用户名: 密码: 验证码:
温度和盐度对西藏拟溞抗氧化酶及热休克蛋白HSP70基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境因子(温度、盐度、PH等)的改变不仅能够影响水生生物的呼吸和代谢,同时还可造成机体自由基代谢紊乱,若生物体长期处于应激状态会导致机体免疫防御能力下降,从而影响生物正常生长。研究水生生物抗氧化效应以及热休克蛋白对于探索其环境适应机制和提高机体抗氧化免疫能力具有重要意义。本试验是在光照强度1500lx,光周期为12L:12D、pH8.1的条件下,研究了温度和盐度对西藏拟溞(Daphniopsis tibetana Sars)的抗氧化酶及脂质过氧化作用的影响;同时,利用分子生物学手段研究了温度和盐度对西藏拟溞体内热休克蛋白70(HSP70)基因表达的规律,以此来探讨西藏拟溞对环境的耐受性机制。主要研究内容和结果如下:
     1.温度和盐度对西藏拟溞抗氧化酶及脂质过氧化作用的影响
     采用实验生态学的方法,研究了温度(T=16℃、19℃、22℃、25℃、28℃)、盐度(S=5、10、15、20、25)对西藏拟溞总超氧化物歧化酶(T-SOD)、谷胱甘肽过氧化物酶(GPX)活力以及脂质过氧化产物丙二醛(MDA)含量的影响。结果表明:温度和盐度因子能够诱导西藏拟溞抗氧化应激反应,胁迫24h后,SOD、GPX活性及MDA含量在28℃,盐度20时均达到最高值,分别为37.18±1.97U/mg﹒μg、75.1±9.96U/mg﹒μg、12.24±2.12nmol/mg·μg;48h后,高温低盐组(25~28℃、5~10)和高温高盐组(25~28℃、20~25)SOD、GPX活性及MDA含量显著高于其他处理组(P<0.05),在28℃,盐度5时均达到最大值,分别为19.25±3.48U/mg﹒μg、59.95±4.66U/mg﹒μg、4.98±0.66nmol/mg·μg;温度、盐度以及这两个因子之间对西藏拟溞体内SOD、GPX活性和MDA含量均有极显著影响(P<0.01)。
     2.温度和盐度对西藏拟溞热休克蛋白70基因表达的影响
     生物对温度和盐度变化后的生理反应能够反映出生物体对其环境的适应性及耐受能力。为了研究西藏拟溞对温度和盐度胁迫的生理反应,本试验利用SYBR Green荧光定量RT-PCR技术对温度和盐度处理后西藏拟溞hsp70mRNA表达量进行了定量分析,探讨西藏拟溞在应激反应中hsp70mRNA的表达规律。结果表明:温度和盐度的改变能够影响西藏拟溞体内hsp70的表达量。胁迫24h后,随着温度的升高,西藏拟溞体内hsp70的表达量呈先升高后降低再升高趋势,22℃和28℃显著高于其他处理组(P<0.05),在22℃,盐度为10时表达达到最高值7.60.72,是对照组(16℃,盐度15)的7倍。随着盐度的改变hsp70的表达量变化均有显著性变化(P<0.05);胁迫48h后,西藏拟溞体内hsp70的表达量随着温度的升高而增加,各温度组hsp70的表达量均显著高于16℃时hsp70的表达(P<0.05),温度28℃,盐度20时达到高峰6.360.22,是对照组hsp70的表达量的6倍。随着胁迫时间的延长,高温组(25~28℃)以及高盐组(20~25)hsp70的表达量均显著增加。西藏拟溞热休克蛋白70的表达对不同变盐方向的响应都较为敏感。
Environmental factors (temperature, salinity, pH, etc.) not only can affect thebreathing and metabolism of aquatic organisms, but also free radicals can causemetabolic disorders. The immune defense capabilities will be decreased If theorganism is in the effect of stress for a long time, thus affecting its normal growth.Itis of great significance to study the antioxidant effect and heat shock protein ofaquatic organisms to explore the mechanism of its adaptation to the environmentand improve the antioxidant immunity of aquatic organisms. The experiment wasdesigned to evaluate the effects of temperature and salinity on the activities ofantioxidant enzymes and lipid peroxidation of Danphniopsis tibetana Sars under theconditions of1500lx, photoperiod(12L:12D) and PH8.1in the laboratory, and underthe same conditions, research the effect of temperature and salinity on HSP70geneexpression of Daphniopsis tibetana Sars by molecular biology methods to explorethe tolerance mechanisms on the environment. The major results and conclusionsare as follows:
     1. Effects of Temperature and Salinity on the Activities of Antioxidant enzymesand Lipid peroxidation of Danphniopsis tibetana Sars
