用户名: 密码: 验证码:
温度与光照强度对鸭梨果实抗氧化能力的影响及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温度和光照是影响果实生长发育的重要环境因子。然而,由于果实发育期(甚至在贮藏期)经常遭受温度或(和)光照逆境的胁迫,致使产量和品质受到不同程度的影响。因此,研究和揭示温度与光照逆境对果实影响的内在规律和机理,对于提高果实对温度、光照逆境的抵御能力,从而保证梨果丰产、优质意义重大。
     本研究以鸭梨(Pyrus bretschneideri Rehd.,cv:Yali pear)为试材,采用田间和室内试验相结合的方法,探讨了不同温度和光照变化对果实活性氧含量(O-.2、H_2O_2)、抗氧化酶(SOD、POD、APX、MDHAR、GR)活性、抗坏血酸(AsA)含量以及细胞中Ca~(2+)分布的影响。初步阐明了不同温度和光照条件下果实抗氧化系统以及细胞中Ca~(2+)分布的变化规律。主要研究结果如下:
     1.高温处理显著提高了鸭梨果实中活性氧(O-.2、H_2O_2)含量,同时提高了POD和APX活性。但鸭梨果实中POD和APX对高温胁迫的响应存在时间上的差异:高温胁迫1h时显著提高了APX活性,而POD活性在处理初期无显著变化,处理后期(5h后)才显著升高。高温胁迫初期果实内H_2O_2主要由APX清除,使H_2O_2含量保持在较低水平,当胁迫变得严重时,POD开始起作用。
     2. AsA-GSH循环是温度逆境下清除鸭梨果实活性氧的主要途径之一。APX、GR、MDHAR作为该循环的主要抗氧化酶,对温度胁迫的响应在时间上具有先后顺序的差异:APX在胁迫1h时活性最大,而MDHAR和GR分别在处理3h和5h活性最高。
     3.高温处理初期显著提高了抗坏血酸合成速率,还原型抗坏血酸含量和MDHAR活性变化相一致,因此可推断:抗坏血酸主要通过AsA-GSH循环参与活性氧的清除。
     4.高温和强光具有胁迫增效作用,能够加重氧化胁迫的发生:高温条件下,照光处理显著提高了高温初期鸭梨果实中活性氧含量,使APX和POD活性增强,抗坏血酸合成量增加,但随着时间延长,LOX活性迅速增加,加速了果实伤害的进程。
     5.高温强光胁迫下,施用不同外源调节物质可以减缓胁迫对果实造成的伤害:AsA、草酸、SA、ABA处理显著提高了果实内源H_2O_2含量。当胁迫发生后,果实内大量H_2O_2积累作为信号分子诱导了AsA-GSH循环中关键酶(APX、GR)活性以及AsA含量、AsA/DHA比值有所提高,确保了AsA-GSH循环顺利运转,使LOX活性保持在较低的水平,延缓了高温强光对果实的伤害进程。
     6. Ca~(2+)信使促进剂(CaCl_2)显著提高了胁迫初期果实内H_2O_2含量,大量的H_2O_2诱导了APX、GR活性,AsA合成量增加,使胁迫后期LOX活性保持较低水平,避免了膜磷脂过氧化,提高了果实的抗逆性。胁迫过程中Ca~(2+)信使抑制剂(EGTA、LaCl3)显著抑制了APX、GR活性和AsA的合成,使AsA-GSH循环运转受到影响,LOX活性迅速提高,加剧了细胞膜磷脂的过氧化进程,加重了果实的伤害。并且从抑制剂的抑制效果来看,LaCl3较EGTA效果更为显著。
     7.温度能明显影响果实细胞中Ca~(2+)分布。45℃处理初期,液泡中Ca~(2+)开始向细胞质中移动,使细胞质中Ca~(2+)浓度增加。随着处理时间的延长,液泡中Ca~(2+)浓度减少,大部分Ca~(2+)颗粒沉淀流向胞质中。处理7h细胞质中的Ca~(2+)浓度减少,液泡中Ca~(2+)颗粒增多,液泡结构完整性遭到破坏,果实细胞伤害发生。
     8.鸭梨果实中Ca~(2+)分布受光照的影响,无光条件下果实中Ca~(2+)主要分布在细胞间隙和液泡中,细胞质中几乎没有Ca~(2+)分布。照光条件下,细胞间隙和液泡中的Ca~(2+)向细胞质中转移,细胞质中Ca~(2+)浓度急剧增加,但细胞间隙仍有少量Ca~(2+)沉淀颗粒分布,而液泡中几乎没有Ca~(2+)分布,由此可见:细胞质中的Ca~(2+)主要来源于液泡中。
     9.在温度和(或)光照逆境胁迫下,果实活性氧和细胞质中Ca~(2+)浓度升高,而高浓度活性氧和(或)细胞质中Ca~(2+)作为信号分子,刺激或诱导细胞膜上SOD、APX、MDHAR、GR等酶活性的提高,在一定范围内消除了胁迫后期活性氧对果实细胞膜的伤害。然而,随着温度和光照胁迫加重,当果实活性氧产生速度远超过抗氧化系统清除速度时,此时液泡中的Ca~(2+)全部流入细胞质中,细胞失去了自动调节能力,再不能诱导抗氧化系统做出相应的响应(或者能力达不到实际需要),从而导致果实细胞膜系统遭受伤害,直至果实出现不同程度的生理伤害。
Temperature and light are very important environmental factors affecting fruit growthand development. However, fruit output and quality are influenced, more or less, due tofrequent stresses by excessive temperature and light during fruit growth (even during coldstorage). Therefore, it is meaningful to reveal the effect of temperature and light stresses onfruits, so as to raise the ability to resist temperature and light stresses and achieve higheryield and top quality.
