to LRP5/6and antagonizes canonical Wntsignaling. J Biol Chem,2005,20,280(20):19883-19887.
    [25]Robling A. G, Niziolek P. J, Baldridge L. A, et al. Mechanical stimulation of bone in vivoreduces osteocyte expression of Sost/sclerostin. J Biol Chem,2008,29,283(9):5866-5875.
    [26]Hall BK, Miyake T. All for one and one for all: condensations and the initiation of skeletaldevelopment. Bioessays,2000,22:138-147.
    [27]Kronenberg HM. Developmental regulation of the growth plate. Nature,2003,423:332-336.
    [28]Scott CK, Hightower JA. The Matrix of Endochondral Bone Differs from the Matrix ofIntramembranous Bone. Calcif Tissue Int,1991,49:349-354.
    [29]Abzhanov A, Rodda SJ, McMahon AP, et al. Regulation of skeletogenic differentiation incranial dermal bone. Development,2007,34:3133-3144.
    [30]Vortkamp A, Lee K, Lanske B, et al. Regulation of rate of cartilage differentiation by Indianhedgehog and PTH-related protein. Science,1996,273:613-622.
    [31]Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bonehealing. Injury, Int J Care Injured,2005,36:1392-1404.
    [32]Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res,1998:S7-S21.
    [33]Staubli AE, De Simoni C, Babst R, et al. TomoFix:a new LCP-concept for open wedgeosteotomy of the medial proximal tibia--early results in92cases. Injury,2003,34(Suppl2):B55-62.
    [34]Grenshaw AH. Campbell's Operative Orthopaedics. Philadelphia,11th editon,2008,14-22.
    [35]Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am,2002,84-A:454-464.
    [36]Vunjak-Novakovic G, Goldstein SA.Basic Orthopaedic Biomechanics andMechano-biology. Philadelphia,3rd edition,2005,343-408.
    [37]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult humanmesenchymal stem cells. Science,1999,284:143-147.
    [38]Barrilleaux B, Phinney DG, Prockop DJ, et al. Ex vivo engineering of living tissues withadult stem cells. Tissue Eng,2006,12:3007-3019.
    [39]Mauney JR, Volloch V, Kaplan DL. Matrix-mediated retention of adipogenic differentiationpotential by human adult bone marrow-derived mesenchymal stem cells during ex vivoexpansion. Biomaterials,2005,26:6167-6175.
    [40]Mauney JR, Kaplan DL, Volloch V. Matrix-mediated retention of osteogenic differentiationpotential by human adult bone marrow stromal cells during ex vivo expansion. Biomaterials,2004,25:3233-3243.
    [41]Solchaga LA, Penick K, Porter JD, et al. FGF-2enhances the mitotic and chondrogenicpotentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol,2005,203:398-409.
    [42]Bosetti M, Boccafoschi F, Leigheb M, et al. Effect of different growth factors on humanosteoblasts activities: A possible application in bone regeneration for tissue engineering. BiomolEng,2007,24:613-618.
    [43]Gimble JM,Katz AJ, Bunnell BA.Adipose-derived stem cells for regenerative medicine.Circ Res,2007,100:1249-1260.
    [44]Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:Implications for cellbased therapies. Tissue Eng,2001,7:211-228.
    [45]Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells frombone marrow, umbilical cord blood, or adipose tissue. Stem Cells,2006,24:1294-1301.
    [46]Sudo K, Kanno M, Miharada K, et al. Mesenchymal progenitors able to differentiate intoosteogenic,chondrogenic, and/or adipogenic cells in vitro are present in most primaryfibroblast-like cell populations. Stem Cells,2007,25:1610-1617.
    [47]Mizuno M, Shindo M, Kobayashi D, et al. Osteogenesis by bone marrow stromal cellsmaintained on type I collagen matrix gels in vivo. Bone,1997,20:101-107.
    [48]Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng,2004,32:477-486.
    [49]Vacanti CA, Bonassar LJ, Vacanti MP, et al. Replacement of an avulsed phalanx withtissue-engineered bone. N Engl J Med,2001,344:1511-1514.
    [50]Grundel RE, Chapman MW, Yee T, et al. Autogeneic bone marrow and porous biphasiccalcium phosphate ceramic for segmental bone defects in the canine ulna. Clin Orthop Relat Res,1991:244-258.
    [51]Hutmacher DW, Schantz JT, Lam CX, et al. State of the art and future directions ofscaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med,2007,1:245-260.
    [52]Hofmann S, Hagenmuller H, Koch AM, et al. Control of in vitro tissue-engineered bone-likestructures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials,2007,28:1152-1162.
    [53]Uebersax L, Hagenmuller H, Hofmann S, et al. Effect of scaffold design on bonemorphology in vitro. Tissue Eng,2006,12:3417-3429.
    [54]Yang XB, Tare RS, Partridge KA, et al. Induction of human osteo-progenitor chemotaxis,proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin:osteoconductive biomimetic scaffolds for tissue engineering. J Bone Miner Res,2003,18:4757.
    [55]Yang XB, Bhatnagar RS, Li S, et al. Biomimetic collagen scaffolds for human bone cellgrowth and differentiation. Tissue Eng,2004,10:1148-1159.
    [56]Kirker-Head C, Karageorgiou V, Hofmann S, et al. BMP-silk composite matrices healcritically sized femoral defects. Bone,2007,41:247-255.
