用户名: 密码: 验证码:
球毛壳菌次生代谢的分子生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球毛壳菌(Chaetomium globosum)是自然界中分布最广泛的真菌之一,因产生球毛壳菌素(chaetoglobosins)而被人们所熟知。球毛壳菌素属于细胞松弛素(cytochalasans)类,能够与细胞内肌动蛋白微丝结合,抑制肿瘤细胞的运动和分裂。然而,球毛壳菌素合成的分子机制,如参与其合成途径的关键基因、影响合成的信号途径均不清楚。球毛壳菌还具有高效分解利用纤维素的能力,但其纤维素酶系统的分子生物学研究基本还是空白。此外,球毛壳菌还可以作为一种植物病害广谱生物防治真菌。
     本研究首先利用聚酮合酶(polyketide synthase)基因pks-1在C. globosum中成功建立了RNAi的方法,并证实此基因参与球毛壳菌素A (chaetoglobosin A, ChA)的合成。ChA是球毛壳菌众多次生代谢产物中最主要的成分,是由9个单位的乙酰/丙二酰缩合而成的聚酮骨架组成的C18聚酮化合物。RNA干扰pks-1后,ChA的产量明显下降,同时沉默转化子的黑色素合成降低、菌丝变白。表明两种聚酮类化合物—黑色素和球毛壳菌素,可能共有相同合成步骤。本研究还发现pks-1在孢子生成过程中也起着重要的作用,pks-1基因沉默转化子失去了产孢的能力,聚酮类化合物可能通过未知过程调控孢子生成。C. globosum的pks-1基因的多重作用未有报道。本研究为C. globosum的球毛壳菌素生物合成以及次生代谢和真菌形态发生的关系提供有用信息。
     G protein-cAMP-PKA信号转导通路已经在许多真菌中研究,并且被认为是调节次生代谢的最重要的信号通路之一。本文为研究该信号通路是否控制ChA的合成,通过RNAi方法沉默了编码G蛋白Ⅰ型α亚基的基因gna-1和蛋白激酶A的调节亚基基因pkaR,并获得了gna-1基因沉默转化子(pG)和gnal/pkaR双沉默转化子(pGP)。 gna-1基因沉默转化子出现了与pks-1基因沉默转化子类似的表型,黑色素和孢子合成降低、菌丝颜色变浅,同时,ChA的含量明显下降。gnal/pkaR双沉默转化子则恢复了黑色素和ChA的含量。表明G protein-cAMP-PKA信号转导通路参与C. globosum NK102孢子发生和球毛壳菌素生物合成过程。
     C. globosum NK102也是一株高效降解纤维素的菌株,本文同时研究了此菌的纤维素酶表达系统并寻找影响酶基因表达的关键因素。通过对NK102测序,本文界定了球毛壳菌NK102的主要纤维素酶编码基因,使用转录组高通量测序RNA-Seq的方法得到纤维素酶基因的表达差异,然后观察了不同营养、物理条件下纤维素酶基因表达和酶活性变化的情况。发现随着培养时间的延长,纤维素酶基因整体上表达量升高。外切葡聚糖酶、纤维二糖脱氢酶和内切葡聚糖酶基因(cbhl,cdh和egl1)的表达量最高。糖代谢的负调控因子ACE1和CreA的表达量均降低,而Hap2/3/5复合体的表达量反而升高。之后检测了不同碳源培养基对纤维素酶基因表达量和酶活性的影响,发现葡萄糖为强抑制因子,纤维二糖为其诱导物,而山梨醇没有影响。特别是,我们发现光照也影响纤维素酶基因的表达,黑暗条件明显抑制纤维素酶基因的表达。转录组学的方法可以初步探索纤维素酶表达的规律,酶基因的表达受到营养、物理条件的影响。本研究为揭示球毛壳菌降解纤维素分子机理和阐释生物质糖代谢途径提供了有用参考。
     本文还发现G蛋白α亚基GNA1介导的cAMP通路调控NK102中纤维素酶基因的表达。RNA-Seq结果显示gna-1基因沉默转化子的糖代谢过程的基因基本都是下调的。使用qRT-PCR证明几个重要的纤维素酶基因cbhl、cbh2、egll和egl2的表达都下调。gnal/pkaR双沉默转化子或者加入cAMP的类似物能够恢复这些基因的表达量。纤维素培养基表型和酶活性检测等多方面的实验结果充分证实G蛋白-PKA-cAMP通路调控着纤维素碳源代谢,影响纤维素内切酶和外切酶活性。
     此外,本文首次发现了C. globosum发酵液中具有杀线虫活性的物质为ChA,ChA对南方根结线虫(Meloidogyne incognita)二龄幼虫J2具有强烈的致死效果,ChA的杀线虫能力(LC5o=77.O μg/mL)与合成杀线剂carbofuran基本持平。C.globosum NK102能够显著趋避二龄幼虫。发酵液和ChA对二龄幼虫有致死效果,ChA浓度为300μg/mL时,致死率为90.2%,此时半致死浓度LC50=126.5然而二者对卵孵化的作用直到72h处理后才有显著性影响。所有稀释浓度的发酵液都抑制二龄幼虫的侵染,即使是12.5%浓度的处理也有影响。与对照处理的植物相比,加入浓度为30mg/kg ChA的处理,其卵的数量降低了63%。C. globosumNK102的杀线虫特性,使C. globosum及其代谢物具有开发成杀虫农药的潜力与可能。特别是对南方根结线虫的杀线虫作用,显示出其良好的应用开发前景。