     In the present experiment, the effect of different temperature and light on fruit ROSgenerating rates, antioxidant enzymes activity, AsA contents as well as Ca~(2+)distribution inpeel cells was examined under laboratory and field conditions with Yali pears. The response ofantioxidant system to different temperature and light levels and the pattern of Ca~(2+)distributionin peel cells were preliminarily expounded. The main results are as follows:
     1. The hydrogen peroxide(H_2O_2)content, ascorbate peroxidase (APX) andperoxidase(POD) activity were improved under high temperature stress conditions.However, the susceptibility of APX and POD to high temperatures was quite different.During the incipient treatment by high temperature, APX activity was obviously increasedbut POD activity was not obviously varied. The POD activity was enhanced with time. Itwas concluded that APX was the primary H_2O_2–scavenging enzyme that could maintainH_2O_2content at a lower level. Whenever the stress became severe, POD wouldimmediately take action.
     2. AsA-GSH cycle was the main antioxidant pathway to scavenge ROS in fruits. APX,GR and MDHAR were the important components in the cycle and their susceptibility totemperature stress was relatively different. APX activity reached the peak at1hr, next to itwas MDHAR at3hr and the last one was GR at5hr.
     3. During the incipient treatment by high temperature, the contents of total ascorbicacid were significantly enhanced. The changing trend of reductive ascorbic acid (AsA) andMDHAR activity was consistent. It could be inferred that AsA scavenged ROS largelythrough the AsA-GSH cycle.
     4. Oxidant damage could be enhanced by double stresses from both temperature andlight. Under high temperature conditions, light could induce the ROS contents to rise, which also increased the antioxidant contents and the antioxidant enzymes activity. Butfruit injury would occur as fruit antioxidant ability declined and LOX was accelerated.
     5. Under temperature and light stresses,the different exogenous chemical applicationcan alleviate fruit harm. Before stresses, the different exogenous chemical application(AsA, oxalic acid, SA, ABA) significantly improved H_2O_2content. The abundant H_2O_2infruits can signale molecules to regulate the AsA-GSH cycle. Under temperature and lightstresses,the APX,GR activity are enhanced, and the reductive ascorbic acid content andthe ratio of reductive ascorbic acid of oxidative ascorbic acid (AsA/DHA) are increased,which ensure the AsA-GSH cycle to successfully run, so that the LOX activity can remainat a low level to slow down the progress of fruit injury
     6. Under temperature and light stresses, the effect of calcium regulators on fruitresistance was examined. At the primary stage of temperature and light stresses, theaccelerance of Ca~(2+)(CaCl2) increased the H_2O_2content, which improved the activity ofAPX, GR and the AsA content. As a result, the LOX activity was inhibited, and the fruitresistibility is enhanced. The inhibitor of Ca~(2+)(EGTA、LaCl3)significantly reduced theAPX and GR activity and AsA content, which affected the AsA-GSH cycle. Moreover, theactivity of LOX was rapidly improved, which aggravated the cell membrane oxidation.Compared to EGTA, LaCl3showed stronger inhibiting effect.
     7. Temperature could markedly affect Ca~(2+)distribution within fruit peel cells. When fruitswere stressed at45℃, a great deal of Ca~(2+)was transferred from vacuolar into cytosol. After fruitswere treated for7h, the cytosol was damaged and the Ca~(2+)moved from cytosol into vacuolar.
     8. Light could also affect the Ca~(2+)distribution. The Ca~(2+)existed mainly in vacuolar andintercellular spaces under dark conditions. When fruits were stressed by intense light, agreat deal of Ca~(2+)was transferred from vacuolar and intercellular spaces into cytosol.There was a little of Ca~(2+)left in intercellular spaces and there was no Ca~(2+)in vacuolar. So itwas shown that the Ca~(2+)in cytosol mainly came from vacuolar.
     9. Under temperature and light stresses, the ROS content and Ca~(2+)content in cytosolincreased. Higher concentration of ROS and Ca~(2+)functioned as the signal molecules toimprove the activity of antioxidant enzymes(SOD, APX, MDHAR or GR), protecting fruitmembranes from injury by ROS to some extent. However, when the stress aggravated,especially when the ROS generating rate exceeded the clearance rate from the antioxidantsystem, total Ca~(2+)moved from vacuolar into cytosol, as a result, the cells lost theautomatically adjustable capacity, resulting in that the antioxidant system could not make acorresponding response (or the scavenging capability was insufficient to eliminate theinjury caused by free radicals). In such a case, the membrane was destroyed, which couldcause fruit physiological injury to some extent.
引文
[1]殷淑燕,张钰敏,李美荣,等.气候变化对洛川苹果物候期的影响[J].陕西师范大学学报(自然科学版),2011,39(6):86-90.
    [2]王玉君,周丽静.葡萄落花落果的原因及提高坐果率的措施[J].河北果树,2005,4:28.
    [3]李建国,黄辉白,黄旭明.妃子笑荔枝早花果和晚花果大小不同与温度的关系[J].果树学报,2004,21(1):37-41.
    [4]王春飞,郁松林,肖年湘,等.果树果实生长发育细胞学研究进展[J].中国农学通报,2011,23(7):386-390.
    [5] Hirokazu Higuchi,Naoki Utsunomiy,Tetsuo Sakuratan. High temperature effects on cherimoyafruit set, growth and development under greenhouse conditions[J]. Scientia Horticulturae,1998,77(1-2):23–31.
    [6] Greybe E, Bergh O. The effect of winter chilling on cell division and multiplication preanthesisand thus on final fruit size of Royal Gala apples in South Africa[J].Acta Hort,2005,19:113-120.
    [7]张学英,张上隆,秦永华,等.温度对李果实采后花色素苷合成的影响[J].园艺学报,2005(6):102-105.
    [8]庞学群,张昭其,段学武.pH值和温度对荔枝果皮花色素苷稳定性的影响[J].园艺学报,2001,28(1):25-30.
    [9]张庆田,艾军,李昌禹,等.果实花色苷的生物合成及调控[J].特产研究,2011,4:65-67.
    [10]任雷,邹志荣,李鹏飞.不同温度对甜瓜糖分积累与蔗糖代谢酶的影响[J].北方园艺2010(7):12-16.