    [57]Meinel L, Karageorgiou V, Hofmann S, et al. Engineering bone-like tissue in vitro usinghuman bone marrow stem cells and silk scaffolds. J Biomed Mater Res A,2004,71A:25-34.
    [58]Lee JH, Rhie JW, Oh DY, et al. Osteogenic differentiation of human adipose tissue-derivedstromal cells (hASCs) in a porous three-dimensional scaffold. Biochem Biophys Res Commun,2008,370:456-460.
    [59]Meinel L, Karageorgiou V, Fajardo R, et al. Bone tissue engineering using humanmesenchymal stem cells: Effects of scaffold material and medium flow. Ann Biomed Eng,2004,32:112-122.
    [60]Kim HJ, Kim UJ, Vunjak-Novakovic G, et al. Influence of macroporous protein scaffoldson bone tissue engineering from bone marrow stem cells. Biomaterials,2005,26:4442-4452.
    [61]Kakudo N, Shimotsuma A, Miyake S, et al. Bone tissue engineering using humanadipose-derived stem cells and honeycomb collagen scaffold. J Biomed Mater Res A,2008,84A:191-197.
    [62]Ng AMH, Tan KK, Phang MY, et al. Differential osteogenic activity of osteoprogenitorcells on HA and TCP/HA scaffold of tissue engineered bone. J Biomed Mater Res A,2008,85A:301-312.
    [63]Gravel M, Gross T, Vago R, et al. Responses of mesenchymal stem cell tochitosan-coralline composites microstructured using coralline as gas forming agent.Biomaterials,2006,27:1899-1906.
    [64]Grayson WL, Bhumiratana S, Cannizzaro C, et al. Effects of initial seeding density andfluid perfusion rate on formation of tissue-engineered bone. Tissue Eng Part A,2008,14(11):1809-1820.
    [65]Goldstein AS, Juarez TM, Helmke CD, et al. Effect of convection on osteoblastic cellgrowth and function in biodegradable polymer foam scaffolds. Biomaterials,2001,22:1279-1288.
    [66]Sikavitsas VI, Bancroft GN, Mikos AG. Formation of three-dimensional cell/polymerconstructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. JBiomed Mater Res,2002,62:136-148.
    [67]Botchwey EA, Pollack SR, Levine EM, et al. Bone tissue engineering in a rotatingbioreactor using a microcarrier matrix system. J Biomed Mater Res,2001,55:242-253.
    [68]Sikavitsas VI, Bancroft GN, Holtorf HL, et al. Mineralized matrix deposition by marrowstromal osteoblasts in3D perfusion culture increases with increasing fluid shear forces. ProcNatl Acad Sci,2003,100:14683-14688.
    [69]Sikavitsas VI, Bancroft GN, Lemoine JJ, et al. Flow perfusion enhances the calcified matrixdeposition of marrow stromal cells in biodegradable nonwoven fiber mesh scaffolds. AnnBiomed Eng,2005,33:63-70.
    [70]Holtorf HL, Jansen JA, Mikos AG. Flow perfusion culture induces the osteoblasticdifferentiation of marrow stromal cell-scaffold constructs in the absence of dexamethasone. JBiomed Mater Res A,2005,72A:326-334.
    [71]Holtorf HL, Sheffield TL, Ambrose CG, et al. Flow perfusion culture of marrow stromalcells seeded on porous biphasic calcium phosphate ceramics. Ann Biomed Eng,2005,33:12381-12388.
    [72]Braccini A, Wendt D, Jaquiery C, et al. Three-dimensional perfusion culture of human bonemarrow cells and generation of osteoinductive grafts. Stem Cells,2005,23:1066-1072.
    [73]Datta N, Pham QP, Sharma U, et al. In vitro generated extracellular matrix and fluid shearstress synergistically enhance3D osteoblastic differentiation. Proc Natl Acad Sci,2006,103:2488-93.
    [74]Scaglione S, Braccini A, Wendt D, et al. Engineering of osteoinductive grafts by isolationand expansion of ovine bone marrow stromal cells directly on3D ceramic scaffolds. BiotechnolBioeng,2006,93:181-187.
    [75]Carano RAD, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today,2003,8:980-989.
    [76]Polykandriotis E, Arkudas A, Horch RE, et al. Autonomously vascularized cellularconstructs in tissue engineering: opening a new perspective for biomedical science. J Cell MolMed,2007,11:6-20.
    [77]Kneser U, Schaefer DJ, Polykandriotis E, et al. Tissue engineering of bone: thereconstructive surgeon's point of view. J Cell Mol Med,2006,10:7-19.
    [78]Pelissier P, Villars F, Mathoulin-Pelissier S, et al. Influences of vascularization andosteogenic cells on heterotopic bone formation within a madreporic ceramic in rats. PlastReconstr Surg,2003,11:1932-1941.
    [79]Jain RK. Molecular regulation of vessel maturation. Nat Med,2003,9:685-693.
    [80]Laschke MW, Harder Y, Amon M, et al. Angiogenesis in tissue engineering: Breathing lifeinto constructed tissue substitutes. Tissue Eng,2006,12:2093-2104.
    [81]Peters MC, Polverini PJ, Mooney DJ. Engineering vascular networks in porous polymermatrices. J Biomed Mater Res,2002,60:668-678.
    [82]Valarmathi MT, Yost MJ, Goodwin RL, et al. A three-dimensional tubular scaffold thatmodulates the osteogenic and vasculogenic differentiation of rat bone marrow stromal cells.Tissue Eng Part A,2008,14:491-504.
