用户名: 密码: 验证码:
血小板源性生长因子-B(PDGF-B)信号通路在胃癌转移中的作用机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分PDGF-B和PDGFR-β在胃癌组织的表达及其临床意义
     目的:探讨血小板源性生长因子B(PDGF-B)和血小板源性生长因子受体β(PDGFR-β)在胃癌组织中的表达情况及其临床意义。
     方法:采用免疫组化SP法检测32例胃癌手术标本中胃癌组织及其对应的正常胃粘膜组织中PDGF-B和PDGFR-β的表达情况,并与胃癌患者临床资料进行相关性分析。
     结果:胃癌组织中PDGF-B主要表达于肿瘤细胞,阳性率70.3%(45/64),PDGFR-β主要表达于肿瘤间质细胞,阳性率60.9%(39/64);均明显高于正常的胃粘膜组织中的PDGF-B阳性率4.7%(3/64)和PDGFR-β的阳性率3.1%(2/64)(P<0.05)。PDGF-B和PDGFR-β的表达与肿瘤浸润深度,淋巴结转移及肿瘤分期呈正相关(P<0.05);与肿瘤分化程度没有相关性(P>0.05)。
     结论:PDGF-B和PDGFR-β在胃癌组织中高表达并与胃癌的进展及转移关系密切;检测PDGF-B和PDGFR-β的表达可以作为判断胃癌转移和预后的指标之一。
     第二部分:PDGF-B慢病毒载体的构建、包装和PDGF-B过表达胃癌细胞株的构建
     目的:构建PDGF-B的慢病毒载体pLeno-DCE-PDGF-B并转染成功构建PDGF-B稳定过表达的胃癌细胞。
     方法:构建PDGF-B慢病毒载体pLeno-DCE-PDGF-B,感染293T细胞,收集上清液测定病毒滴度。用慢病毒转染SGC7901和BGC823胃癌细胞株,用免疫荧光观察和western-blot方法鉴定PDGF-B稳定过表达胃癌细胞构建结果。
     结果:通过PCR及酶切鉴定成功构建pLeno-DCE-PDGF-B载体,包装并得到高滴度的病毒颗粒。用慢病毒转染后SGC7901和BGC823胃癌细胞免疫荧光观察呈绿色荧光,转染后SGC7901和BGC823胃癌细胞中PDGF-B蛋白表达明显高于常规SGC7901和BGC823胃癌细胞(P<0.05)。
     结论:用慢病毒构建方法可成功构建并包装得到高滴度的PDGF-B慢病毒颗粒;采用PDGF-B慢病毒转染可成功构建PDGF-B稳定过表达的胃癌细胞。
     第三部分PDGF-B过表达对胃癌细胞生长,侵袭能力的影响及其机制
     目的:探讨PDGF-B过表达对胃癌细胞株生长和侵袭能力的影响及其机制。
     方法:慢病毒载体转染构建PDGF-B稳定过表达胃癌细胞株。用MTT法和Transwell侵袭实验分别检测PDGF-B稳定过表达SGC7901和BGC823胃癌细胞及常规SGC7901和BGC823胃癌细胞的生长和侵袭能力,并进行相互比较分析。采用Western-blot法检测PDGF-B过表达前后AKT-1和E-cadherin蛋白在SGC7901和BGC823胃癌细胞中的表达情况。
     结果:PDGF-B过表达SGC7901和BGC823胃癌细胞的生长曲线明显高于常规SGC7901和BGC823胃癌细胞(P<0.05)。PDGF-B过表达SGC7901和BGC823胃癌细胞的侵袭数量分别为65.4±2.4和70.2±3.2,明显多于常规SGC7901和BGC823胃癌细胞的21.6±1.6和30.2±2.2(P<0.05)。PDGF-B过表达SGC7901和BGC823胃癌细胞中AKT-1蛋白表达明显高于常规SGC7901和BGC823胃癌细胞(P<0.05),E-cadherin蛋白在PDGF-B过表达SGC7901和BGC823胃癌细胞和常规SGC7901和BGC823胃癌细胞中的表达没有明显差异(P>0.05)。
     结论:PDGF-B过表达可以明显增强胃癌细胞的生长和侵袭能力,可能与胃癌进展和转移相关。其机制可能与PDGF-B自分泌作用激活PI3K/AKT通路相关。
     第四部分PDGF-B信号通路与上皮间质化和胃癌转移的相关性及其机制
     目的:探讨PDGF-B信号通路与上皮间质化和胃癌转移的相关性及其作用机制。
     方法:采用Western-blot方法检测PDGF-B过表达前后SGC7901和BGC823胃癌细胞中AKT-1、ERK-1、E-cadherin和N-cadherin的蛋白表达情况,并进行比较分析。采用细胞共培养技术模拟激活PDGF-B信号通路,用Western-blot和RT-PCR方法检测共培养情况下常规SGC7901和BGC823胃癌细胞,共培养情况下PDGF-B过表达SGC7901和BGC823胃癌细胞中AKT-1、ERK-1、E-cadherin和N-cadherin蛋白及mRNA表达情况,并进行比较分析。
     结果:PDGF-B过表达前后SGC7901和BGC823胃癌细胞中ERK-1、E-cadherin和N-cadherin蛋白表达没有明显差异(P>0.05);PDGF-B过表达SGC7901和BGC823胃癌细胞中AKT-1蛋白表达明显高于常规SGC7901和BGC823胃癌细胞(P<0.05)。共培养的PDGF-B过表达SGC7901和BGC823胃癌细胞中AKT-1和ERK-1蛋白及mRNA的表达明显高于常规SGC7901和BGC823胃癌细胞(P<0.05)。上皮间质化相关指标E-cadherin蛋白及mRNA在共培养的PDGF-B过表达SGC7901和BGC823胃癌细胞中的表达明显低于常规SGC7901和BGC823胃癌细胞(P<0.05);上皮间质化相关指标N-cadherin蛋白及mRNA在PDGF-B过表达SGC7901和BGC823胃癌细胞中的表达明显高于常规SGC7901和BGC823胃癌细胞(P<0.05)。常规SGC7901和BGC823胃癌细胞共培养前后AKT-1、ERK-1、N-cadherin和E-cadherin的蛋白表达没有明显差异(P>0.05)。PDGF-B过表达SGC7901和BGC823胃癌细胞共培养前后AKT-1蛋白表达没有明显差异(P>0.05),PDGF-B过表达SGC7901和BGC823胃癌细胞共培养前后ERK-1、E-cadherin和N-cadherin蛋白表达有明显差异(P<0.05)。
     结论:PDGF-B信号通过自分泌作用不能诱导胃癌细胞发生上皮间质化。PDGF-B信号可以通过旁分泌作用并与肿瘤间质细胞相互作用促进胃癌细胞发生上皮间质化,从而促进胃癌进展和转移;其机制可能与PDGF-B信号通路下游的MAPK/ERK通路的激活和肿瘤微环境联合作用诱发胃癌细胞上皮间质化有关。PDGF-B信号通路可能是胃癌有效的治疗靶点之一。
PART I CLINICOPATHOLOGICAL SIGNIFICANCE OFPDGF-B AND PLATELET-DERIVED GROWTH FACTORRECPERTOR-β EXPRESSION IN GASTRIC CARCINOMA
     Objective: To observe the relationships between expressions ofplatelet-derived growth factor B(PDGF-B), platelet-derived growth factorreceptor β(PDGFR-β) and clinicolpathological features of patients withgastric carcinoma.
