用户名: 密码: 验证码:
蛋白酪氨酸磷酸酶1B抑制成脂并介导TNFα在肥胖中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白酪氨酸磷酸酶1B(PTP1B)是机体广泛表达的非受体型酪氨酸磷酸酶,与肿瘤、代谢、心血管、自身免疫及神经功能紊乱等许多疾病相关,尤以其对葡萄糖及胰岛素稳态的负性调节而受到密切关注。PTP1B敲除小鼠呈现显著的低体重、低体脂及对饮食诱导肥胖的抵抗,然而这种现象似乎存在一定的组织特异性:脂肪特异性PTP1B敲减小鼠并未出现良性体重调节,而PTP1B缺乏的离体脂肪组织中亦未见胰岛素受体磷酸化水平及葡萄糖摄取功能的变化,提示PTP1B对脂肪组织中的胰岛素信号转导可能无主导作用。与此同时,大量证据显示肥胖脂肪组织中普遍存在PTP1B表达的上调,这让我们不禁思考其在调节胰岛素敏感性以外的重要意义。
     肥胖的实质是能量摄入与消耗失衡所引起的病理性脂质累积。脂肪细胞为储存过剩的能量而肥大并继发分化功能障碍,肥胖个体无法产生新的储脂细胞,过载的脂质流入循环、骨骼肌、肝脏甚至胰岛β细胞,形成异位沉积。在这一过程中,促炎脂肪因子TNFα的活化发挥了重要作用。TNFα在各种肥胖动物模型及人群的脂肪组织中亦存在显著的过表达,并引发包括分化功能障碍在内的脂肪微环境病理改变,然而其分子机制尚未阐明。另一方面,PTP1B似乎与部分成脂相关基因的转录相关,但现有研究结果因实验条件和对象不同而模棱两可。
     因此,本研究拟探讨PTP1B对脂肪分化功能的影响及作用位点,并在此基础上初步验证其对肥胖时炎症与脂肪功能障碍的贡献,以期揭示PTP1B在肥胖发生发展中的意义,并为其临床应用提供新的理论依据。
     一、PTP1B对成脂的负性调节作用
     我们分别构建了携带PTP1B cDNA序列、RNA干扰寡核苷酸及活性位点突变DNA序列的慢病毒并转染3T3-L1小鼠白色前脂肪细胞系。其中PTP1B双突变体(PTP1B-D/A-Y/F)替换了其分子催化域中两个关键氨基酸Tyr-46和Asp-181,使其保留与底物结合的能力而失去催化活性,在本研究中作为序列突变对照被引入。对病毒绿色荧光蛋白的检测显示整合基因不受细胞传代、分化甚至冻存的影响;过表达组细胞内PTP1B蛋白水平升高1.71±0.02倍,而敲减组则减少至13.14±0.04%,突变组亦降低至58.83±0.27%,提示PTP1B稳定过表达、敲减及突变脂肪细胞模型的建立。以经典“鸡尾酒”法诱导三组细胞分化,于诱导后第8天收集细胞并评估分化情况。结果显示:过表达组细胞分化明显延迟,成熟脂肪细胞比率不足60%,且形态不典型,油红O染色吸光度仅为对照的67.15±0.62%;敲减组分化显著增强,几乎均呈成熟脂肪细胞形态,细胞变圆变大,胞浆内脂滴丰富,油红O染色吸光度亦明显高于对照;突变组呈现与敲减模型相同的成脂促进作用,其成熟脂肪细胞比率及油红O染色吸光度亦显著高于对照。对成脂重要标志物的检测也得到相同结果:过表达组PPARγ2、SREBP-1c、FAS及LPL基因表达显著下调,而敲减及突变组则均增强;其中PPARγ2变化最大,在过表达组抑制至11.05±1.43%,而在敲减组则升高8.14±0.46倍,SREBP-1c也在敲减组升高12.52±1.41倍,C/EBPα的表达则在三组均无改变。
     在脂肪细胞的终末分化中,PPARγ2与C/EBPα同在早期活化,并在成熟脂肪细胞中维持高水平;SREBP-1c在分化前期被激活,并继而活化包括FAS、LPL在内的众多脂肪酸合成基因。我们的数据显示,PTP1B主要通过下调PPARγ2而非C/EBPα的转录水平抑制成脂,同时伴有脂质合成基因SREBP-1c、FAS、LPL等的平行变化。PTP1B-D/A-Y/F突变体过表达对PTP1B有显著的负显性抑制作用,这在以往应用底物捕获突变体的研究中从未报道。这种负显性抑制作用主要源于突变体“捕获”底物的高效性:强有力地与底物结合而不催化,从而竞争性抑制了内源性PTP1B的功能;而PTP1B-D/A-Y/F慢病毒对宿主基因组的整合似乎也能下调内源性PTP1B的表达。本部分通过特异性PTP1B过表达、敲减及负显性突变三种细胞模型,一致证实了PTP1B对白色前脂肪细胞成脂的重要调节作用。
     二、PTP1B介导肥胖时TNFα诱导的脂肪分化不良
     为进一步阐明PTP1B对脂肪分化调节作用在肥胖中的作用,我们对高脂饮食诱导肥胖小鼠的附睾脂肪组织进行检测。PTP1B与促炎脂肪因子TNFα在肥胖脂肪组织中存在明显重叠的过表达,同时伴有脂肪分化关键因子PPARγ2表达的下调。TNFα持续干预使3T3-L1前脂肪细胞分化能力明显受损,诱导后第8天分化率仅50~60%;而PTP1B表达却得到增强,尤其在第6-8天其蛋白水平为对照的2倍以上。然而在PTP1B功能受到抑制的突变体过表达3T3-L1细胞上,TNFα对脂肪分化的干预也明显减弱,提示PTP1B在TNFα的成脂抑制作用中扮演重要角色。最后,我们回到肥胖小鼠上探讨PTP1B对成脂调节的体内变化。以PTP1B经典抑制剂钒酸钠处理6周的肥胖(ob/ob)小鼠,其饮水量受影响,摄食、总体重与对照比较无差异,增重呈下降趋势;葡萄糖耐量在60、120min时明显改善。附睾脂肪组织比率无改变,但脂肪组织局部SREBP-1c、FAS等脂质合成基因明显上调,PPARγ2表达略上升但无统计学意义;TNFα基因表达及其下游重要靶点NFκB活性下调。
     脂肪细胞功能失调是肥胖等许多代谢疾病的中心病理环节。前脂肪细胞增殖及分化能力障碍是脂肪细胞参与胰岛素抵抗、代谢综合征和2型糖尿病发生的重要因素。我们的结果提示PTP1B可能是肥胖时连接炎症浸润与脂肪功能受损的重要桥梁,其在肥胖脂肪组织中被TNFα过度激活,并介导了成脂抑制作用;而PTP1B抑制剂治疗可能通过改善肥胖动物脂肪组织的成脂功能,减轻游离脂肪酸过载,而减轻局部炎症反应,最终为整体胰岛素抵抗的改善做贡献。NFκB可能是PTP1B与TNFα相互作用的中间环节。
     综上所述,我们提出PTP1B参与肥胖脂肪组织病理变化的可能机制:随着肥胖的进展,增大的脂肪细胞储脂能力超负荷,脂肪组织内分泌功能受损,大量分泌的TNFα通过激活PTP1B的表达抑制前脂肪细胞内PPARγ2、SREBP-1c、FAS、LPL等重要成脂因子的转录,最终导致脂肪细胞分化不足;而新分化储脂细胞的减少又反过来加重脂质过载,形成恶性循环;因此,抑制PTP1B的表达可能削弱肥胖时炎症对脂肪细胞功能的损害。本研究首次阐明了PTP1B在脂肪组织中的作用,尤其是其参与肥胖发生发展的可能机制,为其抑制剂的临床应用提供了新的理论依据。
Protein tyrosine phosphatase1B (PTP1B) is a ubiquitously expressednon-transmembrane protein tyrosine phosphatase. It is associated with numerous diseases,including cancer, metabolic and cardiovascular diseases, autoimmune and neurologicaldisorders. PTP1B becomes the target of intensive investigation because of its importancein glucose and insulin homeostasis. Global PTP1B knockout mice exhibit remarkablylower adiposity and are protected against diet-induced obesity, but several studies haveshown that this effect seems tissue-specific. Adipose-specific PTP1B deletion do notcontribute to the beneficial effect on body fat; furthermore, the insulin-stimulated receptorphosphorylation or glucose transport in isolated adipose tissue from total andadipocyte-specific PTP1B knockout mice have no difference compared with controls,suggesting an inessential role of PTP1B on insulin signaling in adipocytes. However,accumulating evidence shows that PTP1B is up-regulated in adipose tissue of obesity. Thispromotes us to explore the possibility that PTP1B is involved in other important functionsrather than insulin sensitivity in adipose.