    [83]Miranville A, Heeschen C, Sengenes C, et al. Improvement of postnatal neovascularizationby human adipose tissue-derived stem cells. Circulation,2004,110:349-355.
    [84]Peters MC, Polverini PJ, Mooney DJ. Engineering vascular networks in porous polymermatrices. J Biomed Mater Res,2002,60:668-678.
    [85]Unger RE, Sartoris A, Peters K, et al. Tissue-like self-assembly in cocultures of endothelialcells and osteoblasts and the formation of microcapillary-like structures on three-dimensionalporous biomaterials. Biomaterials,2007,28:3965-3776.
    [86]Rouwkema J, De Boer J, Van Blitterswijk CA. Endothelial cells assemble into a3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng,2006,12:2685-93.
    [87]Kaigler D, Krebsbach PH, Wang Z, et al. Transplanted endothelial cells enhance orthotopicbone regeneration. J Dent Res,2006,85:633-637.
    [88]Meury T, Verrier S, Alini M. Human endothelial cells inhibit BMSC differentiation intomature osteoblasts in vitro by interfering with osterix expression. J Cell Biochem,2006,98:992-1006.
    [89]Wenger A, Stahl A, Weber H, et al. Modulation of in vitro angiogenesis in athree-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng,2004,10:1536-1547.
    [90]Phillips PG, Birnby LM, Narendran A. Hypoxia induces capillary network formation incultured bovine pulmonary microvessel endothelial cells. Am J Physiol,1995,268: L789-800.
    [91]Xu Y, Malladi P, Chiou M, et al. In vitro expansion of adiposederived adult stromal cells inhypoxia enhances early chondrogenesis. Tissue Eng,2007,13:2981-2993.
    [92]Grayson WL, Zhao F, Bunnell B, et al. Hypoxia enhances proliferation and tissue formationof human mesenchymal stem cells. Biochem Biophys Res Commun,2007,358:948-53.
    [93]Martin-Rendon E, Hale SJ, Ryan D, et al. Transcriptional profiling of human cord bloodCD133+and cultured bone marrow mesenchymal stem cells in response to hypoxia. Stem Cells,2007,25:1003-1012.
    [94]Fehrer C, Brunauer R, Laschober G, et al. Reduced oxygen tension attenuates differentiationcapacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell,2007,6:745-757.
    [95]Scherberich A, Galli R, Jaquiery C, et al. Three-dimensional perfusion culture of humanadipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructswith intrinsic vascularization capacity. Stem Cells,2007,25:1823-1829.
    [96]Giannoudis PV, Einhorn TA, Marsh D. Fracture healing:the diamond concept. Injury,2007,38(Suppl4): S3-6.
    [97]Lacroix D, Prendergast PJ. A mechano-regulation model for tissue differentiation duringfracture healing: analysis of gap size and loading. J Biomech,2002,35(9):1163-1171.
    [98]Perren SM. Physical and biological aspects of fracture healing with special reference tointernal fixation. Clin Orthop Relat Res,1979,138:175-196.
    [99]Jagodzinski M, Krettek C. Effect of mechanical stability on fracture healing–an update.Injury,2007,38(Suppl1): S3-10.
    [100]Epari DR, Schell H, Bail HJ, et al. Instability prolongs the chondral phase during bonehealing in sheep. Bone,2006,38(6):864-870.
    [101]Schell H, Epari DR, Kassi JP, et al. The course of bone healing is influenced by the initialshear fixation stability. J Orthop Res,2005,23(5):1022-1028.
    [102]Claes L, Eckert-Hübner K, Augat P. The effect of mechanical stability on localvascularization and tissue differentiation in callus healing. J Orthop Res,2002,20(5):1099-1105.
    [103]Lienau J, Schell H, Duda GN, et al. Initial vascularization and tissue differentiation areinfluenced by fixation stability. J Orthop Res,2005,23(3):639-645.
    [104]Babis GC, Soucacos PN. Bone scaffolds: The role of mechanical stability andinstrumentation. Injury,2005,36(Suppl): S38-S44.
    [1]RubinC, TurnerA S, BainS, et al. Anabolism low mechanical signals strengthen long bones.Nature,200l,412(6847):603-604.
    [2]Saez JC, Berthoud VM, Branes MC, et al. Plasma membrane channels formed by connexins:their regulation and functions. Physiol Rev,2003,83:1359-1400.
    [3]Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellularcommunication. Annu Rev Biochem,1996,65:475-502.
    [4]Schirrmacher K, Schmiz I, Winterhager E, et al. Characterization of gap junctions betweenosteoblast-like cells in culture. Calcif Tissue Int,1992,51:285-290.
    [5]Thi MM, Kojima T, Cowin SC, Weinbaum S, et al. Fluid flow stress remodels expressionand function of junctional proteins in cultured bone cells. Am J Physiol(Cell Physiol),2003,284:C389-C403.
    [6]Cheng MZ, Zaman G, Lanyon LE. Estrogen enhances the stimulation of bone collagensynthesis by loading and exogenous prostacyclin,but not prostaglandin E2, in organ cultures ofrat ulnae. J Bone Miner Res,1994,9(6):805-816.
    [7]Rawlinson SC, el-Haj AJ, Minter SL, et al. Loading-related increases in prostaglandinproduction in cores of adult canine cancellous bone in vitro: a role for prostacyclin in adaptivebone remodeling? J Bone Miner Res,1991,6(12):1345-1351.