     Methods: A series of32gastric carcinoma cases that had undergonesurgical resection was collected. Gastric carcinoma tissues and normalgastric mucosa tissues were examined immunohistochemically usingantibodies against PDGF-B and PDGFR-β, followed by further analysisabout the correlation between PDGF-B and PDGFR-β expression and theclinicolpathological features of patients.
     Results: In surgical specimens, tumor cells expressed PDGF-B,positive rate was70.3%(45/64); but PDGFR-β was expressedpredominantly by tumor stromal cells, positive rate was60.9%(39/64); both
     of them were much higher than those of in normal gastric mucosa
     tissues(4.7%,3/64and3.1%,2/64respectively). Expressions of PDGF-B
     and PDGFR-β were positively correlated with the depth of cancer invasion,
     lymph node metastasis and tumor-node-metastasis(TNM) stage(P<0.05);but expressions of PDGF-B and PDGFR-β were no correlated with thetumor cell differentiation(P>0.05).
     Conclusions: Our data indicate that expressions of PDGF-B andPDGFR-β were much higher in gastric carcinoma tissue and were correlatedwith cancer progression and lymphogenous metastasis of gastric carcinoma;suggest that detection of PDGF-B and PDGFR-β were important markers forjudgment of tumor metastasis and prognosis of gastric carcinoma.
     PART II CONSTRUCTION OF LENTIVIRAL VECTORPLENO-DCE-PDGF-B AND STABLE PDGF-BOVEREXPRESSION GASTRIC CARCINOMA CELL LINE
     Objective: To construct a lentiviral vector that stably expressplatelet-derived growth factor B (PDGF-B) and to construct stable PDGF-Boverexpression gastric carcinoma cell line by lentiviral vector transfection.
     Methods: The lentiviral vector pLeno-DCE-PDGF-B was constructedand transfected into293T cells. The supernatant containing the lentivirusparticles was harvested to determine the virus titer and high titer lentivirusparticles was gathered. Then PDGF-B lentiviral vector was transfected intoSGC7901and BGC823gastric carcinoma cells for construction of stablePDGF-B overexpression gastric carcinoma cell lines. Western-blot andimmunofluorescence were used for evaluation of the construction of stablePDGF-B overexpression gastric carcinoma cell lines.
     Results: The lentiviral vector was correctly constructed and verified bysequencing. High titer PDGF-B lentiviral vector was acquired successfully.After transfection, two gastric carcinoma cell line SGC7901and BGC823were green color by detection of fluorescence microscope; and theexpression of PDGF-B protein in transfected SGC7901and BGC823gastric carcinoma cells were much higher than that of in normal SGC7901and BGC823gastric carcinoma cells(P<0.05).
     Conclusion: We have successfully constructed PDGF-B lentiviralvector and acquired high titer PDGF-B lentiviral vector. Lentiviral vectortransfection was an effective method for construction of stable PDGF-Boverexpression gastric carcinoma cell lines.
     PART III THE INFLUENCE ON GROWTH ANDINVASION OF GASTRIC CARCINOMA CELL CAUSEDBY PDGF-B OVEREXPRESSION AND ITS MECHANISM
     Objective: To observe the influence on growth and invasion of gastriccarcinoma cell caused by PDGF-B overexpression and to approach themechanism about how PDGF-B to affect the growth and invasion of gastriccarcinoma cells.
     Methods: Stable PDGF-B overexpression gastric carcinoma cell lineswere constructed. MTT assay was used for detection of cell growth andtranswell invasion assay was used for detection of invasion for both PDGF-Boverexpression and normal SGC7901and BGC823gastric carcinoma cells.Western-blot was used for detection of expression of AKT-1and E-cadherinbefore and after transfection to approach the mechanism.
     Results: Growth curve of PDGF-B overexpression SGC7901andBGC823gastric carcinoma cells were much higher than those of normalSGC7901and BGC823gastric carcinoma cells(P<0.05). Invasion cellnumber of PDGF-B overexpression SGC7901and BGC823gastriccarcinoma cells(65.4±2.4and70.2±3.2, respectively) were much higher thanthose of normal SGC7901and BGC823gastric carcinoma cells(21.6±1.6and30.2±2.2, respectively)(P<0.05). Expression of AKT-1in PDGF-B
     overexpression SGC7901and BGC823gastric carcinoma cells were much
     higher than normal SGC7901and BGC823gastric carcinoma cells(P<0.05).
     Expression of E-cadherin were no difference between PDGF-B
     overexpression and normal SGC7901and BGC823gastric carcinoma
     cells(P>0.05).
     Conclusions: Overexpression of PDGF-B increases the growth andinvasion of gastric carcinoma cells so as to promote tumor metastasis.Activation of PI3K/AKT signal pathway by PDGF-B autocrine might leadthe increases of the growth and invasion of gastric carcinoma cells.