     As the essence of obesity, the imbalance between energy intake and expenditure leadsto a pathologic accumulation of lipid. Adipose cells become hypertrophy in response toexcess energy, which is accompanied with a failure of adipocyte differentiation. Henceobese individuals are difficult to produce new fat cells, resulting in a lipid overload and theflow of fatty acids into circulation, muscle, liver and even β-cell. During this progression,the actions of pro-inflammatory adipokine TNFα plays an important role. The expressionof TNFα in adipose tissue is induced in variety of obese rodents and humans, whichimpairs the differentiation of preadipocytes and finally contributes to an alteration ofadipose microenvironment. But the underlying molecular mechanism has not beenunderstood currently. On the other hand, several studies have shown that PTP1B may beinvolved in the transcription of adipogenic markers, with ambiguous results derived fromdifferent experimental methods and subjects.
     Here, we explore the role of PTP1B in adipocyte differentiation, and its action inTNFα inhibiting adipocyte differentiation in obesity, to reveal the significance of PTP1B inthe obesity and provide new theory for its clinical application.
     Part Ⅰ. PTP1B acts as a negative regulator of adipocytedifferentiation
     Lentiviral vector encoding mouse PTP1B cDNA sequence, RNA interference oligoand active sites mutant cDNA sequence were constructed and transfected into mouse3T3-L1white preadipocytes respectively. Among them, the mutant (PTP1B-D/A-Y/F) wasintroduced as sequence mutant control with two key residues within catalytic domain,Tyr-46and Asp-181, replaced by Phe and Ala respectively. Therefore it retains the abilityto bind substrates without catalysis. The gene intergration did not weaken withdifferentiation, passage or freeze determined by EGFP fluorescence. Intracellular PTP1Bexpression was raised by70%in cells with PTP1B overexpression, reduced by87%and41%in cells with PTP1B knockdown and mutant respectively, indicating a successfulconstruction of three cell models. Transfected cells were induced to differentiation byclassic “cocktail” and harvested at eight days after to evaluation experiments. PTP1Boverexpression delayed the differentiation of adipocytes, since the maturation efficiencywas less than60%, the morphology of adipocytes was indistinctive, and the absorbance ofOil Red O staining was only58.8%of the corresponding control. In contrast, PTP1Bknockdown accelerated the differentiation, since almost all cells demonstrated a maturemorphology, and absorbance of Oil Red O staining was higher than control. Mutantoverexpression also showed observed enhancement in adipocyte differentiation, withhigher level in both the maturation efficiency and Oil Red O absorbance. Several importantadipogenic markers, PPARγ2, SREBP-1c, FAS and LPL, were markedly down-regulatedby overexpression of PTP1B, and up-regulated by knockdown and mutant of PTP1B,consistent with the morphology of the cells. In particular, PPARγ2was strongly affected byPTP1B since it was suppressed to10.9%in overexpression group and induced to8-fold inknockdown group. SREBP-1c was also markedly induced to more than12-fold inknockdown group. Of note, C/EBPα expression was not significantly affected by bothoverexpression and knockdown of PTP1B.
     During terminal differentiation, PPARγ2and C/EBPα are induced before transcriptionof most adipocyte genes and sustain high level in mature adipocyte. Besides, SREBP-1c isalso stimulated early and subsequently activates numerous fatty acid biosynthetic genessuch as FAS and LPL. Our data suggested that PTP1B regulates white preadipocytedifferentiation and lipogenesis probably through the modulation of PPARγ2expressioninstead of C/EBPα. SREBP-1c and its target genes changed in parallel with differentiation.In addition, we demonstrated a dominant-negative inhibition of PTP1B function by PTP1B-D/A-Y/F double mutant, which has not been reported before. This effect may becaused by the powerful ability of PTP1B-D/A-Y/F to interact with numerous substrateswithout catalysis, leading to a competitive inhibition of endogenous PTP1B. Moreover, theintegration of PTP1B-D/A-Y/F gene into host genome seemed to downregulate theexpression of wide-type PTP1B. Summarily, this part comprehensively demonstratesPTP1B is an important regulator of adiponesis by three cell model that elevate, knockdown and dominant-negative inhibit PTP1B expression respectively.
     Part Ⅱ. PTP1B mediates TNFα-induced insufficiency of adipocytedifferentiation in obesity
     Based on the established regulation of PTP1B in adipogenesis, we next examined thepossibility that PTP1B participated in TNFα action in obesity. In high fat diet-inducedobesity mice, PTP1B overexpression in epididymal adipose tissue coincides with increasedexpression of pro-inflammatory adipokine TNFα and down-regulation of PPARγ2. Thecontinued treatment of TNFα enhanced PTP1B expression but inhibited differentiation of3T3-L1preadipocytes, whereas PTP1B knockdown significantly prevented the inhibitoryeffect of TNFα on adipocyte differentiation. These results indicate an essential role ofPTP1B in TNFα-induced inhibition on adipocyte differentiation. Finally, to investigate thein vivo action of PTP1B in adipocytes, obese (ob/ob) mice were treated with PTP1Binhibitor vanadate for6weeks. There was no significant change in adipose mass besides areduction trend in weight gain in vanadate-treated group. The expression of adipogenicgenes including SREBP-1c and FAS was induced by vanadate in adipose tissue, althoughthe increase of PPARγ2was not significant. TNFα was down-regulated by vanadate inadipose tissue of obese mice, accompanied with a decreased phosphorylation level ofNF-κB p65subunit.
     Adipocyte dysfunction is the central pathological change of obesity. The lowproliferation and differentiation capability of preadipocyte is an important factor of insulinresistance, metabolism syndrome and type2diabetes. Our study supposes that PTP1B maybuild a bridge between inflammatory infiltration and adipocyte dysfunction in obesity, bymediating TNFα action in adipocyte differentiation; PTP1B inhibitor treatment mayremodel adipocyte function and further alleviate inflammatory lesion induced by excessivefatty acids in obesity. Furthermore, NF-κB p65subunit may serve as the intermediatebetween TNFα and PTP1B, which is also supported by our previous study.
     In summary, we propose the implication of PTP1B in obese adipose tissue: with theprogress of obesity, enlarged adipocytes reach an overload in excess energy storage and theendocrine function of adipose tissue is affected; numerous TNFα derived from adipocytesand macrophages suppresses the transcription of PPARγ2, SREBP-1c, FAS and LPL inpreadipocytes largely through enhancing PTP1B expression, finally leading to aninsufficient differentiation of adipocytes. In turn, the loss of ability to differentiate newadipocytes aggravates the overload of lipid accumulation in adipose tissue, resulting in avicious circle. Our study provides novel evidence for the important role of PTP1B inobesity, that PTP1B inhibition in obese adipose may remodel adipocyte function andfurther alleviate inflammatory lesion induced by excessive fatty acids.
引文
[1] Buchschacher GL, Jr. Introduction to retroviruses and retroviral vectors. Somatic cell and moleculargenetics.2001;26:1-11.
    [2]王振发,王烈,卫立辛.基因治疗病毒载体的研究进展.医学综述.2007;13:490-492.
    [3] Picanco-Castro V, de Sousa Russo-Carbolante EM, Tadeu Covas D. Advances in lentiviral vectors: apatent review. Recent patents on DNA&gene sequences.2012;6:82-90.
    [4] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific geneticinterference by double-stranded RNA in Caenorhabditis elegans. Nature.1998;391:806-811.
    [5] Tchurikov NA, Chistyakova LG, Zavilgelsky GB, Manukhov IV, Chernov BK, Golova YB.Gene-specific silencing by expression of parallel complementary RNA in Escherichia coli. The Journalof biological chemistry.2000;275:26523-26529.