Chaetomium globosum is one of most common fungi in nature. It is best known for producing chaetoglobosins, which belong to cytochalasans and inhibit movement and proliferation of mammalian cells due to their ability to bind to actin filaments. However, the molecular basis of chaetoglobosin biosynthesis including the key genes and the signaling pathways is poorly understood'in this fungus. C. globosum also have the ability to decomposite the cellulose effectively, but the molecular basis of cellulase system has remained uninvestigated. In addition, C. globosum has been widely investigated as a method for biological control.
     In this study, we first use a polyketide synthase gene, pks-1, to establish the technique of RNA interference(RNAi) in C. globosum and then characterized that this gene is involved in the production of chaetoglobosin A(ChA). ChA is the major component of the secondary metabolites in C. globosum and consists of a polyketide backbone that is condensed from nine units of acetate/malonate. When pks-1was knocked down by RNAi, the production of ChA dramatically decreased. Knock-down mutants also displayed a pigment-deficient phenotype. These results suggest that both polyketides, melanin and chaetoglobosin, are likely to share common biosynthetic steps. Most importantly, we found that pks-1also plays a critical role in sporulation. The silenced mutants of pks-1lost the ability to produce spores. We propose that polyketides may modulate cellular development via an unidentified action. Our results suggest that C. globosum pks-1is unique because of its triple role in melanin formation, chaetoglobosin biosynthesis and sporulation. This work implies an interconnection of chaetoglobosin biosynthesis, secondary metabolism and fungal morphogenesis.
     G protein-cAMP-PKA signaling pathway has been studied in numerous fungi and is recognized as one of the most important signaling pathways regulating secondary metabolite production. To investigate whether this signaling pathway regulate chaetoglobosin biosynthesis, in this study, a G-protein a-subunit-encoding gene, gna-1(G-protein alpha-subunit1), which encodes a protein showing a high degree of identity to Group Ⅰ a-subunits of fungal heterotrimeric G-proteins, was knock down by RNAi. Dozens of gnal-knock down strains (pG) and gnal/pkaR-knock. down strains (pGP) were obtained. The gna-1knock down mutants displayed a pigment-deficient phenotype which was similar to pks-1knock-down mutants. In the meanwhile, the concentration of ChA in the gnal knock-down transformants all fell sharply. These results suggest that melanin production, sporulation and ChA biosynthesis are all regulated by the G protein-cAMP-PKA signaling pathway.