    [11]魏征,祝美云.桃果实冷害及低温特征风味物质合成机理[J].农产品加工学刊,2010,11:7-10.
    [12]刘雯斐,李保国,齐国辉,等.微域环境温湿度与苹果果面碎裂的关系[J].果树学报2008,25(4):458-461.
    [13]王友升,田世平.罗伦隐球酵母、褐腐病菌与甜樱桃果实在不同温度下的互作效应[J].中国农业科学,2007,40(12):2811-2820.
    [14]窦世娟,陈昆松,吕均良,等.黄花梨果实采后不同处理的贮藏效果及其生理基础研究[J].中国农业科学,2003,36(1):82-88.
    [15]张建光,刘玉芳,孙建设,等.苹果果实日灼人工诱导技术及阈值温度研究[J].园艺学报,2003,30(4):446-448.
    [16]张建光,刘玉芳,施瑞德.苹果果实日烧研究Ⅱ:日烧与主要气象因子的关系[J].河北果树,2001(3):7-8.
    [17]陈杭君,毛金林,宋丽丽,等.温度对南方水蜜桃贮藏生理及货架期品质的影响[J].中国农业科学,2007,40(7):1567-1572.
    [18]马书尚,唐燕,武春,等.1-甲基环丙烯和温度对桃和油桃贮藏品质的影响[J].园艺学报,2003,30(5):525-529.
    [19]周春华,胡西琴.温度预处理对柑橘果实活性氧代谢相关酶的影响[J].果树学报,2001,18(5):267-271.
    [20]丁勤,韩明玉,田玉命.油桃裂果与膜脂过氧化的关系[J].西北农业学报,2004,13(4):200-202,206.
    [21]王艳娜,王贵禧,梁丽松.低温及轮纹病菌胁迫对鸭梨果ATP含量及H+-ATPase、Ca2+-ATPase活性的影响[J].林业科学,2008,44(2):72-77.
    [22]邵远志,李雪萍,李琴,等.贮藏温度对鲜切菠萝生化品质的影响[J].中国食品学报,2011,11(6):134-139.
    [23]郄光发,刘俊华,董晓颖,等.花青苷和含量变化与果实抗氧化酶活性密切相关[J].园艺学报,2004,31(3):347-349.
    [24] Scandalios JG.The rise of ROS[J]. Trends Biochem Sci,2002,27:483-486.
    [25] Devarshi S. Selote,Renu Khanna-Chopra. Drought acclimation confers oxidative stress toleranceby inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheatseedlings[J].Physiologia Plantarum,2006,127:494–506.
    [26] Fridovich I.Oxygen toxicity: A radical explanation[J]. J Exp Bot.1998,201:1203-1209.
    [27]马玉华,王永红,王荔,等.高温胁迫对苹果叶片膜脂过氧化及抗坏血酸的影响[J].贵州农业科学,2010,38(8):176-178.
    [28]张俊环,黄卫东.葡萄幼苗在温度逆境交叉适应过程中活性氧及抗氧化酶的变化[J].园艺学报,2007,34(5):1073-1080.
    [29]陶俊,俞菊,俞丽琴,等.短期高温胁迫对一品红幼苗抗氧化系统的影响[J].园艺学报,2008,35(11):1681-1684.
    [30]李英丽,果秀敏,张建光,等.高温胁迫对苹果果皮组织抗氧化特性的影响[J].河北农业大学学报,2004,28(1):18-20.
    [31]张佳娣.活性氧的信号传导途径[J].安徽农业科学,2010,38(16):8283-8285.
    [32] JIN Yue-Hua, TAO Da-Li, HAO Zhan-Qing, et al.Environmental Stresses and Redox Status ofAscorbate[J].Acta Botanica Sinica,2003,45(7):795-801.
    [33]李忠光,杜朝昆,龚明.Ca2+和钙调素对H2O2诱导的玉米幼苗耐热性的调控[J].植物生理与分子生物学学报,2005,31(5):515-519.
    [34]妄言,李建龙,余醉,薛峰.信号分子H2O2调节抗氧化系统提高高羊茅耐热性研究[J].草业学报,2001,19(1):89-94.
    [35]耶兴元,刘建军,刘磊.H2O2诱导低温胁迫下草莓苗抗冷性研究[J].北方园艺,2011(17):47-49.
    [36]欧阳丽喆,申琳,陈海荣,等.H2O2参与冷激处理对番茄果实抗冷性及抗氧化酶活性的影响[J].食品科学,2007,28(7):31-35.
    [37] JIN Yue-Hua, TAO Da-Li, HAO Zhan-Qing, et al. Environmental Stresses and Redox Status ofAscorbate[J].Acta Botanica Sinica,2003,45(7):795-801
    [38] Kenichi O. Glutathione-associated regulation of plant growthand stress responses[J]. AntioxidRedox Signal,2005,7:973981
    [39]熊福生,宋平,王甫同,等.水稻叶片谷胱甘肽-抗坏血酸循环系统运转对光抑制的响应[J].中国水稻科学,1992,6(4):177183.
    [40]王娟,李德全.水分胁迫对玉米根系AsA—GSH循环及H2O2含量的影响[J].中国生态农业学报,2002,10(2):9496.
    [41] Jin,Y.H.,D.L. Tao z.q.Hao,et al. Environment stresses and redox status of ascorbate[J]. Acta Bot.Sinica.2003,45(7):795-801.
    [42] Yong Zhang, Ya Lou, Hao Jiang, et al. Chilling Acclimation Induced Changes in the Distribution ofH2O2and Antioxidant System of Straw berry Leaves[J]. Agricultural Joural.2008,3(4):286-291.
    [43] Alscher, R.G.,N. Ertuk,L.S.Heath. Role of superoxide dismutases(SODs) in controlling oxidativestress[J]. J.Exp.Bot.2002,53:1331-1341.