    [6] Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature.2009;457:396-404.
    [7] Mello CC, Conte D, Jr. Revealing the world of RNA interference. Nature.2004;431:338-342.
    [8] Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design forRNA interference. Nature biotechnology.2004;22:326-330.
    [9] Xu J, Li L, Qian Z, Hong J, Shen S, Huang W. Reduction of PTP1B by RNAi upregulates theactivity of insulin controlled fatty acid synthase promoter. Biochemical and biophysical researchcommunications.2005;329:538-543.
    [10] Barford D, Das AK, Egloff MP. The structure and mechanism of protein phosphatases: insights intocatalysis and regulation. Annual review of biophysics and biomolecular structure.1998;27:133-164.
    [11] Denu JM, Dixon JE. Protein tyrosine phosphatases: mechanisms of catalysis and regulation.Current opinion in chemical biology.1998;2:633-641.
    [12] Zhang ZY. Protein-tyrosine phosphatases: biological function, structural characteristics, andmechanism of catalysis. Critical reviews in biochemistry and molecular biology.1998;33:1-52.
    [13] Jia Z, Barford D, Flint AJ, Tonks NK. Structural basis for phosphotyrosine peptide recognition byprotein tyrosine phosphatase1B. Science.1995;268:1754-1758.
    [14] Guan KL, Dixon JE. Evidence for protein-tyrosine-phosphatase catalysis proceeding via acysteine-phosphate intermediate. The Journal of biological chemistry.1991;266:17026-17030.
    [15] Zhang ZY, Wang Y, Dixon JE. Dissecting the catalytic mechanism of protein-tyrosine phosphatases.Proceedings of the National Academy of Sciences of the United States of America.1994;91:1624-1627.
    [16] Hengge AC, Sowa GA, Wu L, Zhang ZY. Nature of the transition state of the protein-tyrosinephosphatase-catalyzed reaction. Biochemistry.1995;34:13982-13987.
    [17] Lohse DL, Denu JM, Santoro N, Dixon JE. Roles of aspartic acid-181and serine-222inintermediate formation and hydrolysis of the mammalian protein-tyrosine-phosphatase PTP1.Biochemistry.1997;36:4568-4575.
    [18] Pannifer AD, Flint AJ, Tonks NK, Barford D. Visualization of the cysteinyl-phosphate intermediateof a protein-tyrosine phosphatase by x-ray crystallography. The Journal of biological chemistry.1998;273:10454-10462.
    [19] Zhao Y, Wu L, Noh SJ, Guan KL, Zhang ZY. Altering the nucleophile specificity of aprotein-tyrosine phosphatase-catalyzed reaction. Probing the function of the invariant glutamineresidues. The Journal of biological chemistry.1998;273:5484-5492.
    [20] Wu L, Zhang ZY. Probing the function of Asp128in the lower molecular weight protein-tyrosinephosphatase-catalyzed reaction. A pre-steady-state and steady-state kinetic investigation. Biochemistry.1996;35:5426-5434.
    [21] Pedersen AK, Guo XL, Moller KB, Peters GH, Andersen HS, Kastrup JS, Mortensen SB, IversenLF, Zhang ZY, Moller NP. Residue182influences the second step of protein-tyrosinephosphatase-mediated catalysis. The Biochemical journal.2004;378:421-433.
    [22] Tonks NK. PTP1B: from the sidelines to the front lines! FEBS letters.2003;546:140-148.
    [23] Shiozaki K, Russell P. Cell-cycle control linked to extracellular environment by MAP kinasepathway in fission yeast. Nature.1995;378:739-743.
    [24] Flint AJ, Tiganis T, Barford D, Tonks NK. Development of "substrate-trapping" mutants to identifyphysiological substrates of protein tyrosine phosphatases. Proceedings of the National Academy ofSciences of the United States of America.1997;94:1680-1685.
    [25] Xie L, Zhang YL, Zhang ZY. Design and characterization of an improved protein tyrosinephosphatase substrate-trapping mutant. Biochemistry.2002;41:4032-4039.
    [26] Boubekeur S, Boute N, Pagesy P, Zilberfarb V, Christeff N, Issad T. A new highly efficientsubstrate-trapping mutant of protein tyrosine phosphatase1B (PTP1B) reveals full autoactivation of theinsulin receptor precursor. The Journal of biological chemistry.2011;286:19373-19380.
    [27] Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D. In vivo genedelivery and stable transduction of nondividing cells by a lentiviral vector. Science.1996;272:263-267.
    [28] Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV-1integration in the humangenome favors active genes and local hotspots. Cell.2002;110:521-529.
    [29] Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D. Germline transmission and tissue-specificexpression of transgenes delivered by lentiviral vectors. Science.2002;295:868-872.
    [30] Ritchie WA, Neil C, King T, Whitelaw CB. Transgenic embryos and mice produced from low titrelentiviral vectors. Transgenic research.2007;16:661-664.
    [31] Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M,Brem G, Wolf E, Pfeifer A. Efficient transgenesis in farm animals by lentiviral vectors. EMBO reports.2003;4:1054-1060.
    [32] Hamra FK, Gatlin J, Chapman KM, Grellhesl DM, Garcia JV, Hammer RE, Garbers DL.Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proceedings of theNational Academy of Sciences of the United States of America.2002;99:14931-14936.
    [33] Nagano M, Watson DJ, Ryu BY, Wolfe JH, Brinster RL. Lentiviral vector transduction of malegerm line stem cells in mice. FEBS letters.2002;524:111-115.
    [34] Pfeifer A, Ikawa M, Dayn Y, Verma IM. Transgenesis by lentiviral vectors: lack of gene silencingin mammalian embryonic stem cells and preimplantation embryos. Proceedings of the NationalAcademy of Sciences of the United States of America.2002;99:2140-2145.
    [35]王淑艳,张愚.慢病毒载体的设计及应用进展.中国生物工程杂志.2006;26:70-75.
    [36]宋丹丹,邹大进.脂肪细胞模型分化增殖及应用的差异.中华糖尿病杂志.2011;3:103-106.
    [37]卢斌,吴鸿,蔡在龙,邹大进.大鼠蛋白酪氨酸磷酸酶1B基因靶向RNA干扰重组腺病毒的构建.中国组织工程研究与临床康复.2008;12:7302-7305.
    [38] Carlotti F, Bazuine M, Kekarainen T, Seppen J, Pognonec P, Maassen JA, Hoeben RC. Lentiviralvectors efficiently transduce quiescent mature3T3-L1adipocytes. Molecular therapy: the journal of theAmerican Society of Gene Therapy.2004;9:209-217.
    [39] Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG, Kahn BB. NeuronalPTP1B regulates body weight, adiposity and leptin action. Nature medicine.2006;12:917-924.
    [40] Delibegovic M, Bence KK, Mody N, Hong EG, Ko HJ, Kim JK, Kahn BB, Neel BG. Improvedglucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase1B.Molecular and cellular biology.2007;27:7727-7734.
    [41] Delibegovic M, Zimmer D, Kauffman C, Rak K, Hong EG, Cho YR, Kim JK, Kahn BB, Neel BG,Bence KK. Liver-specific deletion of protein-tyrosine phosphatase1B (PTP1B) improves metabolicsyndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes.2009;58:590-599.
    [42] Banno R, Zimmer D, De Jonghe BC, Atienza M, Rak K, Yang W, Bence KK. PTP1B and SHP2inPOMC neurons reciprocally regulate energy balance in mice. The Journal of clinical investigation.2010;120:720-734.
    [43] Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A,Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP. Increasedinsulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene.Science.1999;283:1544-1548.
    [44] Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, KimYB, Sharpe AH, Stricker-Krongrad A, Shulman GI, Neel BG, Kahn BB. Increased energy expenditure,decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase1B-deficientmice. Molecular and cellular biology.2000;20:5479-5489.
    [45] Ruffolo SC, Forsell PK, Yuan X, Desmarais S, Himms-Hagen J, Cromlish W, Wong KK, KennedyBP. Basal activation of p70S6K results in adipose-specific insulin resistance in protein-tyrosinephosphatase1B-/-mice. The Journal of biological chemistry.2007;282:30423-30433.