     PART Ⅳ THE RELATIONSHIP BETWEEN PDGF-BSIGNALING, EPITHELIAL–MESENCHYMALTRANSIYION AND METASTASIS OF GASTRICCARCINOMA AND ITS MECHANISM
     Objective: To approach the relationships between PDGF-B signaling,epithelial–mesenchymal transition(EMT) and metastasis of gastriccarcinoma and to investigate the mechanism of PDGF-B signaling inmetastasis of gastric carcinoma.
     Methods: Expressions of AKT-1, ERK-1, E-cadherin and N-cadherinprotein in SGC7901and BGC823gastric carcinoma cells before and afterPDGF-B transfection were detected by western-blot. Cell coculture wasused for activation of PDGF-B signaling. RT-PCR was used for detection ofmRNA of AKT-1, ERK-1, E-cadherin and N-cadherin in coculture PDGF-Boverexpression SGC7901and BGC823gastric carcinoma cells and incoculture normal SGC7901and BGC823gastric carcinoma cells, alsowestern-blot was used for detection of protein of AKT-1, ERK-1, E-cadherinand N-cadherin in coculture PDGF-B overexpression SGC7901andBGC823gastric carcinoma cells and in coculture normal SGC7901andBGC823gastric carcinoma cells.
     Results: There were no differences between expressions of E-cadherin,N-cadherin and ERK-1protein in SGC7901and BGC823gastric carcinomacells before and after PDGF-B overexpression(P>0.05); the expressions ofAKT-1protein in PDGF-B overexpression SGC7901and BGC823gastriccarcinoma cells were much higher than those of in normal SGC7901andBGC823gastric carcinoma cells(P<0.05). The expressions of mRNA andprotein of AKT-1and ERK-1in cocultured PDGF-B overexpressionSGC7901and BGC823gastric carcinoma cells were much higher than thoseof in cocultured normal SGC7901and BGC823gastric carcinomacells(P<0.05). Expressions of mRNA and protein of EMT-related E-cadherinin coculture PDGF-B overexpression SGC7901and BGC823gastric carcinoma cells were much lower than those of in cocultured normalSGC7901and BGC823gastric carcinoma cells(P<0.05), and expressions ofmRNA and protein of ETM-related N-cadherin in cocultured PDGF-Boverexpression SGC7901and BGC823gastric carcinoma cells were muchhigher than those of in cocultured normal SGC7901and BGC823gastriccarcinoma cells(P<0.05). There were no differences between expressions ofAKT-1, ERK-1, E-cadherin and N-cadherin protein in normal SGC7901and BGC823gastric carcinoma cells before and after coculture(P>0.05).There were no differences between expressions of AKT-1protein inPDGF-B overexpression SGC7901and BGC823gastric carcinoma cellsbefore and after coculture(P>0.05); there were apparently differencesbetween expressions E-cadherin, N-cadherin and ERK-1protein inPDGF-B overexpression SGC7901and BGC823gastric carcinoma cellsbefore and after coculture(P<0.05).
     Conclusions: PDGF-B signaling might not induce EMT in gastriccarcinoma cells through autocrine. PDGF-B signaling might induce EMT ingastric carcinoma cells through paracrine and joint action with tumorstromal cells so as to promote metastasis of gastric carcinoma. BothMAPK/ERK signal pathway(a downstream targets of PDGF signalingpathway) and tumor microenvironment might participate in the process ofEMT. Consequently, PDGF-B signaling might be an effective therapy targetfor gastric carcinoma.
引文
[1] Jemal A, Siegel R, Ward E, et al. Cancer Statistics2009[J]. CA Cancer J Clin,2009;59(4):225-249.
    [2] Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002[J]. CA Cancer JClin,2005;55(2):74-108.
    [3] Alberts SR, Cervantes A, van de Velde CJH. Gastric Cancer: Epidemiology,Pathology and Treatment[J]. Ann Oncol,2003;14(suppl2): ii31-36.
    [4] Green D, Ponce DL, Leon-Rodriguez E, et al. Adenocarcinoma of the stomach:univariate and multivariate analysis of factors associated with survival[J]. Am J ClinOncol,2002;25(1):84-89.
    [5] Liu KW, Hu B, Cheng SY. Platelet-derived growth factor signaling in humanmalignancies[J]. Chin J Cancer,2011;30(9):581-584.
    [6] Cao Y, Cao R, Hedlund EM. R Regulation of tumor angiogenesis and metastasis byFGF and PDGF signaling pathways[J]. J Mol Med,2008;86(7):785-789.
    [7] Donnem T, Al-Saad S, Al-Shibli K, et al. Co-expression of PDGF-B and VEGFR-3strongly correlates with lymph node metastasis and poor survival in non-small-celllung cancer[J]. Ann Oncol,2010;21(2):223-231.
    [8] Calzolari F, Appolloni I, Tutucci E, et al. Tumor Progression and OncogeneAddiction in a PDGF-B-Induced Model of Gliomagenesis[J]. Neoplasia,2008;10(12):1373-1382.
    [9] Yu J, Ustach C, Kim HR. Platelet-derived growth factor signaling and humancancer[J]. Journal of Biochemistry and Molecular Biology,2003;36(1):49-59.
    [10] Sawyers C. Targeted cancer therapy[J]. Nature,2004;432:294-297.
    [11] Green MR. Targeting Targeted Therapy[J]. The new england journal of medicine,2004;350:2191-2193.
    [12] stman A, Heldin CK. PDGF Receptors as Targets in Tumor Treatment[J].Advances in Cancer Research,2007;97:247-274.
    [13] Pietras K, Sjoblom T, Rubin K, et al. PDGF receptors as cancer drug targets[J].Cancer Cell,2003;3:439–443.
    [14] Heldin CH, Eriksson U, stman A. New members of the platelet-derived growthfactor family of mitogens[J]. Arch BiochemBiophys,2002;398(2):284–290.
    [15] Fredriksson L, Li H, Eriksson U. The PDGF family: four gene products form fivedimericisoforms[J]. Cytokine&Growth Factor Reviews,2004;15(4):197-204.