     The experiment was designed to evaluate the effects of temperature(16℃、19℃、22℃、25℃、28℃)and salinity(5、10、15、20、25)on the activity oftotal superoxide dismutase(T-SOD)、 glutathione peroxidase(GPX) and maleicdialdehyde(MDA) of Danphniopsis tibetana Sars by ecological method under thelaboratory conditions.The results showed that temperature and salinity inducedadaptive responses such as increase the activities of SOD、GPX and the content ofMDA with temperature and salinity raised to28℃,25, the maximum were37.18±1.97U/mg﹒μg、75.1±9.96U/mg﹒μg、12.24±2.12nmol/mg﹒μg;48hours later, the experimental groups of high temperature and lower salinity(25~28℃、5~10) and the experimental groups of high temperature and highersalinity (25~28℃、20~25) had interactive effects. when28℃,S=5, those raised tothe maximum19.25±3.48U/mg﹒μg、59.95±4.66U/mg﹒μg、4.98±0.66nmol/mg μg. There were interactive effects between the two factors on theantioxidant enzymatic activities(SOD、GPX) and lipid peroxidation(MDA) inDanphniopsis tibetana Sars(P<0.01).
     2. Effect of temperature and salinity on hsp70mRNA expression of Daphniopsis tibetana Sars
     Physiological responses to temperature and salinity reflect the evolutionaryadaptations of organisms to their environment and the capability of animals totolerate stress. To study the physiological adaptations of Daphniopsis tibetana Sarsto temperature and salinity stress, hsp70mRNA expression levels of Daphniopsistibetana Sars were analyzed by SYBR Green fluorescence quantitative RT-PCR.The results showed that temperature and salinity induced adaptive responses such asincrease hsp70mRNA expression first and then decrease and then increased as thetemperature increased. When the temperature and salinity raised to22℃,10, themaximum was7.60.72, the hsp70mRNA expression was7times higher than thecontrol group(16℃,15).There were significant difference between the groups of22℃、28℃and the other groups. The expressions of hsp70were significantlydifferece with the amount of salinity changes (P<0.05);48hours later, thetendency of hsp70expression level was increased with the temperature raised. Thehsp70expression level of D. tibetana was much higher than the control group(P<0.05), the maximum was6.360.22, the hsp70mRNAexpression was6timeshigher than the control group(16℃,15). The hsp70expressions of high temperature(25to28℃) and high-salt groups (20to25) were significantly increased with thetime prolonged. The hsp70expression level of D. tibetana was more sensitive to thesalinity-up treatment and the salinity-drop treatment.
引文
[1] Diguiseppi J L, Fridovich I. Induction of superoxide dismutases in Escheriehia coli bymanganese and iron, J Bacteriol,1984,160:137-142.
    [2]夏世钧,吴中亮.分子毒理学基础[M].武汉:湖北科学技术出版社,2001.84‐87.
    [3]唐学玺,张培玉.蒽对黑鲪超氧化物歧化酶活性的影响[J].水产学报,2000,,24(3):217‐220.