     C. globosum also have the ability to decomposite the cellulose effectively. This work explored the cellulose-degradation system and factors on cellulase gene expression in Chaetomium globosum NK102. In the sequenced genome of NK102, we identified10cellulase genes by sequence homology alignment. We employed a high-throughput sequencing technology, RNA Sequcing (RNA-Seq), to monitor the differential expression of the genes under different culture conditions. We observed that cellulase activity generally increased with the time of the fungal cultures. Transcription level of the genes encoding cellobiohydrolase, cellobiose dehydrogenase and endoglucanase (cbhl, cdh and egll) was higher than the others. Expression of the transcriptional repressors, ACE Ⅰ and CreA, decreased with the culture age, whereas expression of Hap2/3/5complex was upregulated. In different carbon sources, cellulase activity and their gene transcription were repressed by glucose and were activated by cellobiose. While, sorbitol had no significant effect. Interestingly, light had a positive effect on the expression of these cellulase genes. This study detects the molecular system of cellulose-degradation in C. globosum and provides information for interpretation of carbohydrate metabolism.
     We also found that G protein-cAMP-PKA signaling pathway regulates cellulase gene expression in C. globosum NK102. RNA-Seq results showed that the expression of most carbon metabolism genes were down-regulated and the qRT-PCR result demonstrated cbh1、cbh2、egl1and egl2expression in gnal knock-down strains (pG) decreased sharply. The gnal/pkaR double knock down strains (pGP) or the activator of the cAMP pathway can restore the cellulose gene expression. In addition, the phenotype of the fungus grown on the cellulose medium and the cellulase activity results confirmed that cellulose degradation are regulated by the Gprotein-cAMP-PKA signaling pathway.
     The nematicidal activity of C. globosum NK102, culture filtrates and chaetoglobosin A (ChA) purified by HPLC were evaluated on Meloidogyne incognita. The result showed that C. globosum NK102significantly repelled second-stage juveniles (J2). Both filtrates and ChA demonstrated strong adverse effects on J2mortality of90.2%at300μg ChA/mL (LC50=126.5μg/mL). ChA and filtrates did not affect egg hatch until72h exposure. All filtrate treatments inhibited the J2penetration even in12.5%dilution treatment. Similarly, ChA (300and30μg/mL) showed a significant inhibitory effect on J2penetration. The number of egg per plant was significantly reduced by63%in the treatment of30mg ChA per kg soil relative to control plants, indicating an apparent negative effect on reproduction of M. incognita. The report suggests a potential for C. globosum as biocontrol agent for the integrated management of M. incognita.
引文
[1]Straus DC. The possible role of fungal contamination in sick building syndrome. Front Biosci (Elite Ed),2011,3:562-580.
    [2]Paterson PJ, Seaton S, Yeghen T, et al. Molecular confirmation of invasive infection caused by chaetomium globosum. J Clin Pathol,2005,58:334.
    [3]Fogle MR, Douglas DR, Jumper CA, et al. Growth and mycotoxin production by Chaetomium globosum. Mycopathologia,2007,164:49-56.
    [4]Seth HK. A monograph of the genus Chaetomium. Beih. Nova Hedwigia,1970,37:1-130.
    [5]Kendrick B. Fungi and the history of mycology. British Columbia:Sidney by the Sea,2011. eLS.
    [6]Ingold CT. The stalked spore-drop. New Phytol,1961,60:181-183.
    [7]Inglis GD, Kawchuk LM. Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Can J Microbiol,2002,48: 60-70.
    [8]Qi G, Lan N, Ma X, et al. Controlling Myzus persicae with recombinant endophytic fungi Chaetomium globosum expressing Pinellia ternata agglutinin:Using recombinant endophytic fungi to control aphids. J Appl Microbiol,110:1314-1322.
    [9]Longoni P, Rodolfi M, Pantaleoni L, et al. Functional analysis of the degradation of cellulosic substrates by a Chaetomium globosum endophytic isolate. Appl Environ Microbiol, 2012,78:3693-3705.
    [10]Kapoor N, Tyagi M, Kumar H, et al. Production of cellulose Enzyme by Chaetomium sp. Using Wheat Straw in solid state fermentation. Res J Microbio,2010,5:1199-1206.
    [11]Sutton DA, Slifkin M, Yakulis R, et al. U.S. case report of cerebral phaeohyphomycosis caused by Ramichloridium obovoideum (R. mackenziei):Criteria for identification, therapy, and review of other known dematiaceous neurotropic taxa. J Clin Microbiol,1998,36:708-715.