    [16] Li X, Eriksson U. Novel PDGF family members: PDGF-C and PDGF-D[J].Cytokine Growth Factor Rev,2003;14(2):91–98.
    [17] Uehara H, Kim SJ, Karashima T, et al. Effects of blocking platelet-derived growthfactor-receptor signaling in a mouse model of experimental prostate cancer bonemetastases[J]. J Natl Cancer Inst,2003;95(6):458–470.
    [18] Kumar A, Hou X, Lee C, et al. PDGF-DD targeting arrests pathologicalangiogenesis by modulating glycogen synthase kinase3beta (GSK3β)phosphorylation[J]. Journal of Biological Chemistry,2010;285(20):1074-1085.
    [19] Kodama M, Kitadai Y, Sumida T, et al. Expression of platelet-derived growth factor(PDGF)-B and PDGF-receptor b is associated with lymphatic metastasis in humangastric carcinoma[J]. Cancer Science,2010;101(9):1984-1989.
    [20] Kong D, Li Y, Wang Z, et al. miR-200Regulates PDGF-D-MediatedEpithelial–Mesenchymal Transition, Adhesion, and Invasion of Prostate CancerCells[J]. STEM CELLS,2009;27(8):1712–1721.
    [21] Pietras K. Increasing tumor uptake of anticancer drugs with imatinib[J]. SeminOncol,2004;31(suppl6):18–23.
    [22] Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancercells in metastatic sites[J]. Nat Rev Cancer,2002;2:563–572.
    [23] Voulgari A, Pintzas A. Epithelial-mesenchymal transition in cancer metastasis:mechanisms, markers and strategies to overcome drug resistance in the clinic[J].Biochim Biophys Acta,2009;1796(2):75–90.
    [24] Takanori T, Soichiro I, Guo FH. Epithelial-Mesenchymal Transition and CellCooperativity in Metastasis[J]. Cancer Res,2009;69:7135-7139
    [25] Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transitionas a prerequisite for carcinoma invasion and metastasis[J]. Cancer Res,2006;66:8319-8326.
    [26] Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymaltransitions during embryogenesis and cancer progression[J]. Cancer Sci,2007;98(10):1512–1520.
    [27] Zavadil J, Haley J, Kalluri R, et al. Epithelial-Mesenchymal Transition[J]. CancerRes,2008;68:9574-9577.
    [28] Yang J, Weinberg RA. Epithelial-Mesenchymal Transition: At the Crossroads ofDevelopment and Tumor Metastasis[J]. Developmental Cell,2008;14(6):818-826.
    [29] Kim MA, Lee HS, Lee HE, et al. Prognostic importance ofepithelial–mesenchymal transition-related protein expression in gastriccarcinoma[J]. Histopathology,2009;54(4):442-451.
    [30] Boyer B, Valles AM, Edme N. Induction and regulation of epithelial-mesenchymaltransitions[J]. Biochem Pharmacol,2000;60(8):1091–9.
    [31] Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads ofdevelopment and tumor metastasis[J]. Dev Cell,2008;14(6):818–29.
    [32] Kowalski PJ, Rubin MA, Kleer CG. E-cadherin expression in primary carcinomasof the breast and its distant metastases[J]. Breast Cancer Res,2003;5:217–222.
    [33] Ngan CY, Yamamoto H, Seshimo I et al. Quantitative evaluation of vimentinexpression in tumour stroma of colorectal cancer[J]. Br J Cancer,2007;96:986–992.
    [34] Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumourprogression: an alliance against the epithelial phenotype?[J]. Nat Rev Cancer,2007;7:415–428.
    [35] Nawshad A, Lagamba D, Polad A, et a1. Transforming growth factor-beta signalingduring epithelial-mesenehymal transformation: implications for embryogenesis andtumor metastasis[J]. Cells Tissues Organs,2005;179:11-23.
    [36] Kim D, Cheng GZ, Iindsley CW, et a1. Targeting the phosphatidylinositol-3kinase/Akt pathway for the treatment of cancer[J]. Curr Opin Investig Drugs,2005;6(12):1250-1258.
    [37] Smallhoru M, Murray MJ, Saint R. The epithelial-mesenchymal transition of theDrosophila mesoderm requires the Rho GTP exchange factor Pebble[J].Development,2004;131(11):2641-2651.
    [38] Monslakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymaltransitions during embryogenesis and cancer progression[J]. Cancer Sci,2007;98(10):1512-1520.
    [39] Wu Y, Zhao BP. New insights of epithelial-mesenchymal transition in cancermetastasis[J]. Acta Biochim Biophys Sin,2008;40(7):643-650.
    [40] Bolos V, Grego-bessa J, De PJ. Notch signaling in development and cancer[J].Endocr Rev,2007;28(3):339-363.
    [41] Suzuki S, Dobashi Y, Hatakeyama Y, et al. Clinicopathological significance ofplatelet-derived growth factor (PDGF)-B and vascular endothelial growth factor-Aexpression, PDGF receptor-b phosphorylation, and microvessel density in gastriccancer[J]. BMC Cancer,2010;10:659-669.
    [42] Patel P, West-Mays J, Kolb M, et al. Platelet derived growth factor B and epithelialmesenchymal transition of peritoneal mesothelial cells[J]. Matrix Biology,2010;29(2):97-106.
    [1] Steeg PS. Tumor metastasis: mechanistic insights and clinical challenge[J]. NatureMedince,2006;12:895-904.
    [2] Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transitionas a prerequisite for carcinoma invasion and metastasis[J]. Cancer Res,2006;66:8319-8326.
    [3] Zetter BR. Angiogenesis and tumor metastasis[J]. Annu. Rev. Med,1998;49(1):407-424.
    [4] Folkman J. Role of angiogenesis in tumor growth and metastasis[J]. Oncology,2002;29(6):15-8.
    [5] Willis BC, Liebler JM, Luby-Phelps K, et al. Induction of Epithelial-MesenchymalTransition in Alveolar Epithelial Cells by Transforming Growth Factor-β1[J]. Am JPathol,2005;166(5):1321–1332.