    [8]Severson AR, Rothberg PF, Pratt RM, et al. Effect of parathyroid hormone on theincorporation of3H-glucosamine into hyaluronic acid in bone organ culture. Endocrinology,1973,92(4):1282-1285.
    [9]Kaji T, Kawatani R, Hoshino T, et al. A suitable culture medium for ossification ofembryonic chick femur in organ culture. Bone Miner,1990,9(2):89-100.
    [10]Van Loon JJ, Bervoets DJ, Burger EH, et al. Decreased mineralization and increasedcalcium release in isolated fetal mouse long bones under near weightlessness. J Bone Miner Res,1995,10(4):550-557.
    [11]Michael J. Jaasma, Niamh A.Plunkett, Fergal J.O Brien, et al. Design and validation of adynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds. Journalof Biotechnology,2008,133:490-496.
    [12]Jones DB, Broeckmann E, Pohl T, et al. Development of a mechanical testing and loadingsystem for trabecular bone studies for long term culture. Eur Cell Mater,2003,5:48-60.
    [13]CM Davies1, DB Jones, MJ Stoddart, et al. Mechanically loaded ex vivo bone culturesystem ZETOS: systems and culture preparation. European Cell and Materials,2006,26(11):57-75.
    [14]Casey L, Korecki Jeffrey J, MacLean James C, et al. Characterization of an in vitrointervertebral disc organ culture system. Eur Spine J,2007,16:1029-1037.
    [15]陈学忠,侍才洪,李瑞欣等。新型动态载荷与循环灌流生物反应器系统的设计。医用生物力学,2011,26(5):441-447。
    [16]Burger EH. in Bone Mechanics Handbook.New York: Ed.Cowin SC.CRC Press,2001,Chapter28,1-16.
    [17]Un K, Bevill G, Keaveny TM. The effects of side-artifacts on the elastic modulus oftrabecular bone. J Biomech,2006,39(11):1955-1963.
    [18]Harrigan TP, Jasty M, Mann RW, Harris WH. Limitations of the continuum assumption incancellous bone. J Biomech,1988,21(4):269-275.
    [19]Linde F, Hvid I, Madsen F. The effect of specimen geometry on the mechanical behaviourof trabecular bone specimens. J Biomech,1992,25:359-368.
    [20]Frost HM, A determinant of bone architecture:the minimum effective strain. Clin OrthopRel Res,1983,175:286.
    [1]Visconti LA, Yen EHK, Johnson RB. Effect of strain on bone nodule formation by ratosteogenic cells in vitro. Archives of Oral Biology,2004,49(6):485-492.
    [2]Tanaka SM. A new mechanical stimulator for cultured bone cells using piezoelectric actuator.Journal of Biomechanics,1999,32(4):427-430.
    [3]Cheng B, Kato Y, Zhao S,et al. PGE(2) is essential for gap junction-mediated intercellularcommunication between osteocyte-like MLO-Y4cells in response to mechanical strain.Endocrinology,2001,142(8):3464-3473.
    [4]Peake MA, Cooling LM, Magnay JL, et al. Selected contribution: regulatory pathwaysinvolved in mechanical induction of c-fos gene expression in bone cells. Journal of AppliedPhysiology,2000,89(6):2498-2507.
    [5]Meyer U, Meyer T, Wiesmann HP, et al. The effect of magnitude and frequency ofinterfragmentary strain on the tissue response to distraction osteogenesis. Journal of Oral andMaxillofaciale Surgery,1999,57(11):1331-1339.
    [6]Saunders MM, Taylor AF, Du C, et al. Mechanical stimulation effects on functional endeffectors in osteoblastic MG-63cells. Journal of Biomechanics,2006,39(8):1419-1427.
    [7]宫元伟,闫玉仙,张媛等。基底拉伸应变对小鼠骨细胞Rnnx2表达的影响。中国骨质疏松杂志,2011,17(3):185-188。
    [8]Kaspar D, Seidl W, Neidlinger-Wilke C, et al. Dynamic cell stretching increases humanosteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkalinephosphatase activity. Journal of Biomechanics,2000,33(1):45-51.
    [9]Mauney JR, Sjostorm S, Blumberg J, et al. Mechanical stimulation promotes osteogenicdifferentiation of human bone marrow stromal cells on3-D partially demineralized bonescaffolds in vitro. Calcified Tissue International,2004,74(5):458-468.
    [10]Wood MA, Yang Y, Thomas PBM, et al. Utilising dihydropyridine-release strategies toenhance load effects in engineered human bone constructs. Tissue Engineering,2006,12:2489-2497.
    [11]Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. Pergamon Press, New York,USA,1988.
    [12]Yang Y, Wood MA, ElHaj AJ. Enhancement of mechanical signals for tissue engineeringbone by mechano-active scaffolds.Abstract of conference: ECM V The cell biomaterials reaction,DAVOS, Switzerland, European Cells and Materials,2004,7, supplement1:35.
    [13]Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. Trends inBiotechnology,2004,22,80-86.
    [14]Gemmiti CV, Guldberg RE. Fluid flow increases type II collagen deposit and tensilemechanical properties in bioreactor-grown tissueengineered cartilage. Tissue Engineering,2006,12,469-479.
    [15]Baas E, Kuiper JH, Yang Y, et al. In vitro bone growth responds to local mechanical strain inthree-dimensional polymer scaffolds. Journal of Biomechanics,2010,43:733-739.