    [12]Qin JC, Zhang YM, Gao JM, et al. Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett,2009, 19:1572-1574.
    [13]李梅,杨谦,李常银.影响球毛壳菌原生质体转化的因素.哈尔滨工业大学学报,2003,35(7):787-789.
    [14]高兴喜,杨谦.根癌农杆菌介导的球毛壳菌遗传转化及T-DNA插入突变体的获得.微生物学报,2005,45(1):129-131.
    [15]金红星,杨谦,宋金柱.球毛壳菌(Chaetomium globosum) cDNA文库的构建.哈尔滨工业大学学报,2005,37(2):262-263.
    [16]金红星,杨谦.球毛壳菌部分表达序列标签的生物信息分析.高技术通讯,2004,14(7):34-37.
    [17]Demain AL, Fang A. The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol,2000,69:1-39.
    [18]Stierle A, Strobel GA, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific Yew. Science,1993,260(5105):214-216.
    [19]Hopwood DA. Towards an understanding of gene switching in Streptomyces, the basis of sporulation and antibiotic production. Proc R Soc Lond B,1988,235:121 - 138.
    [20]Mapleston RA, Stone MJ, Williams DH. The evolutionary role of secondary metabolites. Gene,1992,115:151-157.
    [21]Stone MJ, Williams DH. On the evolution of functional secondary metabolites (natural products). Mol Microbiol,1992,6:29-34.
    [22]Calvo AM, Gardner HW, Keller NP. Genetic connection between fatty acid metabolism and sporulation in Aspergillus nidulans. J Biol Chem,2001,276:20766-20774.
    [23]Mazur P, Nakanishi K, El-Zayat A A E, et al. Structure and synthesis of sporogenic psi factors from Aspergillus nidulans. J Chem Soc Chem Commun,1991,20:1486-1487.
    [24]Alspaugh JA, Perfect JR, Heitman J. Cryptococcus neofomnans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev,1997,11:3206-3217.
    [25]Kawamura C, Tsujimoto T, Tsuge T. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Mol Plant-Microbe Interact,1999,12:59-63.
    [26]Sekiguchi J, Gaucher GM. Conidiogenesis and secondarymetabolism in Penicillium urticae. Appl Environ Microbiol,1977,33:147-158.
    [27]Shimizu K, Keller NP. Genetic involvement of cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics,2001,157:591-600.
    [28]Ramaswamy A. Ecological analysis of secondary metabolite production in Aspergillus spp. [Master's thesis]. Office of Graduate Studies of Texas A & M University, College Station, 2002.
    [29]Sim SC. Characterization of genes in the sterigmatocystin gene cluster and their role in fitness ofAspergillus nidulans:[Master's thesis]. Office of Graduate Studies of Texas A & M University, College Station,2001.
    [30]Wolf JC, Mirocha CJ. Regulation of sexual reproduction in Gibberella zeae (Fusarium roseum'Graminearum') by F-2 (zearalenone). Can J Microbiol,1973,19:725-734.
    [31]Schimmel TG, Coffrnan AD, Parsons SJ. Effect of butyrolactone I on the producing fungus, Aspergillus terreus. Appl Environ Microbiol,1998,64:3703-3712.
    [32]Moriwaki A, Ueno M, Arase S, et al. RNA-mediated gene silencing in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol Lett,2007,269:85-89
    [33]Takano Y, Kikuchi T, Kubo Y, et al. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Mol Plant Microbe Interact,2000, 13:374-383.
    [34]Kawamura C, Tsujimoto T, Tsuge T. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Mol Plant-Microbe Interact,1999,12:59-63.
    [35]Leonard KJ. Virulence, temperature optima, and competitive abilities of isolines of races T and O of Bipolaris maydis. Phytopathology,1977,67:1273-1279.
    [36]Tsai HF, Chang YC, Washburn RG, et al. The developmentally regulated albl gene of Aspergillus fumigatus:its role in modulation of conidial morphology and virulence. J Bacteriol,1998,180:3031-3038.
    [37]Reiβ J. Development of Aspergillus parasiticus and formation of aflatoxin Bl under the influence of conidiogenesis affecting compounds. Arch Microbiol,1982,133:236-238.