    [6] Lo HW, Hsu SC, Xia W, et al. Epidermal Growth Factor Receptor Cooperates withSignal Transducer and Activator of Transcription3to InduceEpithelial-Mesenchymal Transition in Cancer Cells via Up-regulationof TWIST Gene Expression[J]. Cancer Res,2007;67(19):9066-9076
    [7] Brigstock DR. Regulation of angiogenesis and endothelial cell function byconnective tissue growth factor (CTGF) and cysteine-rich61(CYR61)[J].Angiogenesis,2002;5(3):153-165.
    [8] Liu KW, Hu B, Cheng SY. Platelet-derived growth factor signaling in humanmalignancies[J]. Chin J Cancer,2011;30(9):581–584.
    [9] Donnem T, Al-Saad S, Al-Shibli K, et al. Co-expression of PDGF-B and VEGFR-3strongly correlates with lymph node metastasis and poor survival in non-small-celllung cancer[J]. Ann Oncol,2010;21(2):223-231.
    [10] Yu J, Ustach C, Kim HR. Platelet-derived growth factor signaling and humancancer[J]. Journal of Biochemistry and Molecular Biology,2003;36(1):49-59.
    [11] Suzuki S, Dobashi Y, Hatakeyama Y, et al. Clinicopathological significance ofplatelet-derived growth factor (PDGF)-B and vascular endothelial growth factor-Aexpression, PDGF receptor-b phosphorylation, and microvessel density in gastriccancer[J]. BMC Cancer,2010;10:659-669.
    [12] Sennino B, Falcon BL, McCauley D, et al. Sequential loss of tumor vesselpericytes and endothelial cells after inhibition of platelet-derived growth factor Bby selective aptamer AX102[J]. Cancer Res,2007;67:7358–67.
    [13] Patel P, West-Mays J, Kolb M, et al. Platelet derived growth factor B and epithelialmesenchymal transition of peritoneal mesothelial cells[J]. Matrix Biology,2010;29(2):97-106.
    [14] Zavadil J, Haley J, Kalluri R, et al. Epithelial-Mesenchymal Transition[J]. CancerRes,2008;68:9574-9577.
    [15] Yang J, Weinberg RA. Epithelial-Mesenchymal Transition: At the Crossroads ofDevelopment and Tumor Metastasis[J]. Developmental Cell,2008;14(6):818-826.
    [16] Thiery JP. Epithelial–mesenchymal transitions in tumour progression[J]. NATUREREVIEWS,2002;2:442-454.
    [17] Kang Y, Massague J. Epithelial-Mesenchymal Transitions: Twist in Developmentand Metastasis[J]. Cell,2004;118(3):277-279.
    [18] Kodama M, Kitadai Y, Sumida T, et al. Expression of platelet-derived growth factor(PDGF)-B and PDGF-receptor b is associated with lymphatic metastasis in humangastric carcinoma[J]. Cancer Science,2010;101(9):1984-1989.
    [1] Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression andcancer progression[J]. Nature Genetics,2001;29:117–129.
    [2] Korc M, Friesel RE. The role of fibroblast growth factors in tumor growth[J].Current Cancer Drug Targets,2009;9(5):639-651.
    [3] H Yu, T Rohan. Role of the Insulin-Like Growth Factor Family in CancerDevelopment and Progression[J]. J Natl Cancer Inst,2000;92(18):1472-1489.
    [4]王淑艳,张愚.慢病毒载体的设计及应用进展[J].中国生物工程杂志,2006,26(11):70-75.
    [5] Romano G. Current Development of Lentiviral-Mediated Gene Transfer[J]. DrugNews Perspect,2005;18(2):128-130.
    [6] Gustavo T, Oded S, Inder MV. Production and purification of lentiviral vectors[J].Nature Protocols,2006;1:241–245.
    [7]耿海涛,肖乾,徐邓勇,等. HNF6重组慢病毒载体的构建及对大肠癌SW620细胞侵袭转移能力的影响[J].南方医科大学学报,2012;32(1):66-70.
    [8] Bruce LL, Laurent MH, Jean B, et al. Gene transfer in humans using a conditionallyreplicating lentiviral vector[J]. PNAS,2006;103(46):17372-17377.
    [9] Mátrai J, Chuah MKL, VandenDriessche T. Recent Advances in Lentiviral VectorDevelopment and Applications[J]. Molecular Therapy,2010;18(3):477–490.
    [1] Lindmark G, Sundberg C, Glimelius B, et al. Stromal expression of platelet-derivedgrowth factor beta-receptor and platelet-derived growth factor B-chain in colorectalcancer[J]. Journal of Technical Methods and Pathology,1993;69(6):682-689.
    [2] Suzuki S, Dobashi Y, Hatakeyama Y, et al. Clinicopathological significance ofplatelet-derived growth factor (PDGF)-B and vascular endothelial growth factor-Aexpression, PDGF receptor-b phosphorylation, and microvessel density in gastriccancer[J]. BMC Cancer,2010;10:659-669.
    [3] Maass T, Thieringer FR, Mann A, et al. Liver specific overexpression ofplatelet-derived growth factor-B accelerates liver cancer development in chemicallyinduced liver carcinogenesis[J]. International Journal of Cancer,2011;128(6):1259-1268.
    [4] Wang Y, Ji M, Wang W, et al. Association of the T1799A BRAF mutation withtumor extrathyroidal invasion, higher peripheral platelet counts, and over-expressionof platelet-derived growth factor-B in papillary thyroid cancer[J]. Endocrine-RelatedCancer,2008;15(6):183-190.
    [5] Kodama M, Kitadai Y, Sumida T, et al. Expression of platelet-derived growth factor(PDGF)-B and PDGF-receptor b is associated with lymphatic metastasis in humangastric carcinoma[J]. Cancer Science,2010;101(9):1984-1989.
    [6] Mátrai J, Chuah MKL, VandenDriessche T. Recent Advances in Lentiviral VectorDevelopment and Applications[J]. Molecular Therapy,2010;18(3):477–490.