    [46] Owen C, Czopek A, Agouni A, Grant L, Judson R, Lees EK, McIlroy GD, Goransson O, Welch A,Bence KK, Kahn BB, Neel BG, Mody N, Delibegovic M. Adipocyte-specific protein tyrosinephosphatase1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucosehomeostasis. PloS one.2012;7:e32700.
    [47] Ahmad F, Considine RV, Goldstein BJ. Increased abundance of the receptor-type protein-tyrosinephosphatase LAR accounts for the elevated insulin receptor dephosphorylating activity in adipose tissueof obese human subjects. The Journal of clinical investigation.1995;95:2806-2812.
    [48] Ahmad F, Considine RV, Bauer TL, Ohannesian JP, Marco CC, Goldstein BJ. Improved sensitivityto insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosinephosphatases in adipose tissue. Metabolism: clinical and experimental.1997;46:1140-1145.
    [49] Cheung A, Kusari J, Jansen D, Bandyopadhyay D, Kusari A, Bryer-Ash M. Marked impairment ofprotein tyrosine phosphatase1B activity in adipose tissue of obese subjects with and without type2diabetes mellitus. The Journal of laboratory and clinical medicine.1999;134:115-123.
    [50] Wu X, Hardy VE, Joseph JI, Jabbour S, Mahadev K, Zhu L, Goldstein BJ. Protein-tyrosinephosphatase activity in human adipocytes is strongly correlated with insulin-stimulated glucose uptakeand is a target of insulin-induced oxidative inhibition. Metabolism: clinical and experimental.2003;52:705-712.
    [51] Hoggard N, Agouni A, Mody N, Delibegovic M. Serum levels of RBP4and adipose tissue levels ofPTP1B are increased in obese men resident in northeast Scotland without associated changes in ERstress response genes. International journal of general medicine.2012;5:403-411.
    [52] Danforth E, Jr. Failure of adipocyte differentiation causes type II diabetes mellitus? Nature genetics.2000;26:13.
    [53] Rondinone CM, Trevillyan JM, Clampit J, Gum RJ, Berg C, Kroeger P, Frost L, Zinker BA, ReillyR, Ulrich R, Butler M, Monia BP, Jirousek MR, Waring JF. Protein tyrosine phosphatase1B reductionregulates adiposity and expression of genes involved in lipogenesis. Diabetes.2002;51:2405-2411.
    [54] Waring JF, Ciurlionis R, Clampit JE, Morgan S, Gum RJ, Jolly RA, Kroeger P, Frost L, Trevillyan J,Zinker BA, Jirousek M, Ulrich RG, Rondinone CM. PTP1B antisense-treated mice show regulation ofgenes involved in lipogenesis in liver and fat. Molecular and cellular endocrinology.2003;203:155-168.
    [55] Miranda S, González-Rodríguez á, Revuelta-Cervantes J, Rondinone CM, Valverde áM.Beneficial effects of PTP1B deficiency on brown adipocyte differentiation and protection againstapoptosis induced by pro-and anti-infl ammatory stimuli. Cellular Signalling.2010;22:645-659.
    [56] Matsuo K, Bettaieb A, Nagata N, Matsuo I, Keilhack H, Haj FG. Regulation of brown fatadipogenesis by protein tyrosine phosphatase1B. PloS one.2011;6:e16446.
    [57] Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNAamplification reactions. Biotechnology (N Y).1993;11:1026-1030.
    [58] Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Natureprotocols.2008;3:1101-1108.
    [59] Dube N, Tremblay ML. Involvement of the small protein tyrosine phosphatases TC-PTP andPTP1B in signal transduction and diseases: from diabetes, obesity to cell cycle, and cancer. Biochimicaet biophysica acta.2005;1754:108-117.
    [60] Dadke S, Kusari J, Chernoff J. Down-regulation of insulin signaling by protein-tyrosinephosphatase1B is mediated by an N-terminal binding region. The Journal of biological chemistry.2000;275:23642-23647.
    [61] Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck M. Tyrosine dephosphorylation anddeactivation of insulin receptor substrate-1by protein-tyrosine phosphatase1B. Possible facilitation bythe formation of a ternary complex with the Grb2adaptor protein. The Journal of biological chemistry.2000;275:4283-4289.
    [62] Cheng A, Dube N, Gu F, Tremblay ML. Coordinated action of protein tyrosine phosphatases ininsulin signal transduction. European journal of biochemistry/FEBS.2002;269:1050-1059.
    [63] Asante-Appiah E, Kennedy BP. Protein tyrosine phosphatases: the quest for negative regulators ofinsulin action. American journal of physiology Endocrinology and metabolism.2003;284:E663-670.
    [64] Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y, Kim YB,Elmquist JK, Tartaglia LA, Kahn BB, Neel BG. PTP1B regulates leptin signal transduction in vivo.Developmental cell.2002;2:489-495.
    [65] Cheng A, Uetani N, Simoncic PD, Chaubey VP, Lee-Loy A, McGlade CJ, Kennedy BP, TremblayML. Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase1B.Developmental cell.2002;2:497-503.
    [66] Xue B, Pulinilkunnil T, Murano I, Bence KK, He H, Minokoshi Y, Asakura K, Lee A, Haj F,Furukawa N, Catalano KJ, Delibegovic M, Balschi JA, Cinti S, Neel BG, Kahn BB. Neuronal proteintyrosine phosphatase1B deficiency results in inhibition of hypothalamic AMPK and isoform-specificactivation of AMPK in peripheral tissues. Molecular and cellular biology.2009;29:4563-4573.
    [67] Pasquali C, Curchod ML, Walchli S, Espanel X, Guerrier M, Arigoni F, Strous G, Hooft vanHuijsduijnen R. Identification of protein tyrosine phosphatases with specificity for the ligand-activatedgrowth hormone receptor. Mol Endocrinol.2003;17:2228-2239.
    [68] Gu F, Dube N, Kim JW, Cheng A, Ibarra-Sanchez Mde J, Tremblay ML, Boisclair YR. Proteintyrosine phosphatase1B attenuates growth hormone-mediated JAK2-STAT signaling. Molecular andcellular biology.2003;23:3753-3762.
    [69] Zabolotny JM, Kim YB, Welsh LA, Kershaw EE, Neel BG, Kahn BB. Protein-tyrosine phosphatase1B expression is induced by inflammation in vivo. The Journal of biological chemistry.2008;283:14230-14241.
    [70] Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature.2001;414:799-806.
    [71] Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB bythe rictor-mTOR complex. Science.2005;307:1098-1101.
    [72] Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively active Akt Ser/Thrkinase in3T3-L1adipocytes stimulates glucose uptake and glucose transporter4translocation. TheJournal of biological chemistry.1996;271:31372-31378.
    [73] Zinker BA, Rondinone CM, Trevillyan JM, Gum RJ, Clampit JE, Waring JF, Xie N, Wilcox D,Jacobson P, Frost L, Kroeger PE, Reilly RM, Koterski S, Opgenorth TJ, Ulrich RG, Crosby S, Butler M,Murray SF, McKay RA, Bhanot S, Monia BP, Jirousek MR. PTP1B antisense oligonucleotide lowersPTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice.Proceedings of the National Academy of Sciences of the United States of America.2002;99:11357-11362.
    [74] Venable CL, Frevert EU, Kim YB, Fischer BM, Kamatkar S, Neel BG, Kahn BB. Overexpressionof protein-tyrosine phosphatase-1B in adipocytes inhibits insulin-stimulated phosphoinositide3-kinaseactivity without altering glucose transport or Akt/Protein kinase B activation. The Journal of biologicalchemistry.2000;275:18318-18326.
    [75] Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature.1987;329:219-222.
    [76] Kintner C. Regulation of embryonic cell adhesion by the cadherin cytoplasmic domain. Cell.1992;69:225-236.
    [77] Verrall S, Hall ZW. The N-terminal domains of acetylcholine receptor subunits contain recognitionsignals for the initial steps of receptor assembly. Cell.1992;68:23-31.
    [78] Bevec D, Dobrovnik M, Hauber J, Bohnlein E. Inhibition of human immunodeficiency virus type1replication in human T cells by retroviral-mediated gene transfer of a dominant-negative Revtrans-activator. Proceedings of the National Academy of Sciences of the United States of America.1992;89:9870-9874.