    [44]黄志明,陈宇,吴晶晶,吴锦程.硝普钠对低温胁迫下枇杷幼果线粒体AsA-GSH循环代谢的影响[J].热带作物学报,2011,32(8):1469-1474.
    [45]薛延丰,冯慧芳,石志琦,等.水葫芦沼液对青菜生长及AsA-GSH循环影响的动态研究[J].草业学报,2011,20(3):91-98.
    [46]马春花,马锋旺,李明军,等.外源抗坏血酸对离体苹果叶片衰老的影响[J].园艺学报,2006,33(6):1179-1184.
    [47]王静璞,李英丽,张建光.高温、强光胁迫对苹果果皮组织APX活性的影响[J].华北农学报,2008,23(6):144-147.
    [48] Yingli LI, JianguangZHANG. Effect of high-temperature stress on the activity of key enzymes inthe AsA-GSH cycle in 'Yali' pears[J].Frontiers of Agriculture in China,2010,4(4):463-467.
    [49] Yu-Hua Ma, Feng-Wang Ma,Jun-Ke Zhang, et al. Yong-Hong Wang Effects of high temperatureon activities and gene expression of enzymes involved in ascorbate–glutathione cycle in appleleaves [J].Plant Science,2008,175(6):761-766.
    [50]刘慧英,朱祝军,吕国华,钱琼秋.低温胁迫下西瓜嫁接苗的生理变化与耐冷性关系的研究[J].中国农业科学,2003,36(11):1325-1329.
    [51] Ping Lu,Wei-Guo Sang,Ke-Ping Ma.Differential Responses of the Activities of AntioxidantEnzymes to Thermal Stresses between Two Invasive Eupatorium Species in China.Journal ofIntegrative[J]. Plant Biology,2008,50(4):393–401.
    [52] Noctor G, Foyer C H. Ascorbate and glutat hione: keeping active oxygen under control [J].Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:249-279.
    [53] Asada K..Mechanisms for scavenging reactive molecules generated in chloroplasts under lightstress[M]. Barber N R, Bowyer J R. hotoinhibition of Photosynthesis. Oxford: Biological ScientificPublishers.1994,129-142.
    [54] Davey M.W, Van M M, Inzé D, et al. Plant L-ascorbic acid: chemistry, function, metabolism,bioavailability andeffects of processing[J]. Journal of the Science of Food and Agriculture,2000,80:825-860
    [55] Smirnoff N,Colville L. Antioxidant status,peroxidase activity,and PR protein transcript levels inascorbate-deficient Arabidopsis thaliana vtc mutants[J]. Journal of Experimental Botany,2008,59(14):3857-3868.
    [56] PatricIal.Conklin,Elizaethh.Willlams,Robertl.Last. Environmental stresss ensitivity of an ascorbicacid-deficient Arabidopsis mutant[J]. Proc. Natl. Acad. Sci. USA,1996,93:9970-9974.
    [57]李超汉,张琳,史庆华,等.GMPase超表达对番茄植株抗坏血酸含量及耐冷性相关生理指标的影响[J].园艺学报,2011,38(4):692-700.
    [58]孟焕文,张彦峰,程智慧,等.黄瓜幼苗对热胁迫的生理反应及耐热鉴定指标筛选[J].西北农业学报,2000,9(1):96-99.
    [59]孙艳,徐伟君.高温胁迫对不同黄瓜品种幼苗中抗坏血酸代谢的影响[J].西北农业学报,2007,16(6):164-169.
    [60]刘洪展,郑风荣,赵世杰.高温胁迫对不同衰老型小麦叶片中活性氧清除系统的影响[J].贵州农业科学,2006,34(1):8-10.
    [61]高天,马锋旺,梁东.高温胁迫对两个仙客来品种抗氧化系统的影响[J].西北农林科技大学学报(自然科学版),2006,34(6):82-84.
    [62]徐小万,曹必好,陈国菊,等.高温高湿对辣椒抗氧化系统的影响及不同品种抗氧化性差异研究[J].华北农学报,2008,23(1):81-86.
    [63]柯世省,杨敏文.水分胁迫对云锦杜鹃抗氧化系统和脂类过氧化的影响[J].园艺学报,2007,34(5):1217-1222.
    [64]王利军,李绍华,李家永,等.温度逆境交叉适应对葡萄叶片膜脂过氧化和细胞钙分布的影响[J].植物生态学报,2004,28(3):326-332.
    [65]王愈,李里特.高压电场处理对贮藏番茄活性氧代谢的调节[J].农业工程学报,2009,25(1):255-259.
    [66] Ishikawa T, Shigeoka S. Recent Advances in Ascorbate Biosynthesis and the PhysiologicalSignificance of Ascorbate Peroxidase in Photosynthesizing Organisms[J]. Bioscience,Biotechnology and Biochemistry,2008,72(5):1143-1154.
    [67] Smirnoff N. Antioxidant systems and plant response to the environment[M]. In: Smirnoff N, ed.Environment and plant metabolism: flexibility and acclimation. Oxford: Bios Scientific Publishers,1995,217–243.
    [68] Hung S. H, Yu C W, Lin C. H. Hydrogen peroxide functions as a stress signal in plants[J].Botanical Bulletin of Academia Sinica,2005,46:1-10.
    [69] May M J,Vernoux T,Laver C,et al. Glutat hione homeostasis in plant: Implications forenvironmental sensing and plant development [J]. J Exp Bot,1998,49:649-667.
    [70] May M J, Vernoux T, Leaver C,et al. Glutathione homeostasis in plants: implications forenvironmental sensing and plant development[J]. J Exp Bot,1998,49:649667
    [71]陈坤明,宫海军,王锁民.植物谷胱甘肽代谢与环境胁迫[J].西北植物学报,2004,24(6):1119-1130.
    [72] Jiangguang ZHANG, Shaochun CHEN, Yingli LI, et al. Effect of high temperature and excessivelight on glutathione content in apple peel[J].Front.Agric in China.2008,2(1):97-102.