    [16]Meyer U, Buchter A, Nazer N, et al. Design and performance of a bioreactor system formechanically promoted three dimensional tissue engineering. British Journal of Oral andMaxillofacial Surgery,2006,44,134-140.
    [17]Lacroix D, Sandino C, Villagomez M. A micro-finite element analysis of fluidic and solidmechanical stimuli in bone tissue engineering scaffolds. Journal of Biomechanics,2006,39(Supplement1):415.
    [18]陈学忠,侍才洪,李瑞欣等。新型动态载荷与循环灌流生物反应器系统的设计。医用生物力学,2011,26(5):441-447。
    [19]李瑞欣。力学作用下微、纳米HA/CS共混体系中微观结构参数对成骨前体细胞MC3T3-E1生物学特性的影响。2012:67-96。
    [20]刘璐。组织工程化培养模型下力学载荷与植物雌激素联合调控小鼠前成骨细胞及骨重建机制的研究。2012:67-77.
    [21]Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and thebone mass effects of mechanical and nonmechanical agents. Bone Miner,1987,2(2):73-85.
    [22]聂志红,王祥善,王海燕。当代临床医学丛书2骨科分册。北京:中国古籍出版社,2008,19-23。
    [23]Liu lu, Guo yong, Wan Zongming, et al. Effects of Phytoestrogen α-ZAL and MechanicalStimulation on Proliferation,Osteoblastic Differentiation and OPG/RANKL Expression inMC3T3-E1Pre-Osteoblasts. Cel. Mol. Bioeng. DOI10.1007/s12195-012-0244-9.
    [24]Wang L, Zhang XZ, Guo Y, et al. Involvement of BMPs/Smad Signaling Pathway inMechanical Response in Osteoblasts. Cell Physiol Biochem,2010,26:1093-1102.
    [25]闫玉仙,宋梅,张西正等。基底拉伸应变对小鼠三种骨组织细胞BMP-2mRNA表达的影响。中国老年学杂志,2010,30(21):3092-3095。
    [26]Chen XY, Zhang XZ, Guo Y, et al. The establishment of a mechanobiology model of boneand functional adaptation in response to mechanical loading. Clinical Biomechanics,2008,s88-95.
    [27]赵红斌,吕同德,张西正等。机械力对间充质干细胞向成骨细胞分化的力学响应机制。生物化学与生物物理进展,2007,34(7):718-723。
    [28]Zhang QH, Teo EC, Ng HW, et a1. Finite element analysis of moment-rotation relationshipsfor human cervical spine. J Biomech,2006,39(1):189-193.
    [1]Dibbets J M H. One century of Wolff s law. In: Carlson D S,Goldstein S A, eds. BoneDynamics in Orthodontic and Orthopaedic Treatment.Center for Human Growth andDevelopment. University of Michigan Press, Ann Arbor.1992:1-13.
    [2]Frost H M. Bone“mass”and the“mechanostat”:a pro-posal.The Anatomical Record.1987,219(1):1-9.
    [3]Wolff J. Das Gesetz der Transformation der Knochen. Berlin:Kirschwald,1892:110-157.
    [4]Wang L,zhang X,Guo Y,et al.Involvement of BMPs/Smad signaling pathway in mechanicalresponse in osteoblasts.Cell Physiol Biochem,2010,26(6):1093-1102.
    [5]Yu-xian Yan, Yuan-wei Gong, Yong Guo, et al. Mechanical Strain Regulates OsteoblastProliferation through Integrin-Mediated ERK Activation. PLoS ONE,2012,7(4): e35709.
    [6]Michael J. Jaasma, Niamh A. Plunkett, Fergal J.O Brien. Design and validation of adynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds. Journalof Biotechnology,2008,133:490-496.
    [7]Jones DB, Broeckmann E, Pohl T, et al. Development of a mechanical testing and loadingsystem for trabecular bone studies for long-term culture. Eur Cell Mater,2003,5:48-59.
    [8]Anderson HC. Mechanism of mineral formation in bone. Lab Invest,1989,60:320-330.
    [9]Rubin CT, Lanyon LE. Reglulation of bone formation by appied dynamic loads. J Bone JointSurg Am,1984,66:397-402.
    [10]Lanyon LE, Rubin CT. Static versus dynamic loads as an influence on bone remodeling. JBiomech,1984,17:897-905.
    [11]Pead MJ, Skerry TM, Lanyon JE. Direct transformation from quiescence to bone formationin the adult periosteum foolowing a singe brief period of bone loading. J Bone Miner Res,1988,3:647-656.
    [12]Lanyon LE, Rubin CT, Baust G.Modulation of bone loss during calcium insufficiency bycontrolled dynamic loading. Calcif Tissue Int,1986,38:209-216.
    [13]Lanyon LE. Control of bone architecture by functional load bearing. J Bone Miner Res,1992, Suppl2: S369-375.
    [14]Turner CH, Pavalko FM. Mechanotransduction and functional reponse of the skeleton tophysical stress:the mechanisms and mechanics of bone adaptation. J Orthop Sci,1998,3:346-355.
    [15]Dodd JS, Raleigh JA, Gross TS. Osteocyte hypoxia: a novel mechanotransduction pathway.Am J Physiol,1999,277(3Pt.1): C598-602.
    [16]Yourek G, McCormick SM, Mao JJ, et al. Shear stress induces osteogenic differentiation ofhuman mesenchymal stem cells. Regen Med,2010,5(5):713-724.