    [7] Romano G. Current Development of Lentiviral-Mediated Gene Transfer[J]. DrugNews Perspect,2005;18(2):128-130.
    [8]王淑艳,张愚.慢病毒载体的设计及应用进展[J].中国生物工程杂志,2006,26(11):70-75.
    [9] Samuels Y, Diaz LA, Schmidt-Kittler O, et al. Mutant PIK3CA promotes cell growthand invasion of human cancer cells[J]. Cancer Cell,2005;7(6):561-573.
    [10] Chang C, Werb Z. The many faces of metalloproteases: cell growth, invasion,angiogenesis and metastasis[J]. Cell,2001;11(suppl1):37-43.
    [11] Andreasen PA, Egelund R, Petersen HH. The plasminogen activation system intumor growth, invasion, and metastasis[J]. Cellular and Molecular Life Sciences,2000;57(1):25-40.
    [12] LIU KW, HU B, CHENG SY. Platelet-derived growth factor signaling in humanmalignancies[J]. Chin J Cancer,2011;30(9):581-584.
    [13] Andrae J, Gallini R, Betsholtz C. Role of platelet-de rived growth factors inphysiology and medicine[J]. Genes Dev,2008;22(10):1276–1312.
    [14] Mazzocca A, Fransvea E, Dituri F, et al. Down-regulation of connective tissuegrowth factor by inhibition of transforming growth factor β blocks thetumor–stroma cross-talk and tumor progression in hepatocellular carcinoma[J].Hepatology,2010;51(2):523-534.
    [15] Folkman J. Antiangiogenesis in cancer therapy—endostatin and its mechanisms ofaction[J]. Experimental Cell Research,2006;312(5):594-607.
    [16] Manning BD, Cantley LC. AKT/PKB Signaling: Navigating Downstream[J]. Cell,2007;129(7):1261-1274.
    [17] Wang Z, Li Y, Banerjee S, et al. Down-regulation of Notch-1and Jagged-1inhibitsprostate cancer cell growth, migration and invasion, and induces apoptosis viainactivation of Akt, mTOR, and NF-κB signaling pathways[J]. Journal of CellularBiochemistry,2010;109(4):726-736.
    [18] Metalli D, Lovat F, Tripodi F, et al. The Insulin-Like Growth Factor Receptor IPromotes Motility and Invasion of Bladder Cancer Cells through Akt-andMitogen-Activated Protein Kinase-Dependent Activation of Paxillin[J]. TheAmerican Journal of Pathology,2009;176(6):2997-3006.
    [19] Chin YR, Toker A. Function of Akt/PKB signaling to cell motility, invasion andthe tumor stroma in cancer[J]. Cellular Signalling,2009;21(4):470-476.
    [20] Perl AK, Wilgenbus P, Dahl U, et al. A causal role for E-cadherin in the transitionfrom adenoma to carcinoma[J]. Nature,1998;392:190-193.
    [21] Christofori G, Semb H. The role of the cell-adhesion molecule E-cadherin as atumour-suppressor gene[J]. Cell,1999;24(2):73-76.
    [1] Steeg PS. Tumor metastasis: mechanistic insights and clinical challenge[J]. NatureMedince,2006;12:895-904.
    [2] Engers R, Gabbert HE. Mechanisms of tumor metastasis: cell biological aspects andclinical implications[J]. Journal of Cancer Research and Clinical Oncology,2000;126(12):682-692.
    [3] Zetter BR. ANGIOGENESIS AND TUMOR METASTASIS[J]. Annual Review ofMedicine,1998;49:407-424.
    [4] Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transitionas a prerequisite for carcinoma invasion and metastasis[J]. Cancer Res,2006;66:8319-8326.
    [5] Deshpande N, Pysz MA, Willmann JK. Molecular ultrasound assessment of tumorangiogenesis[J]. Angiogenesis,2010;13,(2):,175-188.
    [6] Carmeliet P, Jain RK. Molecular mechanisms and clinical applications ofangiogenesis[J]. Nature,2011;473:298–307.
    [7] Huber MA, Kraut N, Beug H. Molecular requirements for epithelial–mesenchymaltransition during tumor progression[J]. Current Opinion in Cell Biology,2005;17(5):548-558.
    [8] Cannito S, Novo E, Valfrè di Bonzo L, et al. Epithelial–Mesenchymal Transition:From Molecular Mechanisms, Redox Regulation to Implications in Human Healthand Disease[J]. Antioxidants&Redox Signaling,2010;12(12):1383-1430.
    [9] Liu KW, Hu B, Cheng SY. Platelet-derived growth factor signaling in humanmalignancies[J]. Chin J Cancer,2011;30(9):581-584.
    [10] stman A, Heldin CK. PDGF Receptors as Targets in Tumor Treatment[J].Advances in Cancer Research,2007;97:247-274.
    [11] Kumar A, Hou X, Lee C, et al. PDGF-DD targeting arrests pathologicalangiogenesis by modulating glycogen synthase kinase3beta (GSK3β)phosphorylation[J]. Journal of Biological Chemistry,2010;285(20):1074-1085.
    [12] Battegay EJ, Rupp J, Iruela-Arispe L, et al. PDGF-BB modulates endothelialproliferation and angiogenesis in vitro via PDGF beta-receptors[J]. JCB,1994;125(4):917-928.
    [13] Kong D, Li Y, Wang Z, et al. miR-200Regulates PDGF-D-MediatedEpithelial–Mesenchymal Transition, Adhesion, and Invasion of Prostate CancerCells[J]. STEM CELLS,2009;27(8):1712–1721.
    [14] Yang LQ, Lin CR, Liu ZR. P68RNA Helicase Mediates PDGF-Induced EpithelialMesenchymal Transition by Displacing Axin from β-Catenin[J]. Cell,2006;126(1):139-155.
    [15] Alberts SR, Cervantes A, van de Velde CJH. Gastric Cancer: Epidemiology,Pathology and Treatment[J]. Ann Oncol,2003;14(suppl2): ii31-36.
    [16] Kodama M, Kitadai Y, Sumida T, et al. Expression of platelet-derived growth factor(PDGF)-B and PDGF-receptor b is associated with lymphatic metastasis in humangastric carcinoma[J]. Cancer Science,2010;101(9):1984-1989.