    [73] Yong Zhang,Ya Lou, Hao Jiang, et al. Chilling Acclimation Induced Changes in the Distribution ofH2O2and Antioxidant System of Straw berry Leaves[J]. Agricultural Joural,2008,3(4):286-291.
    [74] M. De Paula, M. Perez-Otaola, M. Darder,et al. Function of the ascorbate-glutathione cycle inaged sunflower seeds[J].1996,96(4):543–744.
    [75] Devarshi S. Selote,Renu Khanna-Chopra. Drought acclimation confers oxidative stress toleranceby inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheatseedlings[J]. Physiologia Plantarum,2006,127:494–506.
    [76] Pastori G M, Foyer C H. Common components, networks, and pathways of cross-tolerance tostress: The central role of “redox” and abscisic acid-mediated controls[J]. Plant Physiol,2002,129:460468
    [77]丁小涛,金海军,张红梅,等.遮荫处理对温室四种输出生长及光合作用日变化的影响[J].浙江农业学报,2010,22(1):51-56.
    [78]吴月燕.高湿和弱光对葡萄叶片某些光合特性的影响[J].园艺学报,2003,30:443-445.
    [79]别之龙,刘佩瑛,万兆良,等.辣椒落花和光合作用的影响[J].核农学报1998,12(5):314-316.
    [80]安翠香,张玉鑫,杨世梅.遮阴对甜瓜果实蔗糖积累及其代谢酶活性的影响[J].西北农林科技大学学报自然科学版,2011,39(9):167-173.
    [81]张贯中.苹果树形改造对产量和品质的影响[J].山西果树,1999(4):17-19.
    [82]李丙智,阮班录,君广仁,等.改行对红富士苹果树体光合能力及果实品质的影响[J].西北农林科技大学学报,2005,(5):119-122.
    [83]魏钦平,鲁韧强,张显川,等.富士苹果高干开心形光照分布与产量品质的关系研究[J].园艺学报,2004,31(3):291-296.
    [84]岳玉苓,魏钦平,张继祥,等.黄金梨棚架树体结构相对光照强度与果实品质的关系[J].园艺学报,2008,35(5):625-630.
    [85] LI Bin, JIA HuiJuan, ZHANG XiaoMeng. Effects of Fruit Pre-harvest Bagging on Fruit Quality ofPeach (Prunus persica Batsch cv. Hujingmilu)[J].Journal of Plant Physiology and MolecularBiology,2006,32(3):280-286.
    [86]苹果绿色果皮光合生理特性及果皮灼伤机制的研究[EB/OL].http://www.qikan.cm/8/61/737.html,2011.1.8.
    [87] May M J, Vernoux T, Leaver C, et al. Glutathione homeostasis in plants: implications forenvironmental sensing and plant development[J]. Journal of Experimental Botany,1998,49:649-667.
    [88] Jin Y, Tao D L, Hao Z Q, et al. Environmental stresses and redox status of ascorbate[J]. ActaBotanica Sinica,2003,45(7):795-801
    [89] DavletovaS, RizhskyL, LiangHJ, et al. Cytosolicascorbateperoxidase1isacentral componentofthereactiveoxygen genenetwork of Arabidopsis[J]. PlantCel,l2005,17:268-281.
    [90]周传凤,郑国生,张玉喜,等.强光胁迫对牡丹叶片抗氧化系统的影响[J].江苏农业科学,2011,39(3):232-233.
    [91]刘鹏,徐根娣.在生境片断化中光对七子花生理特性的影响[J].林业科学,2003,39(4):43-48.
    [92]张广华,葛会波,李青云,等.SOD对草莓叶片光抑制的防御作用[J].果树学报,2004,21(4):328-330.
    [93]邸葆,张建光,孙建设.不同袋型、光照强度和温度对苹果果实表皮细胞膜特性的影响[J].中国农学通报,2011,27(6):161-165.
    [94]张建光,李英丽,刘玉芳,等.高温、强光对苹果树冠不同方位果皮的氧化胁迫研究[J].中国农业科学,2004,37(12):1976-1980.
    [95]颜景宁,张厚华,曹永.栽培方式对草莓果实中几种抗氧化物质含量的影响[J].山西果树,2011,3:9-10.
    [96]芦站根,赵昌琼,周文杰,等.光强对曼地亚红豆杉膜代谢及保护系统的影响[J].重庆大学学报,2003,26(8):89-92.
    [97]金钊,席景艳,刘凡,等.遮阴处理对寒富苹果碳代谢及抗性生理的影响[J].现代农业科技,2011,17:112-115.
    [98]张家旺,冯辉,朱延姝,等.间断弱光胁迫对不同品系番茄叶片抗氧化酶活性的影响[J].2008,39(1):77-79.
    [99]廖祥儒,张蕾,徐景智,等.光在植物生长发育中的作用[J].河北大学学报(自然科学版),2001,21(3):341-345.
    [100]徐凯,郭延平,张上隆.不同光质对草莓叶片光合作用和叶绿素荧光的影响[J].中国农业科学,2004,3(9):678-686.
    [101]江明艳,潘远智.不同光质对盆栽一品红光合特性及生长的影响[J].园艺学报,2006,33(2):338-343.
    [102]段远霖,李合生,伍素辉,等.蓝光和Ca对小麦幼苗谷氨酸合成酶及钙调系统酶活性的影响福[J].建农林大学学报(自然科学版),2003,32(2):209-212.
    [103]郝俊江,陈向东,兰进.光质对灵芝生长及抗氧化酶系统的影响[J].中草药,2011,42(12):2529-2534.
    [104]王虹,姜玉萍,师恺,等.光质对黄瓜叶片衰老与抗氧化酶系统的影响.中国农业科学2010,43(3):529-534.
    [105]杜建芳,廖祥儒,叶步青,等.光质对油菜幼苗生长及抗氧化酶活性的影响[J].植物学通报,2002,19(6):743-745.