    [17]Yanagisawa M, Suzuki N, Mitsui N, et al. Compressive force stimulates the expression ofosteogenesis-related transcription factors in ROS17/2.8cells. Arch OralBiol,2008,53(3):214-219.
    [18]Haasper C, Jagodzinski M, Drescher M, et al. Cyclic strain induces FosB and initiatesosteogenic differentiation of mesenchymal cells. Exp Toxicol Pathol,2008,59(6):355-363.
    [19]Yamazaki M, Fukushima H, shin M. Tumor necrosis factor alpha represses bonemorphogenetic protein(BMP)signaling by interfering with the DNA binding of Smads throughthe activation of NF-kappaB. J Biol Chem,2009,284:35987-35995.
    [20]Lieb E, Milz S, Vogel T, et al. Effects of transforming growth factor-β1on bonelike tissueformation in three-dimensional cell culture. Tissue engineering,2004,10(9/10):1399-1413.
    [21]Markus D Schofer, Christina Theisen, Fei Chen, et al. Functionalisation of PLLA nanofiberscaffolds using a possible cooperative effect between collagen type I and BMP-2:impact ongrowth and osteogenic differentiation of human mesenchymal stem cells. Journal of materialsscience.Materials in Medicine,2011,22(7):1753-1762
    [22]Lars S, Dirk JS, Olaf B, et al. Differentiation of osteoblasts in three-dimensional culture inprocessed cancellous bone matrix: quantitative analysis of gene expression based on real-timereverse transcription-polymerase chain reaction. Tissue engineering,2005,11(5/6):855-864.
    [23]Hakeda Y, Kobayashi Y, Yamaguchi H, et al. Osteoclastogenesis inhibitory factor(OCIF)directly inhibits bone-resorbing activity of isolated mature osteoclasts. B iochem Biophys ResCommun,1998,251(3):796-801.
    [1]Burr DB, Martin RB,Schaffler MB,et al.Bone remodeling in response to in vivo fatiguemicrodamage. J Biomech,1985,18:189-200.
    [2]Enlow DH. Functions of the Haversian system. Am J Anat,1962,110:269-305.
    [3]Parfitt AM, Bone age, mineral density, and fatigue damage. Calcif Tissue Int,1993,53(Suppl1): S82-S85.
    [4]Schaffler MB. Role of bone turnover in microdamage. Osteoporos Int,2003,14(Suppl5):73-80.
    [5]Bentolila V, Boyce TM, Fyhrie DP, et al. Intracortical remodeling in adult rat long bonesafter fatigue loading. Bone,1998,23:275-281.
    [6]Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone,1993,14:103-109.
    [7]Frost HM. Presence of microscopic cracks in vivo in bone. Henry Ford Hosp Med Bull,1960,8:25-35.
    [8]ParfittAM. Hormonal influences on bone remodeling and bone loss: Application to themanagement of primary hyperparathyroidism. Ann Intern Med,1996,125:413-415.
    [9]Burr DB. Targeted and nontargeted remodeling. Bone,2002,30:2-4.
    [10]Martin RB. Is all cortical bone remodeling initiated by microdamage? Bone,2002,30:8-13.
    [11]Luis Cardoso, Brad C Herman, Olivier Verborgt, et al. Osteocyte Apoptosis ControlsActivation of Intracortical Resorption in Response to Bone Fatigue. JOURNAL OF BONEAND MINERAL RESEARCH,2009,24(4):597-605.
    [12]Frost H M. Bone“mass”and the“mechanostat”: a pro-posal. The Anatomical Record,1987,219(1):1-9.
    [13]Naumann FL, Grant MC, Dhaliwal SS. Changes in cervical spine bone mineral density inresponse to flight training. Aviat Space Environ Med,2004,75(3):255-259.
    [14]Huang C, Ogawa R. Effect of hydrostatic pressure on bone regeneration using humanmesenchymal stem cells. Tissue Eng Part A,2012,18(19-20):2106-2113.
    [15]Burger EH, Klein-Nulend J. Mechanotransduction in bone--role of the lacunocanalicularnetwork. Faseb J,1999,13: S101-112.
    [16]Cowin SC, Moss-Salentijn L, Moss ML. Candidates for the mechanosensory system in bone.J Biomech Eng,1991,113:191-197.
    [17]Burr DB, Martin RB, Schaffler MB, et al. Bone remodeling in response to in vivo fatiguemicrodamage. J Biomech,1985,18:189-200.
    [18]Iqbal J, Zaidi M. Molecular regulation of mechanotransduction. Biochem. Biophys.Res.Commun,2005,328(3):751-755.
    [19]Enlow DH. Functions of the Haversian system. Am J Anat,1962,110:269-305.
    [20]Schaffler MB. Role of bone turnover in microdamage. Osteoporos Int,2003,14(5):73-80.
    [21]Yellowley CE, Li Z, Zhou Z, et al. Functional gap junctions between osteocytic andosteoblastic cells. J Bone Miner Res,2000,15(2):209-217.
    [22]You L, Cowin SC, Schaffler MB, et al. A model for strain amplification in the actincytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech,2001,34(11):1375-1386.
    [23]You LD, Weinbaum S, Cowin SC, et al. Ultrastructure of the osteocyte process and itspericellular matrix. Anat Rec,2004,278(2):505-513.
    [24] Bonewald LF. Mechanosensation and transduction in osteocytes. Bone Key-Osteovision,2006,3(10):7-15.