    [17] Suzuki S, Dobashi Y, Hatakeyama Y, et al. Clinicopathological significance ofplatelet-derived growth factor (PDGF)-B and vascular endothelial growth factor-Aexpression, PDGF receptor-b phosphorylation, and microvessel density in gastriccancer[J]. BMC Cancer,2010;10:659-669.
    [18] Voulgari A, Pintzas A. Epithelial-mesenchymal transition in cancer metastasis:mechanisms, markers and strategies to overcome drug resistance in the clinic[J].Biochim Biophys Acta,2009;1796(2):75–90.
    [19] Kowalski PJ, Rubin MA, Kleer CG. E-cadherin expression in primary carcinomasof the breast and its distant metastases[J]. Breast Cancer Res,2003;5:217–222.
    [20] Nakajima S, Ryuichiro D, Toyoda E, et al. N-Cadherin Expression andEpithelial-Mesenchymal Transition in Pancreatic Carcinoma[J]. Clin Cancer Res,2004;10:4125-4133.
    [21] Nawshad A, Lagamba D, Polad A, et a1. Transforming growth factor-beta signalingduring epithelial-mesenehymal transformation: implications for embryogenesis andtumor metastasis[J]. Cells Tissues Organs,2005;179:11-23.
    [22] Kim D, Cheng GZ, Iindsley CW, et a1. Targeting the phosphatidylinositol-3kinase/Akt pathway for the treatment of cancer[J]. Curr Opin Investig Drugs,2005;6(12):1250-1258.
    [23] Smallhoru M, Murray MJ, Saint R. The epithelial-mesenchymal transition of theDrosophila mesoderm requires the Rho GTP exchange factor Pebble[J].Development,2004;131(11):2641-2651.
    [24] Manning BD, Cantley LC. AKT/PKB Signaling: Navigating Downstream[J]. Cell,2007;129(7):1261-1274.
    [25] Wang Z, Li Y, Banerjee S, et al. Down-regulation of Notch-1and Jagged-1inhibitsprostate cancer cell growth, migration and invasion, and induces apoptosis viainactivation of Akt, mTOR, and NF-κB signaling pathways[J]. Journal of CellularBiochemistry,2010;109(4):726-736.
    [26] Fredriksson L, Li H, Eriksson U. The PDGF family: four gene products form fivedimericisoforms[J]. Cytokine&Growth Factor Reviews,2004;15(4):197-204.
    [27] Perl AK, Wilgenbus P, Dahl U, et al. A causal role for E-cadherin in the transitionfrom adenoma to carcinoma[J]. Nature,1998;392:190-193.
    [28] Christofori G, Semb H. The role of the cell-adhesion molecule E-cadherin as atumour-suppressor gene[J]. Cell,1999;24(2):73-76.
    [29] Miyatani S, Shimamura K, Hatta M, et al. Neural cadherin: role in selectivecell-cell adhesion[J]. Science (New York, N.Y.),1989;245(4918):631-635.
    [30] Davidson B, Nielsen S, Christensen J, et al. The Role of Desmin and N-Cadherin inEffusion Cytology: A Comparative Study Using Established Markers ofMesothelial and Epithelial Cells[J]. American Journal of Surgical Pathology,2001;25(11):1045-1412.
    [31] Hilger RA, Scheulen ME, Strumberg D. The Ras-Raf-MEK-ERK Pathway in theTreatment of Cancer[J]. Onkologie,2002;25(6):511-518.
    [32] Ramos C, Becerril C, Monta o M, et al. FGF-1reverts epithelial-mesenchymaltransition induced by TGF-β1through MAPK/ERK kinase pathway[J]. AJP,2010;299(2):222-231.
    [33] Boyer B, Valles AM, Edme N. Induction and regulation of epithelial-mesenchymaltransitions[J]. Biochem Pharmacol,2000;60(8):1091–1099.
    [34] Lebret SC, Newgreen DF, Thompson EW, et al. Induction of epithelial tomesenchymal transition in PMC42-LA human breast carcinoma cells bycarcinoma-associated fibroblast secreted factors[J]. Breast Cancer Res,2007;9(1):19-33.
    [35] Lewis MP, Lygoe KA, Nystrom ML et al. Tumour-derived TGF-beta1modulatesmyofibroblast differentiation and promotes HGF/SF-dependent invasion ofsquamous carcinoma cells[J]. Br J Cancer,2004;90:822–832.
    [1] Weigelt B, Peterse JL, van’t Veer LJ. Breast cancer metastasis: markers andmodels[J]. Nat Rev Cancer,2005;5:591–602.
    [2] Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancercells in metastatic sites[J]. Nat Rev Cancer,2002;2:563–572.
    [3] Mehes G, Witt A, Kubista E, et al. Circulating breast cancer cells are frequentlyapoptotic[J]. Am J Pathol,2001;159(1):17–20.
    [4] Thiery JP. Epithelial-mesenchymal transitions in tumour progression[J]. Nat RevCancer,2002;2:442–454.
    [5] Kowalski PJ, Rubin MA, Kleer CG. E-cadherin expression in primary carcinomas ofthe breast and its distant metastases[J]. Breast Cancer Res,2003;5(6):217–222.
    [6] Ngan CY, Yamamoto H, Seshimo I, et al. Quantitative evaluation of vimentinexpression in tumour stroma of colorectal cancer[J]. Br J Cancer,2007;96(6):986–992.
    [7] Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression:an alliance against the epithelial phenotype?[J]. Nat Rev Cancer,2007;7:415–428.
    [8] Voulgari A, Pintzas A. Epithelial-mesenchymal transition in cancer metastasis:mechanisms, markers and strategies to overcome drug resistance in the clinic[J].Biochim Biophys Acta,2009;1796(2):75–90.
    [9] Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymaltransitions during embryogenesis and cancer progression[J]. Cancer Sci,2007;98(10):1512–1520.
    [10] Boyer B, Valles AM, Edme N. Induction and regulation of epithelial-mesenchymaltransitions[J]. Biochem Pharmacol,2000;60(8):1091–1099.