    [106]文锦芬,柯学,徐超华,等.光质对烟草叶片生长发育过程中抗氧化系统的影响[J].西北植物学报,2011,31(9):1799-1804)。
    [107]程群柱,张广臣,闫若楠.温光胁迫对黄瓜产量和品质的影响[J].吉林农业科学,2011,36(5):59-61.
    [108]段伟,李新国,孟庆伟,等.低温下的植物光抑制机理[J].西北植物学报,2003,23(6):1017-1023.
    [109]李霞,戴传超,焦德茂,等.光照条件下低温对水稻籼粳亚种幼苗抗氧化物质含量的影响[J].植物生理与分子生物学学报,2006,32(3):345-35.
    [110]赵玉萍,邹志荣,杨振超.不同温度和光照对温室番茄光合作用及果实品质的影响[J].西北农林科技大学学报:自然科学版,2010,38(5):125-130.
    [111]邱翠花,计玮玮,郭延平.高温强光对温州蜜柑叶绿素荧光、D1蛋白和Deg1蛋白酶的影响及SA效应[J].生态学报,2011,31(13):3802-3810.
    [112]李英丽,张建光,史聪平.苹果果实日烧研究进展[J].河北农业大学学报,2003,26(增刊):64-67.
    [113]郝燕燕,李妙玲,张惠荣,等.套袋微环境对果实品质的影响及其机理分析[J].山西农业大学学报,2003,23(3):238-241,260.
    [114]郝燕燕,黄卫东.苹果日烧病程中果皮抗氧化系统在细胞超微结构的变化[J].植物生理与分子生物学学报,2004,30(1):19-26.
    [115]张建光,陈少春,李英丽,等.高温强光胁迫对苹果果皮PPO活性的影响[J].生态学报,2008,28(10):46-51.
    [116]钟俐,李冠.白粉病菌胁迫下甜瓜叶片中Ca2+的细胞化学定位及外源Ca2+对POD、CAT和SOD同功酶的影响[J].中国农业科学,2012,45(19):4040-4049.
    [117]张和臣,尹伟伦,夏新莉.非生物逆境胁迫下植物钙信号转导的分子机制[J].植物学通报,2007,24(1):114-122.
    [118]CHEN Gui-lin,JIA Kai-zhi, HAN Li-Hua, et al.. Effects of Calcium and Calmodulin Antagoniston Antioxidant Systems of Eggplant Seedlings Under High Temperature Stress[J]. AgriculturalSciences in Chinese,2004,3(2):101-107.
    [119]荣俊东,刘雪琴,张迎辉,等.低温胁迫下Ca2+-CaM信使系统对三尖杉幼苗保护酶活性的影响[J]西南林业大学学报,2012,32(5):33-36.)
    [120]秦舒浩,李玲玲,陈娜娜.外源Ca2+对高温强光下西葫芦幼苗形态特征光合特性及荧光参数的影响[J].应用生态学报,2010,21(11):2830-2835.
    [121]张春梅,谢晓蓉,刘金荣闫芳.Ca2+和钙调素拮抗剂W7对PEG胁迫下不同耐旱型紫花苜蓿抗氧化系统的影响[J].草地学报,2012,20(6):1072-1076.
    [122]Prasad T K. Role of catalase in inducing chilling tolerance in preemergent maize seedings[J].Plant Physiol,1997,11(4):1369-1376.
    [123]杨蕊,关雪莲,张睿鹏,等.低温胁迫过程中北海道黄杨叶肉细胞Ca2+的动态变化[J].林业科学,2012,48(10):36-40.
    [124]W. P. Chen, P. H. Li. Chilling-induced Ca2+overload enhances production of active oxygenspecies in maize (Zea mays L.) cultured cells: the effect of abscisic acid treatment[J].Plant, Cell&Environment,2001,24(8):791-800.)
    [125]安钰.过氧化氢在合作杨苗木诱导防御性反应中的作用[D].北京:北京林业大学,2008.
    [126]张忠庆,刘金华,姜凡琦,等.钙对大豆幼苗镍毒害的缓解效应及对抗氧化酶活性的影响[J].中国土壤与肥料,2012,(6):62-65..
    [127]高洪波,沈应柏,黄秦军.机械刺激触发沙冬青细胞产生依赖Ca2+的H+内流[J].林业科学,2012,48(11):36-41.
    [128]李丽,郭艳茹,常立民.“国光”苹果树两种冠形的光合效率和干物质生产[J].园艺学报,1992,19(2):221-225.
    [129]徐义流,伊兴凯,张金云,等.改善树体结构对砀山酥梨果实品质的影响[J].中国农学通报,2008,24(9):308-311.
    [130]李先明,刘先琴,涂俊凡,等.梨不同树形的结构特征、产量分布及果实品质差异[J].2009,25(23):323-326.
    [131]刘建海,李丙智,张林森,等.套袋对红富士苹果果实品质和农药残留的影响[J].西北农林科技大学学报(自然科学版),2003,31(增刊):16-18.
    [132]张建光,李英丽.梨无公害高产栽培技术[M].化学工业出版社,2011:125.
    [133]陆新华,孙德权,吴青松,等.不同纸质果袋套袋对菠萝果实品质的影响[J].果实学报,2011,28(6):1086-1089.
    [134]刘冬南,郝拉芳.套袋酥梨果实日烧发生原因及对策[J].山西果树,2000,1:17.
    [135]刘玉祥,马艳芝,张胜珍,等.套袋对桃果皮生理生化指标的影响[J].中国农学通报2009,25(21):252-254.
    [136]厉恩茂,史大川,徐月华,等.套袋苹果不同类型果袋内温、湿度变化特征及其对果实外观品质的影响[J].应用生态学报,2008,19(1):202-218.
    [137]王涛,陈丹霞,冯先桔,等.套袋对大棚油桃果实着色与品质影响[J].浙江农业科学,2011,3:501-503.
    [138]王大平,杨玲.套袋对黄花梨果实品质和贮藏性能的影响[J].北方园艺,2010(1):17-19.
    [139]阮班录,刘建海,郭俊炜,等.不同袋型和套袋时间对满天红梨果实品质和贮藏性的影响[J].西北农业学报,2008,7(6):98-102.