    [25]Boudreau N, Sympson CJ, Werb Z, et al. Suppression of ICE and apoptosis in mammaryepithelial cells by extracellular matrix. Science,1995,267(5199):891-893.
    [26]Earnshaw WC. Nuclear changes in apoptosis. Curr Opin Cell Biol,1995,7(3):337-343.
    [27]Kerr JF, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon withwide-ranging implications in tissue kinetics. Br J Cancer,1972,26(4):239-257.
    [28]Wilson SE, Mohan RR, Hong J, et al. Apoptosis in the cornea in response to epithelialinjury: Significance to wound healing and dry eye. Adv Exp Med Biol,2002,506(Pt B):821-826.
    [29]Desmoulière A, Badid C, Bochaton-Piallat ML, et al. Apoptosis during wound healing,fibrocontractive diseases and vascular wall injury. Int J Biochem Cell Biol,1997,29(1):19-30.
    [30]Bederson JB, Levy AL, Ding WH, et al. Acute vasoconstriction after subarachnoidhemorrhage. Neurosurgery,1998,42:352-360.
    [31]Rodriguez M, Lucchesi BR, Schaper J. Apoptosis in myocardial infarction.Ann Med,2002,34(6):470-479.
    [32]Ruoslahti E, Reed JC.Anchorage dependence, integrins, and apoptosis. Cell,1994,77(4):477-478.
    [33]Loo DT, Rillema JR. Measurement of cell death. Methods Cell Biol,1998,57:251-264.
    [34]Philchenkov A. Caspases:potential targets for regulating cell death. J Cell Mol Med,2004,8(4):432-444.
    [1] Boos AM, Loew JS, Deschler G, et al.Directly auto-transplanted mesenchymal stem cellsinduce bone formation in a ceramic bone substitute in an ectopic sheep model. J Cell Mol Med.2011,15(6):1364-78.
    [2] Lee CH, Marion NW, Hollister S,et al. Tissue formation and vascularization in anatomicallyshaped human joint condyle ectopically in vivo.Tissue Eng Part A.2009,15(12):3923-30.
    [3]Tortelli F, Tasso R, Loiacono F,et al.The development of tissue-engineered bone of differentorigin through endochondral and intramembranous ossification following the implantation ofmesenchymal stem cells and osteoblasts in a murine model..Biomaterials.2010,31(2):242-9.
    [4] Melero-Martin JM, De Obaldia ME, Allen P,et al.Host myeloid cells are necessary forcreating bioengineered human vascular networks in vivo..Tissue Eng Part A.2010,16(8):2457-66.
    [5] Rouwkema J, Westerweel PE, de Boer J,et al. The use of endothelial progenitor cells forprevascularized bone tissue engineering. Tissue Eng Part A.2009,15(8):2015-27.
    [6] Graziano A, d'Aquino R, Laino G,et al.Dental pulp stem cells: a promising tool for boneregeneration. Stem Cell Rev.2008,4(1):21-6.
    [7] Scherberich A, Müller AM, Sch fer DJ,et al.Adipose tissue-derived progenitors forengineering osteogenic and vasculogenic grafts. J Cell Physiol.2010,225(2):348-53.
    [8] Cheung WK, Working DM, Galuppo LD, et al.Osteogenic comparison of expanded anduncultured adipose stromal cells. Cytotherapy.2010,12(4):554-62.
    [9] d'Aquino R, De Rosa A, Laino G,et al.Human dental pulp stem cells: from biology to clinicalapplications. J Exp Zool B Mol Dev Evol.2009,312B(5):408-15.
    [10] Zhou J, Lin H, Fang T,et al.The repair of large segmental bone defects in the rabbit withvascularized tissue engineered bone. Biomaterials.2010,31(6):1171-9.
    [11] Ma J, van den Beucken JJ, Yang F,et al. Coculture of osteoblasts and endothelial cells:optimization of culture medium and cell ratio. Tissue Eng Part C Methods.2011,17(3):349-57.
    [12] Aguirre A, Planell JA, Engel E.Dynamics of bone marrow-derived endothelial progenitorcell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis.Biochem Biophys Res Commun.2010,400(2):284-91.
    [13] Verseijden F, Posthumus-van Sluijs SJ,et al. Adult human bone marrow-and adiposetissue-derived stromal cells support the formation of prevascular-like structures from endothelialcells in vitro. Tissue Eng Part A.2010,16(1):101-14.
    [14] Li H, Daculsi R, Grellier M, et al.The role of vascular actors in two dimensional dialogueof human bone marrow stromal cell and endothelial cell for inducing self-assembled network.PLoS One.2011,6(2):e16767.
    [15] Hofmann A, Ritz U, Verrier S,et al.The effect of human osteoblasts on proliferation andneo-vessel formation of human umbilical vein endothelial cells in a long-term3D co-culture onpolyurethane scaffolds. Biomaterials.2008,29(31):4217-26.
    [16] Steffens L, Wenger A, Stark GB,et al.In vivo engineering of a human vasculature for bonetissue engineering applications. J Cell Mol Med.2009,13(9B):3380-6.
    [17] Grellier M, Bordenave L, Amédée J. Cell-to-cell communication between osteogenic andendothelial lineages: implications for tissue engineering. Trends Biotechnol.2009,27(10):562-71.
    [18] Choong CS, Hutmacher DW, Triffitt JT. Co-culture of bone marrow fibroblasts andendothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissueengineering. Tissue Eng.2006,12(9):2521-31.