    [4] Nakano N, Frodl E M, Widner H, et al. Overexpressing Cu/Zn superoxide dismutase enhancessurvival of transplanted neurons in a rat model of Parkinson’s disease[J]. Nat Med,1995,1:266-271.
    [5] Wang X, Culotta V C, Klee C B. Superoxide dismutase protects calcineurin from inactive.Nature[J],1996,383:434-437.
    [6]牟海津,江晓路,刘树清,等.免疫多糖对栉孔扇贝酸性磷酸酶、碱性磷酸酶和超氧化物歧化酶活性的影响[J].青岛海洋大学学报,1999,29(3):463-468.
    [7]刘冰,梁婵娟.生物过氧化物酶研究进展[J].中国农学通报,2005,21(5):223-225.
    [8]陈昌生,王淑红,纪德华,等.氨氮对九孔鲍过氧化氢酶和超氧化物歧化酶活力的影响[J].上海水产大学学报,2001,10(3):218-222.
    [9] Ladenstein R, Eppo O, Bartels K, Jones A, Huber R,Wendel A. J Mol Biol,1979,134:199.
    [10]冯涛,郑微云,洪万树,等.苯并(a)芘对大弹涂鱼肝脏谷胱甘肽过氧化物酶活性的影响[J].中国水产科学,2001,7(4):19-21.
    [11] Hochachka P W, Somero G N. Biochemical adaptation [M]. UK: Oxford University Press.2002.
    [12]王奇,范灿鹏,陈锟慈,等.三种磺胺类药物对罗非鱼肝脏组织中谷胱甘肽转移酶(GST)和丙二醛(MDA)的影响[J].生态环境学报,2010,19(5):1014-1019.
    [13]杨唐斌,梅尚筠.应激反应与抗氧化酶[J].航天医学与医学工程,1994,7(1):75-78.
    [14]程元恺.脂质过氧化与抗氧化酶[J].工业卫生与职业病,1993,19(4):254-256.
    [15] Martinez-Alvarez R M, Morales AE, Sanz A. Antioxidant defenses in fish:Biotic and abioticfactors [J]. Rev Fish Biol Fisher,2005,15:75-88.
    [16] Lushchak V I, Bagnyukova T V. Temperature increase results in oxidative stress in goldfishtissues.1. Indices of oxidative stress [J]. Comp. Biochem Physiol,2006,143C:30-35.
    [17] Parihar M S, Dubey A K. Lipid peroxidation and ascorbic acid status in respiratory organs ofmale and female freshwater catfish Heteropneustes fossilis exposed to temperature increase [J].Comp Biochem Physiol,1995,112C:309-313.
    [18]宋林生,季延宾,蔡中华,等.温度骤升对中华绒螯蟹几种免疫化学指标的影响[J].海洋与湖沼,2004,35(1):74-77.
    [19] Chen M Y, Yang H S, Delaporte M, Zhao S J. Immune condition of Chlamys farreri inresponse to acute temperature challenge [J]. Aquaculture,2007,479-487.
    [20]李大鹏,刘岩松,谢从新,等.水温对中华鲟血清活性氧含量及抗氧化防御系统的影响[J].水生生物学报,2008,32(3):327-332.
    [21]徐力文,苏友禄,刘广锋,等.急性盐度胁迫下军曹鱼稚鱼应激反应的血清学指标[J].华南农业大学学报,2007,28(2):91-94.
    [22]袁有宪,陈聚法,陈碧娟,等.栉孔扇贝对环境变化适应性研究——盐度、PH对存活、呼吸、摄食及消化的影响[J].中国水产科学,2001,7(4):73-77.
    [23] Laing I. Effect of salinity on growth and survival of king scallop spat (Pecten maximus)[J].Aquaculture,2002,205:171-181.
    [24] Partridge G J, Jenkins G I. The effect of salinity on growth and survival of juvenile blackbream (Acanthopagrus butcheri)[J]. Aquaculture,2002,210:219-230.