    [79] Unger T, Mietz JA, Scheffner M, Yee CL, Howley PM. Functional domains of wild-type andmutant p53proteins involved in transcriptional regulation, transdominant inhibition, and transformationsuppression. Molecular and cellular biology.1993;13:5186-5194.
    [80] Roman C, Cohn L, Calame K. A dominant negative form of transcription activator mTFE3createdby differential splicing. Science.1991;254:94-97.
    [81] Treacy MN, Neilson LI, Turner EE, He X, Rosenfeld MG. Twin of I-POU: a two amino aciddifference in the I-POU homeodomain distinguishes an activator from an inhibitor of transcription. Cell.1992;68:491-505.
    [82] Schmidt E, Schimmel P. Dominant lethality by expression of a catalytically inactive class I tRNAsynthetase. Proceedings of the National Academy of Sciences of the United States of America.1993;90:6919-6923.
    [83] White UA, Stephens JM. Transcriptional factors that promote formation of white adipose tissue.Molecular and cellular endocrinology.2010;318:10-14.
    [84] Fajas L, Fruchart JC, Auwerx J. Transcriptional control of adipogenesis. Current opinion in cellbiology.1998;10:165-173.
    [85] Erbe DV, Wang S, Zhang YL, Harding K, Kung L, Tam M, Stolz L, Xing Y, Furey S, Qadri A,Klaman LD, Tobin JF. Ertiprotafib improves glycemic control and lowers lipids via multiplemechanisms. Molecular pharmacology.2005;67:69-77.
    [86] Bhattarai BR, Kafle B, Hwang JS, Ham SW, Lee KH, Park H, Han IO, Cho H. Novelthiazolidinedione derivatives with anti-obesity effects: dual action as PTP1B inhibitors andPPAR-gamma activators. Bioorganic&medicinal chemistry letters.2010;20:6758-6763.
    [87] Hernandez R, Teruel T, Lorenzo M. Rosiglitazone produces insulin sensitisation by increasingexpression of the insulin receptor and its tyrosine kinase activity in brown adipocytes. Diabetologia.2003;46:1618-1628.
    [88] Wu Y, Ouyang JP, Wu K, Wang SS, Wen CY, Xia ZY. Rosiglitazone ameliorates abnormalexpression and activity of protein tyrosine phosphatase1B in the skeletal muscle of fat-fed,streptozotocin-treated diabetic rats. British journal of pharmacology.2005;146:234-243.
    [89] Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiological reviews.1998;78:783-809.
    [90] Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulinaction. Nature reviews Molecular cell biology.2006;7:85-96.
    [91] Nakae J, Kitamura T, Kitamura Y, Biggs WH,3rd, Arden KC, Accili D. The forkhead transcriptionfactor Foxo1regulates adipocyte differentiation. Developmental cell.2003;4:119-129.
    [92] Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell.2006;124:471-484.
    [93] Bost F, Aouadi M, Caron L, Even P, Belmonte N, Prot M, Dani C, Hofman P, Pages G, PouyssegurJ, Le Marchand-Brustel Y, Binetruy B. The extracellular signal-regulated kinase isoform ERK1isspecifically required for in vitro and in vivo adipogenesis. Diabetes.2005;54:402-411.
    [94] Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nature reviewsMolecular cell biology.2006;7:885-896.
    [95] Xu G, Arregui C, Lilien J, Balsamo J. PTP1B modulates the association of beta-catenin withN-cadherin through binding to an adjacent and partially overlapping target site. The Journal ofbiological chemistry.2002;277:49989-49997.
    [96] Ortiz C, Caja L, Bertran E, Gonzalez-Rodriguez A, Valverde AM, Fabregat I, Sancho P.Protein-tyrosine phosphatase1B (PTP1B) deficiency confers resistance to transforming growthfactor-beta (TGF-beta)-induced suppressor effects in hepatocytes. The Journal of biological chemistry.2012;287:15263-15274.
    [97] Gayet C, Leray V, Saito M, Siliart B, Nguyen P. The effects of obesity-associated insulin resistanceon mRNA expression of peroxisome proliferator-activated receptor-gamma target genes, in dogs. TheBritish journal of nutrition.2007;98:497-503.
    [98] Rodriguez-Cuenca S, Carobbio S, Velagapudi VR, Barbarroja N, Moreno-Navarrete JM, TinahonesFJ, Fernandez-Real JM, Oresic M, Vidal-Puig A. Peroxisome proliferator-activated receptorgamma-dependent regulation of lipolytic nodes and metabolic flexibility. Molecular and cellular biology.2012;32:1555-1565.
    [99] Kashiwagi A, Mott D, Bogardus C, Lillioja S, Reaven GM, Foley JE. The effects of short-termoverfeeding on adipocyte metabolism in Pima Indians. Metabolism: clinical and experimental.1985;34:364-370.
    [100] Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulinresistance and type2diabetes. Nature reviews Molecular cell biology.2008;9:367-377.
    [101] Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha:direct role in obesity-linked insulin resistance. Science.1993;259:87-91.
    [102] Xu H, Uysal KT, Becherer JD, Arner P, Hotamisligil GS. Altered tumor necrosis factor-alpha(TNF-alpha) processing in adipocytes and increased expression of transmembrane TNF-alpha in obesity.Diabetes.2002;51:1876-1883.
    [103] Pietilainen KH, Kannisto K, Korsheninnikova E, Rissanen A, Kaprio J, Ehrenborg E, Hamsten A,Yki-Jarvinen H. Acquired obesity increases CD68and tumor necrosis factor-alpha and decreasesadiponectin gene expression in adipose tissue: a study in monozygotic twins. The Journal of clinicalendocrinology and metabolism.2006;91:2776-2781.
    [104] Araujo EP, De Souza CT, Ueno M, Cintra DE, Bertolo MB, Carvalheira JB, Saad MJ, Velloso LA.Infliximab restores glucose homeostasis in an animal model of diet-induced obesity and diabetes.Endocrinology.2007;148:5991-5997.
    [105] Cartier A, Lemieux I, Almeras N, Tremblay A, Bergeron J, Despres JP. Visceral obesity andplasma glucose-insulin homeostasis: contributions of interleukin-6and tumor necrosis factor-alpha inmen. The Journal of clinical endocrinology and metabolism.2008;93:1931-1938.
    [106] Ninomiya-Tsuji J, Torti FM, Ringold GM. Tumor necrosis factor-induced c-myc expression in theabsence of mitogenesis is associated with inhibition of adipocyte differentiation. Proceedings of theNational Academy of Sciences of the United States of America.1993;90:9611-9615.
    [107] Hube F, Hauner H. The two tumor necrosis factor receptors mediate opposite effects ondifferentiation and glucose metabolism in human adipocytes in primary culture. Endocrinology.2000;141:2582-2588.
    [108] Cinti S. The adipose organ. Prostaglandins, leukotrienes, and essential fatty acids.2005;73:9-15.
    [109] Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Molecular and cellularendocrinology.2010;316:129-139.
    [110] Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell.2007;131:242-256.
    [111] Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM. Whitefat progenitor cells reside in the adipose vasculature. Science.2008;322:583-586.
    [112] Czech MP. Cellular basis of insulin insensitivity in large rat adipocytes. The Journal of clinicalinvestigation.1976;57:1523-1532.
    [113] Paolisso G, Tataranni PA, Foley JE, Bogardus C, Howard BV, Ravussin E. A high concentration offasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia.1995;38:1213-1217.
    [114] Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE. Enlarged subcutaneous abdominaladipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance.Diabetologia.2000;43:1498-1506.
    [115] Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L,Hoffstedt J, Naslund E, Britton T, Concha H, Hassan M, Ryden M, Frisen J, Arner P. Dynamics of fatcell turnover in humans. Nature.2008;453:783-787.
    [116] Faust IM, Johnson PR, Stern JS, Hirsch J. Diet-induced adipocyte number increase in adult rats: anew model of obesity. The American journal of physiology.1978;235:E279-286.
    [117] Klyde BJ, Hirsch J. Increased cellular proliferation in adipose tissue of adult rats fed a high-fatdiet. Journal of lipid research.1979;20:705-715.