    [19] Yee D, Hanjaya-Putra D, Bose V,et al.Hyaluronic Acid hydrogels support cord-likestructures from endothelial colony-forming cells. Tissue Eng Part A.2011,17(9-10):1351-61.
    [20] Yu H, Wooley PH, Yang SY.Biocompatibility of Poly-epsilon-caprolactone-hydroxyapatitecomposite on mouse bone marrow-derived osteoblasts and endothelial cells. J Orthop Surg Res.2009,4:5.
    [21] Chou AM, Sae-Lim V, Hutmacher DW,et al. Tissue engineering of a periodontalligament-alveolar bone graft construct. Int J Oral Maxillofac Implants.2006,21(4):526-34.
    [22] Lindhorst D, Tavassol F, von See C,et al. Effects of VEGF loading on scaffold-confinedvascularization. J Biomed Mater Res A.2010,95(3):783-92.
    [23] Santos MI, Tuzlakoglu K, Fuchs S,et al.Endothelial cell colonization and angiogenicpotential of combined nano-and micro-fibrous scaffolds for bone tissueengineering..Biomaterials.2008,29(32):4306-13.
    [24] Tavassol F, Schumann P, Lindhorst D,et al. Accelerated angiogenic host tissue response topoly(L-lactide-co-glycolide) scaffolds by vitalization with osteoblast-like cells. Tissue Eng PartA.2010,16(7):2265-79.
    [25] Graziano A, d'Aquino R, Cusella-De Angelis MG,et al. Scaffold's surface geometrysignificantly affects human stem cell bone tissueengineering. J Cell Physiol.2008,214(1):166-72.
    [26] Chi FL, Wang SJ, Liu HJ.Auricle reconstruction with a nickel-titanium shape memory alloyas the framework. Laryngoscope.2007,117(2):248-52.
    [27] Zhou W, Han C, Song Y,et al.The performance of bone marrow mesenchymal stemcell-implant complexes prepared by cell sheet engineering techniques. Biomaterials.2010,31(12):3212-21.
    [28] Hong Z, Luz GM, Hampel PJ,et al.Mono-dispersed bioactive glass nanospheres:preparation and effects on biomechanics of mammalian cells. J Biomed Mater Res A.2010,95(3):747-54.
    [29] Chevrier A, Hoemann CD, Sun J, et al. Chitosan-glycerol phosphate/blood implantsincrease cell recruitment, transient vascularization and subchondral bone remodeling in drilledcartilage defects. Osteoarthritis Cartilage.2007,15(3):316-27.
    [30] Kokemueller H, Spalthoff S, Nolff M,et al.Prefabrication of vascularized bioartificial bonegrafts in vivo for segmental mandibular reconstruction: experimental pilot study in sheep andfirst clinical application. Int J Oral Maxillofac Surg.2010,39(4):379-87.
    [31] Eweida AM, Nabawi AS, Marei MK,et al. Mandibular reconstruction using an axiallyvascularized tissue-engineered construct. Ann Surg Innov Res.2011,5:2.
    [32]杨新明,石蔚,杜雅坤,等。带蒂筋膜瓣包裹自体红骨髓接种的组织工程骨修复骨缺损的实验研究。中国修复重建外科杂志。2009,23(10):1254-9。
    [33] Schumann P, Tavassol F, Lindhorst D,et al.Consequences of seeded cell type onvascularization of tissue engineering constructs in vivo. Microvasc Res.2009,78(2):180-90.
    [34] Miyagi Y, Chiu LL, Cimini M,et al. Biodegradable collagen patch with covalentlyimmobilized VEGF for myocardial repair. Biomaterials.2011,32(5):1280-90.
    [35] Awad HA, Zhang X, Reynolds DG,et al. Recent advances in gene delivery for structuralbone allografts. Tissue Eng.2007,13(8):1973-85.
    [36]李建军,韩冬,孙鸿斌,等。基因修饰的生物可降解人工骨修复骨缺损的血管化研究。中国修复重建外科杂志。2006,20(9):931-5。
    [37] Qu D, Li J, Li Y,et al.Angiogenesis and osteogenesis enhanced by bFGF ex vivo genetherapy for bone tissue engineering in reconstruction of calvarial defects. J Biomed Mater Res A.2011,96(3):543-51.
    [38] Popa ER, van der Strate BW, Brouwer LA,et al. Dependence of neovascularizationmechanisms on the molecular microenvironment. Tissue Eng.2007,13(12):2913-21.
    [39]李涛,王靖,杨惠林,等。活性维生素D促组织工程骨血管化。中国修复重建外科杂志。2007,21(10):1142-6。
    [40] Dohle E, Fuchs S, Kolbe M, et al. Sonic hedgehog promotes angiogenesis and osteogenesisin a coculture system consisting of primary osteoblasts and outgrowth endothelial cells. TissueEng Part A.2010,16(4):1235-7.
    [41] ND, Cui Q, Khan Y,et al.The enhancement of bone allograft incorporation by the localdelivery of the sphingosine1-phosphate receptor targeted drug FTY720. Biomaterials.2010,31(25):6417-24.
    [42] Li Q, Hou T, Zhao J,et al.VEGF release from alginate microspheres under simulatedphysiological compressive loading and the effect on human vascular endothelial cells. TissueEng Part A.2011May4. http://www.liebertonline.com/doi/abs/10.1089/ten.tea.2010.0616/PMID:21341993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700