    [25]王吉桥,罗明,张德治,等.水温和盐度对南美白对虾幼虾能量收支的影响[J].水产学报,2004,28(2):161-166.
    [26]黄凯,王武,卢洁,等.盐度对南美白对虾的生长及生化成分的影响[J].海洋科学,2004.28(9):20-25.
    [27]王兴强,曹梅,马牲,等.盐度对凡纳滨对虾存活、生长和能量收支的影响[J].海洋水产研究,2006,27(1):8-13.
    [28] Peter L J, James S B. Metabolic responses to salinity acclimation in juvenile shortnosesturgeon Acipenser brevirostrum[J]. Aquaculture.2003,219:891-909.
    [29]叶建生,王兴强,马甡,等.盐度突变对凡纳滨对虾非特异性免疫因子的影响[J].海洋水产研究,2008,29(1):38-43.
    [30]余燕,徐维娜,刘兆普,等.低盐度胁迫对点带石斑鱼幼鱼消化酶、抗应激酶和存活率的影响[J].渔业科学进展,2009,30(4):21-26.
    [31]王方国,刘金灿.水体环境因子与对虾疾病关系[J].东海海洋,1992,10(4):37-41.
    [32]樊甄姣,杨爱国,刘志鸿,等. pH对栉孔扇贝体内几种免疫因子的影响[J].中国水产科学,2006,13(4):650-654.
    [33]林小涛,张秋明,许忠能,等.虾蟹类呼吸代谢研究进展[J].水产学报,2000,24(6):575-580.
    [34]成广兴.酸雨对水生生物的影响[J],安庆师范学院学报,1999,5(3):108-110.
    [35]哈承旭,刘萍,何玉英,等.高pH胁迫对“黄海1号”中国对虾免疫相关酶的影响[J].中国水产科学,2009,16(2):303-306.
    [36]孙建军,丁美丽.氨氮对中国对虾抗病力的影响[J].海洋与湖沼,1999,30(3):367-372.
    [37] SVOBODOVA Z, LIOYD R, MACHOVA J. Water quality and fish health [M]. Rome:EIFACTechnical Paper,1993,54:11-16.
    [38] D J RANDALL, TSUI T K N. Ammonia toxicity in fish [J]. Marine Pollution Bulletin,2002,45(1):17-23.
    [39]曾媛媛,蒋云霞,艾春香.氨氮胁迫对拟穴青蟹组织器官中SOD及GPX活性的影响[J].台湾海峡,2011,30(2):210-215.
    [40]陈家长,臧学磊,胡庚东.氨氮胁迫下罗非鱼(GIFT Oreochromis niloticus)机体免疫力的变化及其对海豚链球菌易感性的影响[J].生态环境学报,2011,20(4):629-634.
    [41]尹平河等.海藻生物材料吸附废水中铅、铜和镉的研究[J].海洋环境科学,2000,19(3):11-15.
    [42]黄永杰,刘登义,王友保,等.八种水生植物对重金属富集能力的比较研究[J].生态学杂志,2006,25(5):541-545.
    [43]陈志鑫,朱丽岩,周浩,等. Hg(II)、Pb(II)、Cd(II)对中华哲水蚤总超氧化物歧化酶活性的影响[J].渔业科学进展,2011,32(1):99-103.
    [44]王灶生.铜(Cu)对咸水枝角类蒙古裸腹溞(Moina monogolica Daday)的毒性效应及其评价方法的研究[D].上海交通大学,博士学位论文,2007:1-167.
    [45]贾秀英,陈志伟.铜、镉对鲫组织超氧化物歧化酶活性的影响[J].水生生物学报,2003,27(3):323-325.
    [46]江天久,曾淼,牛涛.重金属Cd2+胁迫对近江牡蛎超氧化物歧化酶活性的影响[J].热带海洋学报,2006,25(6):63-67.
    [48]黄周英,王重刚,左正宏,等.三丁基锡对文蛤鳃的抗氧化酶活性及脂质过氧化的影响[J].环境科学学报,2005,25(10):1408-1413.