    [38]Guzman-de-Pen-a D, Aguirre J, Ruiz-Herrera J. Correlation between the regulation of sterigmatocystin biosynthesis and asexual and sexual sporulation in Emericella nidulans. Antonie Leeuwenhoek,1998,73:199-205.
    [39]Shim WB, Woloshuk CP. Regulation of fumonisin Bl biosynthesis and conidiation in Fusariwn verticillioides by a cyclin-like (C-type) gene, FCC1. Appl Environ Microbiol, 2001,67:1607-1612.
    [40]Tag A, Hicks J, Garifullina G, et al. G-protein signalling mediates differential production of toxic secondary metabolites. Mol Microbiol,2000,38:658-665.
    [41]Pazoutova S, Pokorny V, Rehacek Z. The relationship between conidiation and alkaloid production in saprophytic strains of Claviceps purpurea. Can J Microbiol,1977,23:1182-1187.
    [42]Bennett JW. Loss of norsolorinic acid and aflatoxin production by a mutant of Aspergillus parasiticus. J Gen Microbiol,1981,124:429-432.
    [43]Bennett JW, Leong PM, Kruger S, et al. Sclerotial and low aflatoxigenic morphological variants from haploid and diploid Aspergillus parasiticus. Experientia,1986,42:841-851.
    [44]Kale SP, Bhatnagar D, Bennett JW. Isolation and characterization of morphological variants of Aspergillus parasiticus. Mycol Res,1994,98:645-652.
    [45]Kale SP, Cary JW, Bhatnagar D, et al. Characterization of experimentally induced, nonaflatoxigenic variant strains of Aspergillus parasiticus:Appl Environ Microbiol,1996,62: 3399-3404.
    [46]Lengeler KB, Davidson RC, D'souza C, et al. Signal transduction cascade regulating fungal development and virulence. Microbiol Mol Biol Rev,2000,64:746-785.
    [47]Brown DW, Yu JH, Kelkar HS, et al. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci USA,1996,93: 1418-1422.
    [48]Chang PK, Cary JW, Bhatnagar D, et al. Cloning of the Aspergillus parasiticus apa-2 gene associated with the regulation of aflatoxin biosynthesis. Appl Environ Microbiol,1993,59: 3273-3279.
    [49]Fernandes M, Keller NP, Adams TH. Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis. Mol Microbiol,1998,28: 1355-1365.
    [50]Woloshuk CP, Foutz KR, Brewer JF, et al. Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Appl Environ Microbiol,1994,60:2408-2414.
    [51]Yu JH, Butchko RA, Fernandes M, et al. Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Curr Genet,1996,29: 549-555.
    [52]Price MS, Yu J, Nierman WC, et al. The aflatoxin pathway regulator AflR induces gene transcription inside and outside of the aflatoxin biosynthetic cluster. FEMS Microbiol Lett, 2006,255:275-279.
    [53]Fleetwood DJ, Scott B, Lane GA, et al. A complex ergovaline gene cluster in Epichloe endophytes of grasses. Appl Environ Microbiol,2007,73:2571-2579.
    [54]Young CA, Bryant MK, Christensen MJ, et al. Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Mol Genet Genomics,2005,274:13-29.
    [55]Young CA, Felitti S, Shields K, et al. A complex gene cluster for indolediterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol,2006,43:679-693.
    [56]Yu JH, Keller NP:Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol,2005,43:437-458.
    [57]Hoffmeister D, Keller NP. Natural products of filamentous fungi:enzymes, genes, and their regulation. Nat Prod Rep,2007,24:393-416.
    [58]Kim H, Woloshuk CP:Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticiffioides. Fungal Genet Biol,2008,45:947-953.
    [59]Schonig B, Brown DW, Oeser B, et al. Cross-species hybridization with Fusarium verticillioides microarrays reveals new insights in Fusarium fujikuroi nitrogen regulation and the role of AreA andNMR. Eukaryot Cell,2008,7:1831-1846.
    [60]Perrin RM, Fedorova ND, Bok JW, et al. Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog,2007,3:508-517.
    [61]Kale SP, Milde L, Trapp MK, et al. Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genet Biol,2008,45(10):1422-1429.