    [11] Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads ofdevelopment and tumor metastasis[J]. Dev Cell,2008;14(6):818–829.
    [12] Gould Rothberg BE, Bracken MB. E-cadherin immunohistochemical expression asa prognostic factor in infiltrating ductal carcinoma of the breast: a systematicreview and meta-analysis[J]. Breast Cancer Res Treat,2006;100(2):139–148.
    [13] Graff JR, Herman JG, Lapidus RG, et al. E-cadherin expression is silenced byDNA hypermethylation in human breast and prostate carcinomas[J]. Cancer Res,1995;55:5195–5199.
    [14] Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta inhuman disease[J]. N Engl J Med,2000;342:1350–1358.
    [15] Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression andcancer progression[J]. Nat Genet,2001;29:117–129.
    [16] Batlle E, Sancho E, Franci C et al. The transcription factor snail is a repressor ofE-cadherin gene expression in epithelial tumour cells[J]. Nat Cell Biol,2000;2:84–89.
    [17] Eger A, Aigner K, Sonderegger S, et al. DeltaEF1is a transcriptional repressor ofE-cadherin and regulates epithelial plasticity in breast cancer cells[J]. Oncogene,2005;24:2375–2385.
    [18] Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis,plays an essential role in tumor metastasis[J]. Cell,2004;117(7):927–939.
    [19] Peinado H, Portillo F, Cano A. Transcriptional regulation of cadherins duringdevelopment and carcinogenesis[J]. Int J Dev Biol,2004;48:365–375.
    [20] Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions[J].Oncogene,2005;24:5764–5774.
    [21] Larue L, Bellacosa A. Epithelial-mesenchymal transition in development andcancer: role of phosphatidylinositol3’ kinase/AKT pathways[J]. Oncogene,2005;24:7443–7454.
    [22] Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiatedby microRNA-10b in breast cancer[J]. Nature,2007;449:682–688.
    [23] Park SM, Gaur AB, Lengyel E, et al. The miR-200family determines the epithelialphenotype of cancer cells by targeting the E-cadherin repressors ZEB1andZEB2[J]. Genes Dev,2008;22(5):894–907.
    [24] Adam L, Zhong M, Choi W, et al. miR-200expression regulatesepithelial-tomesenchymal transition in bladder cancer cells and reverses resistanceto epidermal growth factor receptor therapy[J]. Clin Cancer Res,2009;15(10):5060–5072.
    [25] Lebret SC, Newgreen DF, Thompson EW, et al. Induction of epithelial tomesenchymal transition in PMC42-LA human breast carcinoma cells bycarcinoma-associated fibroblast secreted factors[J]. Breast Cancer Res,2007;9(1):19-33.
    [26] Lewis MP, Lygoe KA, Nystrom ML, et al. Tumour-derived TGF-beta1modulatesmyofibroblast differentiation and promotes HGF/SF-dependent invasion ofsquamous carcinoma cells[J]. Br J Cancer,2004;90(10):822–832.
    [27] Jung JW, Hwang SY, Hwang JS, et al. Ionising radiation induces changesassociated with epithelial-mesenchymal transdifferentiation and increased cellmotility of A549lung epithelial cells[J]. Eur J Cancer,2007;43(7):1214–1224.
    [28] Yang MH, Wu MZ, Chiou SH, et al. Direct regulation of TWIST by HIF-1alphapromotes metastasis[J]. Nat Cell Biol,2008;10:295–305.
    [29] Yang AD, Fan F, Camp ER, et al. Chronic oxaliplatin resistance inducesepithelial-to-mesenchymal transition in colorectal cancer cell lines[J]. Clin CancerRes,2006;12:4147–4153.
    [30] Kajiyama H, Shibata K, Terauchi M, et al. Chemoresistance to paclitaxel inducesepithelial-mesenchymal transition and enhances metastatic potential for epithelialovarian carcinoma cells[J]. Int J Oncol,2007;31:277–283.
    [31] Shah AN, Summy JM, Zhang J, et al. Development and characterization ofgemcitabine-resistant pancreatic tumor cells[J]. Ann Surg Oncol,2007;14(12):3629–3637.
    [32] Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvantchemotherapy in HER2-positive breast cancer[J]. N Engl J Med,2005;353:1659–1672.
    [33] Fuchs BC, Fujii T, Dorfman JD, et al. Epithelial-to-mesenchymal transition andintegrin-linked kinase mediate sensitivity to epidermal growth factor receptorinhibition in human hepatoma cells[J]. Cancer Res,2008;68(7):2391–2399.
    [34] O’Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable ofinitiating tumour growth in immunodeficient mice[J]. Nature,2007;445:106–110.
    [35] Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells[J].Nature,2001;414(6859):105–111.
    [36] Sagar J, Chaib B, Sales K, et al. Role of stem cells in cancer therapy and cancerstem cells: a review[J]. Cancer Cell Int,2007;7:9-19.
    [37] Prindull G. Hypothesis: cell plasticity, linking embryonal stem cells to adult stemcell reservoirs and metastatic cancer cells?[J]. Exp Hematol,2005;33(7):738–746.
    [38] Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehog signaling inhibitspancreatic cancer invasion and metastases: a new paradigm for combinationtherapy in solid cancers[J]. Cancer Res,2007;67(6):2187–2196.
    [39] Olmeda D, Jorda M, Peinado H, et al. Snail silencing effectively suppresses tumourgrowth and invasiveness[J]. Oncogene,2007;26:1862–1874.
    [40] Garber K. Epithelial-to-mesenchymal transition is important to metastasis, butquestions remain[J]. J Natl Cancer Inst,2008;100(4):232–239.
    [41] Masaki T, Goto A, Sugiyama M, et al. Possible contribution of CD44variant6andnuclear beta-catenin expression to the formation of budding tumor cells in patientswith T1colorectal carcinoma[J]. Cancer,2001;92:2539–2546.
    [42] Brabletz T, Jung A, Spaderna S, et al. Opinion: migrating cancer stem cells–anintegrated concept of malignant tumour progression[J]. Nat Rev Cancer,2005;5:744–749.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700