    [140]邓丰产.果园生草的生态环境及在果实上的应用[J].北方园艺,2009(1):133-136.
    [141]刘蝴蝶,郝淑英,曹琴,国平.生草覆盖对果园土壤养分、果实产量及品质的影响[J].土壤通报,2003,(3):184-186.
    [142]徐雄,张健.生草和生物覆盖对果园土壤肥力的影响[J].四川农业大学学报,2004(1):88-91.
    [143]李会科,张广军,赵政阳,等.生草对黄土高原旱地苹果园土壤性状的影响[J].草业科学,2007,16(2):32-29.
    [144]刘殊,廖镜思,陈清西,等.果园生草对龙眼园微生态气候和光合作用的影响[J].福建农业大学学报,1996,25(1):24-28.
    [145]颜晓捷,黄坚钦,邱智敏,等.生草栽培对杨梅果园土壤理化性质和果实品质的影响[J].浙江农林大学学报,2011,28(6):850-854.
    [146]李先明,秦仲麒,刘先琴,等.生草对梨园微域生态环境及果实品质的影响[J].河南农业科学,2010,1:92-95.
    [147]张健强,张建光,付艾莉,等.外源抗氧化剂对高温胁迫下苹果果皮组织酶活性的影响[J].华北农学报,2005,20(2):41-44.
    [148]张建光,李英丽,刘玉芳,等.不同温度处理后施用外源物质对苹果果实抗氧化胁迫的影响[J].河北农业大学学报,2004,27(2):29-32.
    [149]吴娱,赵玉梅,雷晓娟,等.抗坏血酸处理对桃果实采后品质和保鲜效果的影响[J].食品科技,2008,10:246-248.
    [150]杨巍,刘晶,吕春晶,等.氯化钙和抗坏血酸处理对鲜切苹果品质和褐变的影响[J].中国农业科学,2010,43(16):3402-3410.
    [151]王艳颖,胡文忠,田密霞,等.抗坏血酸处理抑制李果实冷害作用机理的研究[J].中国食品学报,2011,11(5):138-144.
    [152]杜朝昆,李忠光,龚明.水杨酸诱导的玉米幼苗适应高温和低温胁迫的能力与抗氧化酶系统的关系[J].植物生理学通讯,2005,41(1):19-22.
    [153]康国章,欧志英,王正询,等.水杨酸诱导提高香蕉幼苗耐寒性的机制研究[J].园艺学报,2003,30(2):141-146.
    [154]孙艳,王鹏.水杨酸对黄瓜幼苗抗高温胁迫能力的影响[J].西北植物学报,2003,23(11):2011-2013.
    [155]Han Tao,LI Li ping, Feng Shuang qing. Effect of exogenous salicylic acid on physiologicalparameters of cucumber and tomato fruits during chilling injury temperature storage[J].Agricultural sciences in china,2002,1(8):916-921.
    [156]杨绍兰,王然.乙酰水杨酸处理对鸭梨果实货架期品质特性的影响[J].中国农学通报,2009,25(18):89-92.
    [157]吴锦程,陈群,唐朝晖,等.外源水杨酸对冷藏枇杷果实木质化及相关酶活性的影响[J].农业工程学报,2006,22(7):175-179.
    [158]范晖,何承顺.水杨酸对采后苹果果实乙烯生成的抑制作用[J].植物生理学通讯,1998,4:248-251.
    [159]周开兵,梁柱,黄海林.叶面喷施磷、钾、钙对三月红荔枝果实品质和着色的影响[J].亚热带植物科学,2007,36(1):27-30.
    [160]李丙智,车玉红,张林森,等.喷钙对红富士苹果果实Ca2+-ATPase活性及品质的影响[J].中国农学通报,2005,21(3):191-193,339.
    [161]Parchomchuk P, Meheriuk M. Orchard cooling with pulsed overtree irrigation to prevent solarinjury and improve fruit quality of 'Jonagold' apples[J]. Hortscience,1996,31(5):802-804.
    [162]韩秀凤,金彦文.鸭梨套袋发生日灼病的原因及预防措施[J].落叶果树,2001,3:57.
    [163]张建光,李英丽,刘玉芳,等.高温、强光对苹果树冠不同方位果皮的氧化胁迫研究[J].中国农业科学,2004,37(12):1976-1980.
    [164]曹慧,王孝威,曹琴,等.水分胁迫下新红星苹果超氧物自由基积累和膜脂过氧化作用[J].果树学报,2001,18(4):196-199.
    [165]王爱国,罗广华.植物的产氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990(6):55-57.
    [166]宋松泉.种子生物学研究指南[M].北京:科学出版社,2005.
    [167]李合生.植物生理生化试验原理与技术[M].高等教育出版社,2000:23-24.
    [168]李忠光,杜朝昆,龚明.在单一提取系统中同时测定植物ASA/DHA和GSH/GSSG[J].云南师范大学学报,2003,23(3):67-70
    [169]张建光,张健强,吕明霞,等.相对湿度对高温胁迫下苹果果皮组织细胞膜功能的影响[J].华北农学报.2005,20(1):52-54.
    [170]张绍其,段学武,庞学群等.冷激处理对采后香蕉几个与耐热性有关的生理指标的影响[J].植物生理学通讯,2002,38(4):333-335.
    [171]张红,简令成,李广敏.植物抗寒剂提高黄瓜幼苗抗寒力及细胞膜系统冷稳定性的研究.植物学报,1994,11(特刊):154-162.
    [172]张可文,安钰,胡增辉,等.脂氧合酶、脱落酸与茉莉酸在合作杨损伤信号传递中的相互关系[J].林业科学研究,2005,18(3):300-304.
    [173]Nobuhiro Suzuki,Ron Mittler. Reactive oxygen species and temperature stresses: A delicatebalance between signaling and destruction[J]. Physiologia Plantarum,2006,126:45–51.