    [118] Tchoukalova YD, Votruba SB, Tchkonia T, Giorgadze N, Kirkland JL, Jensen MD. Regionaldifferences in cellular mechanisms of adipose tissue gain with overfeeding. Proceedings of the NationalAcademy of Sciences of the United States of America.2010;107:18226-18231.
    [119] Heilbronn L, Smith SR, Ravussin E. Failure of fat cell proliferation, mitochondrial function andfat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. Internationaljournal of obesity and related metabolic disorders: journal of the International Association for the Studyof Obesity.2004;28Suppl4:S12-21.
    [120] Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease.Nature reviews Immunology.2011;11:85-97.
    [121] Saghizadeh M, Ong JM, Garvey WT, Henry RR, Kern PA. The expression of TNF alpha byhuman muscle. Relationship to insulin resistance. The Journal of clinical investigation.1996;97:1111-1116.
    [122] Krogh-Madsen R, Plomgaard P, Moller K, Mittendorfer B, Pedersen BK. Influence of TNF-alphaand IL-6infusions on insulin sensitivity and expression of IL-18in humans. American journal ofphysiology Endocrinology and metabolism.2006;291:E108-114.
    [123] Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulinresistance in mice lacking TNF-alpha function. Nature.1997;389:610-614.
    [124] Ventre J, Doebber T, Wu M, MacNaul K, Stevens K, Pasparakis M, Kollias G, Moller DE.Targeted disruption of the tumor necrosis factor-alpha gene: metabolic consequences in obese andnonobese mice. Diabetes.1997;46:1526-1531.
    [125] Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The expression of tumornecrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship tolipoprotein lipase. The Journal of clinical investigation.1995;95:2111-2119.
    [126] Ziccardi P, Nappo F, Giugliano G, Esposito K, Marfella R, Cioffi M, D'Andrea F, Molinari AM,Giugliano D. Reduction of inflammatory cytokine concentrations and improvement of endothelialfunctions in obese women after weight loss over one year. Circulation.2002;105:804-809.
    [127] Lacasa D, Taleb S, Keophiphath M, Miranville A, Clement K. Macrophage-secreted factorsimpair human adipogenesis: involvement of proinflammatory state in preadipocytes. Endocrinology.2007;148:868-877.
    [128] Gustafson B, Smith U. Cytokines promote Wnt signaling and inflammation and impair the normaldifferentiation and lipid accumulation in3T3-L1preadipocytes. The Journal of biological chemistry.2006;281:9507-9516.
    [129] Hammarstedt A, Isakson P, Gustafson B, Smith U. Wnt-signaling is maintained and adipogenesisinhibited by TNFalpha but not MCP-1and resistin. Biochemical and biophysical researchcommunications.2007;357:700-706.
    [130] Isakson P, Hammarstedt A, Gustafson B, Smith U. Impaired preadipocyte differentiation in humanabdominal obesity: role of Wnt, tumor necrosis factor-alpha, and inflammation. Diabetes.2009;58:1550-1557.
    [131] Wu J, Yang LJ, Zou DJ. Rosiglitazone attenuates tumor necrosis factor-alpha-inducedprotein-tyrosine phosphatase-1B production in HepG2cells. Journal of endocrinological investigation.2012;35:28-34.
    [132] Brichard SM, Bailey CJ, Henquin JC. Marked improvement of glucose homeostasis in diabeticob/ob mice given oral vanadate. Diabetes.1990;39:1326-1332.
    [133] Xu MZ, Zhang AZ, Li XR, Xu W, Shen LW. Effects of vanadate on the activities of miceglucokinase and hexokinase. Journal of Zhejiang University Science.2004;5:1245-1248.
    [134] Stoker AW. Protein tyrosine phosphatases and signalling. The Journal of endocrinology.2005;185:19-33.
    [135] Yip SC, Saha S, Chernoff J. PTP1B: a double agent in metabolism and oncogenesis. Trends inbiochemical sciences.2010;35:442-449.
    [136] Combs AP. Recent advances in the discovery of competitive protein tyrosine phosphatase1Binhibitors for the treatment of diabetes, obesity, and cancer. Journal of medicinal chemistry.2010;53:2333-2344.
    [137] Swarbrick MM, Havel PJ, Levin AA, Bremer AA, Stanhope KL, Butler M, Booten SL, GrahamJL, McKay RA, Murray SF, Watts LM, Monia BP, Bhanot S. Inhibition of protein tyrosinephosphatase-1B with antisense oligonucleotides improves insulin sensitivity and increases adiponectinconcentrations in monkeys. Endocrinology.2009;150:1670-1679.
    [138] Tonks NK, Diltz CD, Fischer EH. Purification of the major protein-tyrosine-phosphatases ofhuman placenta. The Journal of biological chemistry.1988;263:6722-6730.
    [139] Barford D, Flint AJ, Tonks NK. Crystal structure of human protein tyrosine phosphatase1B.Science.1994;263:1397-1404.
    [140] Johnson TO, Ermolieff J, Jirousek MR. Protein tyrosine phosphatase1B inhibitors for diabetes.Nature reviews Drug discovery.2002;1:696-709.
    [141] Puius YA, Zhao Y, Sullivan M, Lawrence DS, Almo SC, Zhang ZY. Identification of a second arylphosphate-binding site in protein-tyrosine phosphatase1B: a paradigm for inhibitor design. Proceedingsof the National Academy of Sciences of the United States of America.1997;94:13420-13425.
    [142] Hajduk PJ, Meadows RP, Fesik SW. Discovering high-affinity ligands for proteins. Science.1997;278:497,499.
    [143] Holman GD, Kasuga M. From receptor to transporter: insulin signalling to glucose transport.Diabetologia.1997;40:991-1003.
    [144] Bevan P. Insulin signalling. Journal of cell science.2001;114:1429-1430.
    [145] Frame S, Cohen P. GSK3takes centre stage more than20years after its discovery. TheBiochemical journal.2001;359:1-16.
    [146] Kublaoui B, Lee J, Pilch PF. Dynamics of signaling during insulin-stimulated endocytosis of itsreceptor in adipocytes. The Journal of biological chemistry.1995;270:59-65.
    [147] Seely BL, Staubs PA, Reichart DR, Berhanu P, Milarski KL, Saltiel AR, Kusari J, Olefsky JM.Protein tyrosine phosphatase1B interacts with the activated insulin receptor. Diabetes.1996;45:1379-1385.
    [148] Dadke S, Kusari A, Kusari J. Phosphorylation and activation of protein tyrosine phosphatase (PTP)1B by insulin receptor. Molecular and cellular biochemistry.2001;221:147-154.
    [149] Wang XY, Bergdahl K, Heijbel A, Liljebris C, Bleasdale JE. Analysis of in vitro interactions ofprotein tyrosine phosphatase1B with insulin receptors. Molecular and cellular endocrinology.2001;173:109-120.
    [150] Cicirelli MF, Tonks NK, Diltz CD, Weiel JE, Fischer EH, Krebs EG. Microinjection of aprotein-tyrosine-phosphatase inhibits insulin action in Xenopus oocytes. Proceedings of the NationalAcademy of Sciences of the United States of America.1990;87:5514-5518.
    [151] Chen H, Wertheimer SJ, Lin CH, Katz SL, Amrein KE, Burn P, Quon MJ. Protein-tyrosinephosphatases PTP1B and syp are modulators of insulin-stimulated translocation of GLUT4intransfected rat adipose cells. The Journal of biological chemistry.1997;272:8026-8031.
    [152] Egawa K, Maegawa H, Shimizu S, Morino K, Nishio Y, Bryer-Ash M, Cheung AT, Kolls JK,Kikkawa R, Kashiwagi A. Protein-tyrosine phosphatase-1B negatively regulates insulin signaling in l6myocytes and Fao hepatoma cells. The Journal of biological chemistry.2001;276:10207-10211.
    [153] Haj FG, Markova B, Klaman LD, Bohmer FD, Neel BG. Regulation of receptor tyrosine kinasesignaling by protein tyrosine phosphatase-1B. The Journal of biological chemistry.2003;278:739-744.
    [154] Calera MR, Vallega G, Pilch PF. Dynamics of protein-tyrosine phosphatases in rat adipocytes. TheJournal of biological chemistry.2000;275:6308-6312.