    [62]Keller N, Bok JW, Chung DW, et al. LaeA, a global regulator of Aspergillus toxins. Med Mycol,2006,44:S83-S85.
    [63]Reyes-Dominguez Y, Bok JW, Berger H, et al. Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol Microbiol, 2010.76(6):1376-1386.
    [64]Calvo AM, Bok JW, Brooks W, et al. VeA is required for toxin and sclerotial production in Aspergillusparasiticus. Appl Environ Microbiol,2004,70:4733-4739.
    [65]Cary JW, Obrian GR, Nielsen DM, et al. Elucidation of veA dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics. Appl Microbiol Biotechnol,2007,76:1107-1118.
    [66]Duran RM, Cary JW, Calvo AM. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl Microbiol Biotechnol,2007,73:1158-1168.
    [67]Myung K, Li S, Butchko RA, et al. FvVEl regulates biosynthesis of the mycotoxins fumonisins and fusarins in Fusarium verticillioides. J Agric Food Chem,2009,57:5089-5094.
    [68]Bayram O, Krappmann S, Seiler S, et al. Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol,2008,45:127-138.
    [69]Dreyer J, Eichhorn H, Friedlin E, et al. A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl Environ Microbiol,2007,73:3412-3422.
    [70]Bayram O, Krappmann S, Ni M, et al. The VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science,2008,320:1504-1506.
    [71]Fischer R. Sex and poison in the dark. Science,2008,320:1430-1431.
    [72]Fox EM, Howlett BJ, Secondary metabolism:regulation and role in fungal biology. Curr Opin Microbiol,2008,11:481-487.
    [73]Shwab EK, Bok JW, Tribus M, et al. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell,2007,6:1656-1664.
    [74]Brodhagen M, Keller NP. Signaling pathways connecting mycotoxin production and sporulation. Mol Plant Path,2006,7:285-301.
    [75]Atoui A, Bao D, Kaur N, et al. Aspergillus nidulans natural product biosynthesis is regulated by mpkB, a putative pheromone response mitogen-activated protein kinase. Appl Environ Microbiol,2008,74:3596-3600.
    [76]Shimizu K, Hicks JK, Huang TP, et al. Pka, Ras and RGS protein interactions regulate activity of AflR, a Zn(II)2Cys6 transcription factor in Aspergillus nidulans. Genetics,2003, 165:1095-1104.
    [77]Wani MC, Taylor HL, Wall ME, et al. Plant antirumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical,1971,93(9):2325-2327.
    [78]Suffness M, Wall ME,1995. Discovery and developement of taxol. The Chemical Rubber Company Press, Boca Raton.1-25.
    [79]Holton RA, Biediger RJ, Boatman PD. Taxol:science and applications. BocaRaton:The Chemical Rubber Company Press,1995.97-121.
    [80]Weissman KJ. Polyketide biosynthesis:understanding and exploiting modularity. Philosophical Transactions of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,2004,362:2671-2690.
    [81]Rolston KV, Segreti J, Lamp KC, et al. Cubicin outcomes registry and experience (CORE) methodology. Am J Med,2007,120(10):S4-S5.
    [82]王燕,王真何,琪杨,博来霉素族抗生素作用机制的研究进展.国外医药:抗生素分册,2009,30(1):5-18.
    [83]Finking R, Marahiel MA. Biosynthesis of nonribosomal peptides 1. Annu Rev Microbiol, 2004,58:453-88.
    [84]Mootz HD, Schwarzer D, Marahiel MA. Ways of assembling complex natural products on modular nonribosomL peptide synthetases. Chem Bio Chem,2002,3(6):490-504.
    [85]Schmidhauser TJ, Lauter FR., Russo VE, et al. Cloning, sequence, and photoregulation of al-1, a carotenoid biosynthetic gene of Neurospora crassa. Mol Cell Biol,1990,10(10): 5064-5070.
    [86]Rynkiewicz MJ, Cane DE, Christianson DW. Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. ProcNatl Acad Sci USA,2001,98(24):13543-13548.