    [49]张辰佳,王兰,王茜.3种酚类化合物对多刺裸腹潘GST和AChE活力的影响[J].生态毒理学报,2009,4(2):258-264.
    [50] Neal F, Gordon N F, Clark B. Heat Shock Proteins and Immune Response, The challenges ofbringing autologous HSP-based vaccines to commercial reality [J]. Methods,2004,2(1):63~69.
    [51] Christine Q, Todd A S, Susan L. Hsp90as a capacitor of phenotypic variation [J]. Nature.2002,417(6889):598~599.
    [52] Robert J, Evolution of heat shock proteins and immunity [J]. Development and comparativeimmunology,2003,27:449~464.
    [53]王海鸿,雷仲仁.昆虫热休克蛋白的研究进展[J].中国农业科学,2005,38(10):2023~2034.
    [54] Kregel K C. Heat shock proteins: modifying factors in physiological stress responses andacquired thermotolerance [J]. Journal of Applied Physiology,2002,92(5):2177–2186.
    [55] Feder M E, Hofmann G E. Heat-shock proteins, molecular chaperones, and the stressresponse: evolutionary and ecological physiology [J]. Annual Review of Physiology,1999,61(1):243-282.
    [56] MORIMOTO R I. Stress Protein in biology and Medicine [M]. Cold Spring Harbor:CSHLPress,1990:1-36.
    [57] Welch W J. Mammalian stress response: cel1physiology,structure/function of stressproteins,and implications for medicine and disease [J]. Physiology Review,1992,72:1063-1081.
    [58]韩俊英,李健,李吉涛.脊尾白虾热休克蛋白HSP70基因的克隆及其表达分析[J].水产学报,2011,35(8):1130-1138.
    [59] Vanbukirk A et al. J Exp Med,1989,170:1799-1809.
    [60] Peter M E, Heufelder A E, Hengartner M O. Advances in apoptosis research.Proc.Natl.Acad.Sci.U.S.A.,1997,94:12736-112737.
    [61] Kim Y M,Watkins S C,Billiar T R,et a1.Nitric oxide protects cultured rat hepatocytes fromtumor nexrosis factor-alpha-induced apoptosis by inducing heat shock protein70expression[J].J.Bio1.Chem.,1997,272(2):1402—1411.
    [62] Gordon S A, Hoffman R A, Simmons R, et a1. GSHRS Induction of heat shock protein70protects thymocytes against radiation induced apoptosis[J]. Arch. Surg.,1997,132(12):1277—1282.
    [63] Gabai V L et a1.Hsp70prevents activation of stress kinase.A novel pathway of cellularthermotolerance [J].J.Bio1.Chem.,1997,272(29):18033~18037
    [64]谭红梅,吴伟康.HSP70调节应激活化蛋白激酶JNK活性与细胞凋亡[J].中国病理生理杂志,2001,17(5):477—478.
    [65] Das D K, Engelman R M, Kimura Y.Molecular adaptation of cellular defences followingpreconditioning of the heart by repeated ischemia[J]. Cardiovasec Res.,1993,27(4):578—584.
    [66]陆蓓玲,王兰芳.急性热应激后小鼠的抗氧化能力和Hsp70基因的表达[J].湖南农业大学学报(自然科学版),2011,37(6):650-653.
    [67] KATO K, YAMAGISHI K, TATSUZAWA F, et a1.Identification of cytoplasmic and nuclearlow-molecular-weight heat-shock proteins in tomato fruit[J]. Plant Cell Physiology,1993,34:367-370.
    [68] JINN T L,CHEN Y M,LIN C Y.Characterization and physiological function of class Ilow-molecular-mass, heat-shock protein complex in soybean[J]. Plant Physiology,1995,108:693-701.