    [155] Cong LN, Chen H, Li Y, Lin CH, Sap J, Quon MJ. Overexpression of protein tyrosinephosphatase-alpha (PTP-alpha) but not PTP-kappa inhibits translocation of GLUT4in rat adipose cells.Biochemical and biophysical research communications.1999;255:200-207.
    [156] Meyerovitch J, Rothenberg P, Shechter Y, Bonner-Weir S, Kahn CR. Vanadate normalizeshyperglycemia in two mouse models of non-insulin-dependent diabetes mellitus. The Journal of clinicalinvestigation.1991;87:1286-1294.
    [157] Olichon-Berthe C, Hauguel-De Mouzon S, Peraldi P, Van Obberghen E, Le Marchand-Brustel Y.Insulin receptor dephosphorylation by phosphotyrosine phosphatases obtained from insulin-resistantobese mice. Diabetologia.1994;37:56-60.
    [158] Worm D, Handberg A, Hoppe E, Vinten J, Beck-Nielsen H. Decreased skeletal musclephosphotyrosine phosphatase (PTPase) activity towards insulin receptors in insulin-resistant Zucker ratsmeasured by delayed Europium fluorescence. Diabetologia.1996;39:142-148.
    [159] Ahmad F, Goldstein BJ. Increased abundance of specific skeletal muscle protein-tyrosinephosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism: clinicaland experimental.1995;44:1175-1184.
    [160] Bleyle LA, Peng Y, Ellis C, Mooney RA. Dissociation of PTPase levels from their modulation ofinsulin receptor signal transduction. Cell Signal.1999;11:719-725.
    [161] Kennedy BP, Ramachandran C. Protein tyrosine phosphatase-1B in diabetes. Biochemicalpharmacology.2000;60:877-883.
    [162] Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG. Identification of targets of leptinaction in rat hypothalamus. The Journal of clinical investigation.1996;98:1101-1106.
    [163] Korner J, Aronne LJ. The emerging science of body weight regulation and its impact on obesitytreatment. The Journal of clinical investigation.2003;111:565-570.
    [164] Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F. Effects of theobese gene product on body weight regulation in ob/ob mice. Science.1995;269:540-543.
    [165] Levin N, Nelson C, Gurney A, Vandlen R, de Sauvage F. Decreased food intake does notcompletely account for adiposity reduction after ob protein infusion. Proceedings of the NationalAcademy of Sciences of the United States of America.1996;93:1726-1730.
    [166] Ahima RS, Flier JS. Leptin. Annual review of physiology.2000;62:413-437.
    [167] Tartaglia LA. The leptin receptor. The Journal of biological chemistry.1997;272:6093-6096.
    [168] Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell.2001;104:531-543.
    [169] Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG, Jr., Seeley RJ,Schwartz MW. Insulin activation of phosphatidylinositol3-kinase in the hypothalamic arcuate nucleus:a key mediator of insulin-induced anorexia. Diabetes.2003;52:227-231.
    [170] Aoki N, Matsuda T. A cytosolic protein-tyrosine phosphatase PTP1B specificallydephosphorylates and deactivates prolactin-activated STAT5a and STAT5b. The Journal of biologicalchemistry.2000;275:39718-39726.
    [171] Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM, Parisien JP, Salmeen A, BarfordD, Tonks NK. TYK2and JAK2are substrates of protein-tyrosine phosphatase1B. The Journal ofbiological chemistry.2001;276:47771-47774.
    [172] Kaszubska W, Falls HD, Schaefer VG, Haasch D, Frost L, Hessler P, Kroeger PE, White DW,Jirousek MR, Trevillyan JM. Protein tyrosine phosphatase1B negatively regulates leptin signaling in ahypothalamic cell line. Molecular and cellular endocrinology.2002;195:109-118.
    [173] Lund IK, Hansen JA, Andersen HS, Moller NP, Billestrup N. Mechanism of protein tyrosinephosphatase1B-mediated inhibition of leptin signalling. Journal of molecular endocrinology.2005;34:339-351.
    [174] NT L, SD C, JT L, S O, T W, EC H, AT C, TJ. K. Leptin resistance following over-expression ofprotein tyrosine phosphatase1B in liver. Journal of molecular endocrinology.2006;36:163-174.
    [175] Morrison CD, White CL, Wang Z, Lee SY, Lawrence DS, Cefalu WT, Zhang ZY, Gettys TW.Increased hypothalamic protein tyrosine phosphatase1B contributes to leptin resistance with age.Endocrinology.2007;148:433-440.
    [176] Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus.Endocrine reviews.2008;29:42-61.
    [177] Akasaki Y, Liu G, Matundan HH, Ng H, Yuan X, Zeng Z, Black KL, Yu JS. A peroxisomeproliferator-activated receptor-gamma agonist, troglitazone, facilitates caspase-8and-9activities byincreasing the enzymatic activity of protein-tyrosine phosphatase-1B on human glioma cells. TheJournal of biological chemistry.2006;281:6165-6174.
    [178] Boute N, Boubekeur S, Lacasa D, Issad T. Dynamics of the interaction between the insulinreceptor and protein tyrosine-phosphatase1B in living cells. EMBO reports.2003;4:313-319.
    [179] Romsicki Y, Reece M, Gauthier JY, Asante-Appiah E, Kennedy BP. Protein tyrosinephosphatase-1B dephosphorylation of the insulin receptor occurs in a perinuclear endosomecompartment in human embryonic kidney293cells. The Journal of biological chemistry.2004;279:12868-12875.
    [180] Haj FG, Verveer PJ, Squire A, Neel BG, Bastiaens PI. Imaging sites of receptor dephosphorylationby PTP1B on the surface of the endoplasmic reticulum. Science.2002;295:1708-1711.
    [181] Anderie I, Schulz I, Schmid A. Direct interaction between ER membrane-bound PTP1B and itsplasma membrane-anchored targets. Cell Signal.2007;19:582-592.
    [182] Balsamo J, Leung T, Ernst H, Zanin MK, Hoffman S, Lilien J. Regulated binding of PTP1B-likephosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin.The Journal of cell biology.1996;134:801-813.
    [183] Choi JH, Kim HS, Kim SH, Yang YR, Bae YS, Chang JS, Kwon HM, Ryu SH, Suh PG.Phospholipase Cgamma1negatively regulates growth hormone signalling by forming a ternary complexwith Jak2and protein tyrosine phosphatase-1B. Nature cell biology.2006;8:1389-1397.
    [184] Gu F, Nguyen DT, Stuible M, Dube N, Tremblay ML, Chevet E. Protein-tyrosine phosphatase1Bpotentiates IRE1signaling during endoplasmic reticulum stress. The Journal of biological chemistry.2004;279:49689-49693.
    [185] Morris DL, Rui L. Recent advances in understanding leptin signaling and leptin resistance.American journal of physiology Endocrinology and metabolism.2009;297:E1247-1259.
    [186] Agouni A, Mody N, Owen C, Czopek A, Zimmer D, Bentires-Alj M, Bence KK, Delibegovic M.Liver-specific deletion of protein tyrosine phosphatase (PTP)1B improves obesity-andpharmacologically induced endoplasmic reticulum stress. The Biochemical journal.2011;438:369-378.
    [187] Bence KK. Hepatic PTP1B Deficiency: The Promise of a Treatment for Metabolic Syndrome?Journal of clinical metabolism&diabetes.2010;1:27-33.
    [188] Krishnan N, Fu C, Pappin DJ, Tonks NK. H2S-Induced sulfhydration of the phosphatase PTP1Band its role in the endoplasmic reticulum stress response. Science signaling.2011;4:ra86.
    [189] Palande K, Roovers O, Gits J, Verwijmeren C, Iuchi Y, Fujii J, Neel BG, Karisch R, Tavernier J,Touw IP. Peroxiredoxin-controlled G-CSF signalling at the endoplasmic reticulum-early endosomeinterface. Journal of cell science.2011;124:3695-3705.
    [190] Yip SC, Cotteret S, Chernoff J. Sumoylated protein tyrosine phosphatase1B localizes to the innernuclear membrane and regulates the tyrosine phosphorylation of emerin. Journal of cell science.2012;125:310-316.