    [87]Campos FF, Rosa LH, Cota BB. Leishmanicidal metabolites from Cochliobolus sp., an endophytic fungus isolated from Piptadenia adiantoides(Fabaceae). PLoS Negl Trop Dis, 2008,2(12):e348.
    [88]Meyer SLF, Huettel RN, Liu XZ, et al. Activity of fungal culture filtrates against soybean cyst nematode and root-knot nematode egg hatch and juvenile motility. Nematology,2004,6: 23-32.
    [89]Caruthers JM, Kang Ⅰ, Rynkiewicz MJ, et al. Crystal structure determination of aristolochene synthase from the blue cheese mold, Penicillium roqueforti. J Biol Chem,2000,275(33): 25533-25539.
    [90]Tudzynski P, Holter K, Correia T, et al. Evidence for an ergot alkaloid gene cluster in Clavicepspurpurea. Mol Gen Genet,1999,261(1):133-141.
    [91]von Nussbaum F. Stephacidin B-A new stage of complexity within prenylated indole alkaloids from fungi. Angew Chem Int Ed Engl,2003,42(27):3068-3071.
    [92]Birch AJ, Donovan FW. Studies in relation to biosynthesis. I. Some possible routes to derivatives of orcinol and phloroglucinol. Aust J Chem,1953,6:360-368.
    [93]Hendrickson L, Davis CR, Roach C, et al. Lovastatin biosynthesis in Aspergillus terreus: characterization of blocked mutants, enzyme activities and a multifunctional polyketide synthase gene. Chem Biol,1999,6:429-439.
    [94]Minto RE, Townsend CA. Enzymology and molecular biology of aflatoxin biosynthesis. Chem Rev,1997,97:2537-2556.
    [95]Chu FS. Mycotoxins:food contamination, mechanism, carcinogenic potential and preventive measures. Mutat Res,1991,259:291-306.
    [96]Sweeney MJ, Dobson AD. Molecular biology of mycotoxin biosynthesis. FEMS Microbiol Lett,1999,175:149-163.
    [97]Perpetua NS, Kubo Y, Yasuda N, et al. Cloning and characterization of a melanin biosynthetic THR1 reductase gene essential for appressorial penetration of Colletotrichwn lagenarium. Mol Plant Microbe Interact,1996,9:323-329.
    [98]Beck J, Ripka S, Siegner A, et al. The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum. Its gene structure relative to that of other polyketide synthases. Eur J Biochem,1990,192:487-498.
    [99]Yang G, Rose MS, Turgeon BG, et al. A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin. Plant Cell,1996,8:2139-2150.
    [100]Binder M, Tamm C. Die Cytochalasane, eine neue Klasse biologisch aktiver Metabolite von Mikroorganismen. Angew Chem Int Ed Engl,1973,9:369-420.
    [101]Shen B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Current Opinion in Chemical Biology,2003,7:285-295.
    [102]Kennedy J, Auclair K, Kendrew SG, et al. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science,1999,284:1368-1372.
    [103]Abe Y, Suzuki T, Ono C, et al. Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum. Mol Genet Genomics,2002, 267:636-646.
    [104]Bingle LE, Simpson TJ, Lazarus CM. Ketosynthase domain probes identify two subclasses of fungal polyketide synthase genes. Fungal Genet Biol,1999,26:209-223.
    [105]Nicholson TP, Rudd BA, Dawson M, et al. Design and utility of oligonucleotide gene probes for fungal polyketide synthases. Chem Biol,2001,8:157-178.
    [106]Shimizu T, Kinoshita H, Ishihara S, et al. Polyketide synthase gene responsible for citrinin biosynthesis in Monascuspurpureus. Appl Environ Microbiol,2005,71:3453-3457
    [107]Cox RJ, Glod F, Hurley, et al. Rapid cloning and expression of a fungal polyketide synthase gene involved in squalestatin biosynthesis. Chem Commun(Camb),2004:2260-2261.
    [108]Schumann J, Hertweck C. Molecular basis of cytochalasan biosynthesis in fungi:gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J Am Chem Soc,2007,129:9564-9565.
    [109]Crawford JM, Dancy BC, Hill EA, et al. Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthase. Proc Natl Acad Sci USA, 2006,103:16728-16733.