    [69] PEGORARO C, MERTZ M L, MAIA D C L, et a1.Importance of heat shock proteins inMaize[J]. Journal of crop science and Biotechnology.,2011,14:85—95.
    [70]吴明飞,于俊飞,周勇,等.高温预处理后大强度负荷对大鼠肾脏热休克蛋白70过氧化物歧化酶丙二醛及尿蛋白的影响[J].辽宁体育科技,2011,33(2):56-58.
    [71] Kothary R K, Burgess E A, Candido E P M. The heat-shock phenomenon in cultured cells ofrainbow trout: HSP70mRNA synthesis and turnover[J]. Biochimica et Biophysica Acta-GeneStructure and Expression,1984,783(2):137-143.
    [72] Lele Z, Engel S, Krone P H. HSP47and HSP70gene expression is differentially regulated ina stress-and tissue-specific manner in zebra fish embryos[J]. Developmental Genetics,1997,21(2):123-133.
    [73] Lim E H, Brenner S. Short-range linkage relationships, genomic organization and sequencecomparisons of a cluster of five HSP70genes in Fugu rubripes[J]. Cell and Molecular LifeSciences,1999,55(4):668-678.
    [74] Molina A, Biemar F, Muller F, et al. Cloning and expression analysis of an inducible HSP70gene from tilapia fish[J]. Federation of European Biochemical Societies Letters,2000,474(1):5-10.
    [75] Ali K, Dorgai L, Abraham M, et al. Tissue-and stressor-specific differ rential expression oftwo HSC70genes in carp[J]. Biochmical and Biophysical Research Comunications,2003,307(3):503-509.
    [76]李薇,张其中,张占会,等.近江牡蛎热休克蛋白70基因的原核表达研究[J].中国水产科学,2010,17(3):424-430.
    [77]谢彦海,胡宝庆,文春根.褶纹冠蚌热休克蛋白HSP70基因的克隆及表达研究[J].南昌大学学报(理科版),2011,35(5):457-463.
    [78]王亚男,王辉,罗明明.温度、盐度对马氏珠母贝外套膜HSP70基因表达量的联合影响[J].广东海洋大学学报,2012,32(3):35-41.
    [79]詹球.巴西红耳龟抗逆条件下生理生化变化及其研究成果的应用[D].长沙:湖南师范大学,2010:1-11.
    [80] Prentice H M,Milton S L,Scheurle D,et a1.The upregulation of cognate and inducible heatshock proteins in the anoxic turtle brain[J].Journal of Cerebral Blood Flow&Metabolism,2004,24:826—828.
    [81] Meng L,Ji T T,Dong Y W,et a1.Thermal resistance in sea cucumbers (Apostichopusjaponicus) with differing thermal history:The role of Hsp70[J].Aquaculture,2009,294(3/4):314—318.
    [82]于珊珊.刺参热休克蛋白基因克隆及其对温度、盐度胁迫的响应[D].硕士学位论文,中国海洋大学,2012:1-79.
    [83] Ji T T,Dong Y W,Dong S L.Growth and physiological responses in the sea cucumber,Apostichopus japonicus Selenka:Aestivation and temperature[J].Aquaculture,2008,283(1/4):180—187.
    [84]张海宁.两种海藻热休克蛋白hsp70基因结构及表达分析[D].硕士学位论文,中国科学院研究生院,2011:6-79.
    [85]姜国忠,许培荣,牛向丽,等.盐藻胞浆hsp70cDNA的克隆及其mRNA的诱导表达[J].海洋科学,2005,29(50):43-49.
    [86] Sars G O. On the Grustacean Fauna of Central Asia. Pt. II Ann.Mus.Zool.St.Petersb,1903(8):171.
    [87] Hedin S. Scientific results of a Jurney in Central Asia1899to1902Central snd WestTibet,3,Stockholm.. Macmillan and co.1907.
    [88] Zhao W, Zheng M P, Xu X Z et al. Biological and ecological features of saline lakes innorthern Tibet[J], China. Hydrobiologia,2005,541:189~203.