    [191] Wang N, Zhang D, Mao X, Zou F, Jin H, Ouyang J. Astragalus polysaccharides decreased theexpression of PTP1B through relieving ER stress induced activation of ATF6in a rat model of type2diabetes. Molecular and cellular endocrinology.2009;307:89-98.
    [192] Mao XQ, Yu F, Wang N, Wu Y, Zou F, Wu K, Liu M, Ouyang JP. Hypoglycemic effect ofpolysaccharide enriched extract of Astragalus membranaceus in diet induced insulin resistant C57BL/6Jmice and its potential mechanism. Phytomedicine: international journal of phytotherapy andphytopharmacology.2009;16:416-425.
    [193] Lu B, Wu H, Gu P, Du H, Shao J, Wang J, Zou D. Improved glucose-stimulated insulin secretionby intra-islet inhibition of protein-tyrosine phosphatase1B expression in rats fed a high-fat diet. Journalof endocrinological investigation.2012;35:63-70.
    [194] McLauchlan CC, Hooker JD, Jones MA, Dymon Z, Backhus EA, Greiner BA, Dorner NA,Youkhana MA, Manus LM. Inhibition of acid, alkaline, and tyrosine (PTP1B) phosphatases by novelvanadium complexes. Journal of inorganic biochemistry.2010;104:274-281.
    [195] Song Z, He XP, Li C, Gao LX, Wang ZX, Tang Y, Xie J, Li J, Chen GR. Preparation oftriazole-linked glycosylated alpha-ketocarboxylic acid derivatives as new PTP1B inhibitors.Carbohydrate research.2011;346:140-145.
    [196] Holmes CP, Li X, Pan Y, Xu C, Bhandari A, Moody CM, Miguel JA, Ferla SW, De Francisco MN,Frederick BT, Zhou S, Macher N, Jang L, Irvine JD, Grove JR. PTP1B inhibitors: synthesis andevaluation of difluoro-methylenephosphonate bioisosteres on a sulfonamide scaffold. Bioorganic&medicinal chemistry letters.2008;18:2719-2724.
    [197] Lin L, Shen Q, Chen GR, Xie J. Beta-C-glycosiduronic acids and beta-C-glycosyl compounds:new PTP1B inhibitors. Bioorganic&medicinal chemistry letters.2008;18:6348-6351.
    [198] Gupta S, Pandey G, Rahuja N, Srivastava AK, Saxena AK. Design, synthesis and docking studieson phenoxy-3-piperazin-1-yl-propan-2-ol derivatives as protein tyrosine phosphatase1B inhibitors.Bioorganic&medicinal chemistry letters.2010;20:5732-5734.
    [199] Saxena AK, Pandey G, Gupta S, Singh AB, Srivastava AK. Synthesis of protein tyrosinephosphatase1B inhibitors: model validation and docking studies. Bioorganic&medicinal chemistryletters.2009;19:2320-2323.
    [200] Bhattarai BR, Kafle B, Hwang JS, Khadka D, Lee SM, Kang JS, Ham SW, Han IO, Park H, ChoH. Thiazolidinedione derivatives as PTP1B inhibitors with antihyperglycemic and antiobesity effects.Bioorganic&medicinal chemistry letters.2009;19:6161-6165.
    [201] Douty B, Wayland B, Ala PJ, Bower MJ, Pruitt J, Bostrom L, Wei M, Klabe R, Gonneville L,Wynn R, Burn TC, Liu PC, Combs AP, Yue EW. Isothiazolidinone inhibitors of PTP1B containingimidazoles and imidazolines. Bioorganic&medicinal chemistry letters.2008;18:66-71.
    [202] Shi L, Yu HP, Zhou YY, Du JQ, Shen Q, Li JY, Li J. Discovery of a novel competitive inhibitor ofPTP1B by high-throughput screening. Acta pharmacologica Sinica.2008;29:278-284.
    [203] Yuan C, Lu L, Wu Y, Liu Z, Guo M, Xing S, Fu X, Zhu M. Synthesis, characterization, andprotein tyrosine phosphatases inhibition activities of oxovanadium(IV) complexes with Schiff base andpolypyridyl derivatives. Journal of inorganic biochemistry.2010;104:978-986.
    [204] Liu S, Zeng LF, Wu L, Yu X, Xue T, Gunawan AM, Long YQ, Zhang ZY. Targeting inactiveenzyme conformation: aryl diketoacid derivatives as a new class of PTP1B inhibitors. Journal of theAmerican Chemical Society.2008;130:17075-17084.
    [205] Bharatham K, Bharatham N, Kwon YJ, Lee KW. Molecular dynamics simulation study of PTP1Bwith allosteric inhibitor and its application in receptor based pharmacophore modeling. Journal ofcomputer-aided molecular design.2008;22:925-933.
    [206] Ottana R, Maccari R, Ciurleo R, Paoli P, Jacomelli M, Manao G, Camici G, Laggner C, Langer T.5-Arylidene-2-phenylimino-4-thiazolidinones as PTP1B and LMW-PTP inhibitors. Bioorganic&medicinal chemistry.2009;17:1928-1937.
    [207] Erbe DV, Klaman LD, Wilson DP, Wan ZK, Kirincich SJ, Will S, Xu X, Kung L, Wang S, Tam S,Lee J, Tobin JF. Prodrug delivery of novel PTP1B inhibitors to enhance insulin signalling. Diabetes,obesity&metabolism.2009;11:579-588.
    [208] Liljebris C, Larsen SD, Ogg D, Palazuk BJ, Bleasdale JE. Investigation of potential bioisostericreplacements for the carboxyl groups of peptidomimetic inhibitors of protein tyrosine phosphatase1B:identification of a tetrazole-containing inhibitor with cellular activity. Journal of medicinal chemistry.2002;45:1785-1798.
    [209] Chen C, Zhang Y, Huang C. Berberine inhibits PTP1B activity and mimics insulin action.Biochemical and biophysical research communications.2010;397:543-547.
    [210] Bustanji Y, Taha MO, Al-Masri IM, Mohammad MK. Docking simulations and in vitro assayunveil potent inhibitory action of papaverine against protein tyrosine phosphatase1B. Biological&pharmaceutical bulletin.2009;32:640-645.
    [211] Liu Z, Chai Q, Li YY, Shen Q, Ma LP, Zhang LN, Wang X, Sheng L, Li JY, Li J, Shen JK.Discovery of novel PTP1B inhibitors with antihyperglycemic activity. Acta pharmacologica Sinica.2010;31:1005-1012.
    [212] Fukuda S, Ohta T, Sakata S, Morinaga H, Ito M, Nakagawa Y, Tanaka M, Matsushita M.Pharmacological profiles of a novel protein tyrosine phosphatase1B inhibitor, JTT-551. Diabetes,obesity&metabolism.2010;12:299-306.
    [213] Ye D, Zhang Y, Wang F, Zheng M, Zhang X, Luo X, Shen X, Jiang H, Liu H. Novel thiophenederivatives as PTP1B inhibitors with selectivity and cellular activity. Bioorganic&medicinal chemistry.2010;18:1773-1782.
    [214] Muthusamy VS, Saravanababu C, Ramanathan M, Bharathi Raja R, Sudhagar S, Anand S,Lakshmi BS. Inhibition of protein tyrosine phosphatase1B and regulation of insulin signalling markersby caffeoyl derivatives of chicory (Cichorium intybus) salad leaves. The British journal of nutrition.2010;104:813-823.
    [215] Li JM, Li YC, Kong LD, Hu QH. Curcumin inhibits hepatic protein-tyrosine phosphatase1B andprevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats. Hepatology.2010;51:1555-1566.
    [216] Bhattarai BR, Lee K-H, Cho H. Antihyperglycemic effects of methylenedisalicylic acid. BullKorean Chem Soc.2009;30:2879–2880.
    [217] Muthusamy VS, Anand S, Sangeetha KN, Sujatha S, Arun B, Lakshmi BS. Tannins present inCichorium intybus enhance glucose uptake and inhibit adipogenesis in3T3-L1adipocytes throughPTP1B inhibition. Chemico-biological interactions.2008;174:69-78.
    [218] Popov D. Novel protein tyrosine phosphatase1B inhibitors: interaction requirements forimproved intracellular efficacy in type2diabetes mellitus and obesity control. Biochemical andbiophysical research communications.2011;410:377-381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700