    [174]马玉华,王永红,王荔,等.高温胁迫对苹果叶片膜脂过氧化及抗坏血酸的影响[J].贵州农业科学,2010,38(8):176-178.
    [175]张俊环,黄卫东.葡萄幼苗在温度逆境交叉适应过程中活性氧及抗氧化酶的变化[J].园艺学报,2007,34(5):1073-1080.
    [176]陶俊,余菊,余丽琴,等.短期高温胁迫对一品红幼苗抗氧系统的影响[J].园艺学报,2008,35(11):1681-1684.
    [177]袁媛,唐东芹,史益敏.小苍兰幼苗对高温胁迫的生理响应[J].上海交通大学学报(农业科学版),2011,29(5):30-35.
    [178]王艳,李建龙,姜涛,等.SA、H2O2和6-BA预处理对沟叶结缕草耐寒性的影响[J].草业学报,2010,19(2):76-81.
    [179]万欣,赵省.红富士苹果发生裂果的原因及预防[J].烟台果树,1998,2:42.
    [180]B Demmig-Adams, W W Adams.Photoprotection and Other Responses of Plants to High LightStress[J].Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:599-626.
    [181]C.Y.Hao, R.Fan, H.S.Wu, et al.Physiological response of Monimopetalum chinense to light stressunder habitat fragmentation[J]. Plant Soil Environ.,2010,56(12):551–556.
    [182]P.STREB,E.TEL-OR,J.FEIERABEND. Light stress effects and antioxidative protection in twodesert plants[J]. Fcntional Ecology,1977,11:416-424.
    [183]汪炳良,徐敏,钱琼秋,史庆华,曹家树.遮阴处理对早熟花椰菜花球的生长和抗氧化系统的影响[J].浙江大学学报(农业与生命科学),2005,31(5):535-540.
    [184]李美茹,王以柔,刘鸿先,林植芳.光照强度调控4种亚热带森林植物叶片的抗氧化能力[J].植物生态学报,2001,25(4):460-464.
    [185]Takahiro Ishikawa, Toru Takeda, Shigeru Shigeoka. Effects of Light on Induction of AscorbatePeroxidas and Enzymes Involved in the Ascorbat-Glutathione Cycle in Euglena gracilis[J].Z.Mem.Fac.Agr.Kinki Univ,1977,30:49-56.
    [186]Larkindale J, Knight MR.Protection against heat stress-induced oxidative damage in Arabidopsisinvolves calcium, abscisic acid, ethylene, and salicylic acid[J]. Plant Physiol2002,128:682–695.
    [187]徐建旭,周慧芬,邱翠花,等.高温强光下温州蜜柑光合机构运转与叶黄素循环和D1蛋白周转的关系[J].园艺学报,2011,38(2):205–214.
    [188]李霞,戴传超,焦德茂,等.光照条件下低温对水稻籼粳亚种幼苗抗氧化物质含量的影响[J].植物生理与分子生物学学报,2006,32(3):345-35.
    [189]徐娜,董晓红,关旸,等.低温胁迫下不同光照条件对锦熟黄杨抗氧化酶活性的影响[J].植物研究,2007,27(5):574-577.
    [190]王以柔,刘鸿先,李平,等.在光照和黑暗条件下低温对水稻幼苗光合器官膜脂过氧化作用的影响[J].植物生理学报,1986,12(3):244-251.
    [191]杨志民,何霞,韩烈保.高温季节不同光照强度对冷季型草坪草坪用性状的影响[J].草业学报,2007,16(5):48-55.
    [192]Andrews Preston K.,Johson,Jamesr. Physiology of sunburn development in apples[J]. Good FruitGrower,1996,47(20):33-36.
    [193]Palta, J. P. Role of calcium in plant response to stresses:linking basic research to the solution ofpractical problems[J]. Hort-iscience,1996,31:51-57.
    [194]Reddy,A.S.N. Calicium:silve bulletin signaling[J].Plant Science,2001,160:381-404.
    [195]陈由强,叶冰莹,朱锦懋,等.低温胁迫下龙眼(Dimocarpus longana Lour.)幼叶细胞内Ca2+水平及细胞超微结构[J].植物资源与环境学报,2000,9(1):12-15.
    [196]张国增.植物低温胁迫Ca2+信号的遗传和细胞学综合分析[D].开封:河南大学,2009.
    [197]张宗申,利容千,王建波.草酸处理对热胁迫下辣椒叶片膜透性和钙分布的影响[J].植物生理学报,2001,27(2):109-113.
    [198]宰学明,钦佩,吴国荣,闫道良.外源钙对高温胁迫下花生幼苗叶绿体Ca2+-ATPase、Mg2+-ATPase活性及Ca2+分布的影响[J].中国油料作物学报.2005,27(4):41-44.
    [199]马力耕.钙在红光调节的尾穗苋苋红素合成中的作用[J].科学通报,1995,40(10):944-944.
    [200]孟祥红,王建波,利容千.光周期对光敏胞质不育小麦花药发育过程中Ca2+分布的影响[J].植物学报,2000,42(1):15-22.
    [201]段远霖,李合生,伍素辉,杨泽敏.蓝光和Ca对小麦幼苗谷氨酸合成酶及钙调系统酶活性的影响福[J].建农林大学学报(自然科学版),2003,32(2):209-212.
    [202]P. Gobinathan, B. Sankar, P.V. Murali,R. Panneerselvam. Interactive Effects ofCalcium Chloride on Salinity-Induced Oxidative Stress in Pennisetum typoidies[J].Botany Research International,2009,2(3):143-148.
    [203]Zhou, B.,Guo, Z. Calcium is involved in the abscisic acid-induced ascorbate peroxidase,superoxide dismutase and chilling resistance in Stylosanthes guianensis guianensis.[J]BiologiaPlantarum,2009,53(1):63-68页.
    [204]陶俊,俞菊,俞丽琴,等.短期高温胁迫对一品红幼苗抗氧化系统的影响[J].园艺学报,2008,35(11):1681-1684.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700