    [89]赵文,王巧晗,郑绵平,等.西藏拟溞生物学的初步研究[J].大连水产学院学报,2002,17(3):209—214.
    [90]蒋燮治,堵南山.中国动物志.淡水枝角类[M].北京:科学出版社,1979,297.
    [91]蒋燮治,沈韫芬,龚循矩.西藏无脊椎动物[M].北京:科学出版社,1983,443—492.
    [92]赵文.内陆盐水水体枝角类研究述评[J].大连水产学院学报,1991,6(2):31-41.
    [93]赵文,姜宏,何志辉.三北地区内陆盐水的浮游甲壳类[J].大连水产学院学报,1996,11(1):1—13.
    [94]沈嘉瑞,宋大祥.西藏枝角类的初步研究[J].动物学报,1964,16(1):61—69.
    [95] Barigozzi C et al. Heterochromatin in the genus Artemia Chromosoma,1984,90:332~337.
    [96]曹文清,林元烧,郭东辉.若干生态因子对蒙古裸腹溞生殖方式转变效应的实验[J].台湾海峡.2001,20(增刊):190-195.
    [97]赵文,王巧晗.西藏拟溞形态构造的再描述[J].大连水产学院学报,2005,20(3):165~173.
    [98] Manca M, Ca.rnmarano P, Spagnuolo T. Notes on Cladocera and Copepoda from highaltitude lakes in the Mount Everest Region (Nepal)[J]. Hydrobiologia,1994,287:225~231
    [99]赵文,张鹏,霍元子,等.西藏拟溞的染色体核型研究[J].大连水产学院学报,2004,19(3):167~170.
    [100]赵文,张琳,霍元子.温度、盐度和体长对西藏拟溞(Daphniopsis tibetana)耗氧率的影响[J].生态学报,2005,25(7):1549~1553.
    [101]赵文,梁萧,谢玺,等.温度、盐度和体长对西藏拟溞排氨率的影响[J].生态学报,2008,28(12):6385~6389.
    [102]赵文,毕进红,韩婷婷,等.西藏拟溞遗传多样性的初步研究[J].大连海洋大学学报,2011,26(2):108~113.
    [103]赵文,李睿.4个品系西藏拟溞12SrRNA基因序列及其分子进化的研究[J].大连海洋大学学报,2012,27(4):300~305.
    [104] Rudneva I J. Blood antioxidant system of Black Sea elasmobranch and telemt [J]. CompBiochem Physiol,1997,118C:255-260.
    [105]孔繁翔.环境生物学[M].北京:高等教育出版社.2002,55.
    [106]吕庆,郑容梁.干旱及活性氧引起小麦膜脂过氧化及脱脂化[J].中国科学(C辑),1996.26(1):26-30.
    [107]王巧晗.温度和盐度对西藏拟溞(Daphniopsis tibetana)存活、生长、发育和生殖的影响[D].大连:大连水产学院,2004.
    [108]刘鸿艳,郑曙明,吴青,等.隆线溞营养成分分析及高温胁迫对抗氧化酶活性的影响[J].淡水渔业,2012,42(5):45-48.
    [109] Estudillo C B, Duray M N, Marasigan E T, et a1.Salinity tolerance of larvae of themangrove red snapper (Luoanus argentinaculatus) during ontogency [J]. Aquaculture.2000,190:155-167.
    [110] Fjlho D W, Boveris A.Antioxidant defenses in marine fish-II Elasmobranchs [J].CompBiochem Physiol,1993,106C,415-418.
    [111]孙勇,章力,雷腊梅,等.克氏原螯虾热休克蛋白70基因表达的定量研究[J].海洋科学,2009,33(8):21-25.
    [112]黄桂菊,曲妮妮,喻达辉,等.合浦珠母贝热休克蛋白hsp70基因的克隆与表达分析[J].中国水产科学,2007,14(5):726—732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700