    [110]Crawford JM, Thomas PM, Scheerer JR, et al. Deconstruction of iterative multidomain polyketide synthase function. Science,2008,320:243-246.
    [111]Kroken S, Glass LN, Taylor JW, et al. Phylogenetic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci USA,2003,100: 15670-15675.
    [112]Hitchman TS, Schmidt EW, Trail F, et al. Hexanoate synthase, a specialized type I fatty acid synthase in aflatoxin B1 biosynthesis. Bioorg Chem,2001,29:293-307.
    [113]Watanabe CM, Townsend CA. Initial characterization of a type I fatty acid synthase and polyketide synthase multienzyme complex NorS in the biosynthesis of aflatoxin B(1). Chem Biol,2002,9:981-988.
    [114]Gaffoor I, Trail F. Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Appl Environ Microbiol,2006,72:1793-1799.
    [115]Watanabe A, Ono Y, Fujii I, et al. Product identification of polyketide synthase coded by Aspergillus nidulans wA gene. Tetrahedron Lett,1998,39:7733-7736.
    [116]WatanabeA, Fujii Ⅰ, Sankawa U, et al. Re-identification of Aspergillus nidulans wA gene to code for a polyketide synthase of naphthopyrone. Tetrahedron Lett,1999,40:91-94.
    [117]Fujii I, Watanabe A, Sankawa U, et al. Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chem Biol, 2001,8:189-197.
    [118]Lu P, Zhang A, Dennis LM, et al. A gene (pks2) encoding a putative 6-methylsalicylic acid synthase from Glarea lozoyensis. Mol Genet Genomics,2005,273:207-216.
    [119]Yang G, Rose MS, Turgeon BG, et al. A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin. Plant Cell,1996,8:2139-2150.
    [120]Baker SE, Kroken S, Inderbitzin P, et al. Two polyketide synthaseencoding genes are required for biosynthesis of the polyketide virulence factor, T-toxin, by Cochliobolus heterostrophus. Mol Plant Microbe Interact,2006,19:139-149.
    [121]Proctor RH, Desjardins AE, Plattner RD, et al. A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet Biol,1999,27:100-112.
    [122]Song Z, Cox RJ, Lazarus CM, et al. Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum. Chembiochem,2004,5:1196-1203.
    [123]Sims JW, Fillmore JP, Warner DD, et al. Equisetin biosynthesis in Fusarium heterosporum. Chem Commun (Camb),2005:186-188.
    [124]Eley KL, Halo LM, Song Z, et al. Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. Chembiochem,2007,8:" 289-297.
    [125]Bergmann S, Schuemann J, Scherlach K, et al. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol,2007,3:213-217.
    [126]Maiya S, Grundmann A, et al. Identification of a hybrid PKS/NRPS required for pseurotin A biosynthesis in the human pathogen Aspergillus fumigatus. Chembiochem,2007,8: 1736-1743.
    [127]Oikawa H, Murakami Y, Ichihara A. New plausible precursors of chaetoglobosin A accumulated by treatment of Chaetomium subaffine with cytochrome P-450 inhibitors. Tetrahedron Lett,1991,32(35):4533-4536.
    [128]Zhang A, Lu P, Dahl-Roshak AM, et al. Efficient disruption of a polyketide synthase gene ipksl) required for melanin synthesis through Agrobacterium-mediated transformation of Glarea lozoyensis. Mol Genet Genomics,2003,268:645-655.
    [129]Nakayashiki H, Hanada S, Quoc NB, et al. RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol,2005,42:275-283.
    [130]Bedford DJ, Schweizer E, Hopwood DA, et al. Expression of a functional fungal polyketide synthase in the bacterium Streptomyces coelicolor A3(2). J Bacteriol,1995,177:4544-4548.
    [131]Kealey JT, Liu L, Santi DV, et al. Production of a poyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc Natl Acad Sci USA,1998, 95:505-509.
    [132]Christian OE, Compton J, Christian KR, et al. Using jasplakinolide to turn on pathways that enable the isolation of new chaetoglobosins from Phomospis asparagi. J Nat Prod,2005, 68:1592-1597.
    [133]Sekita S, Yoshihira K, Natori S, et al. Chaetoglobosins, cytotoxic 10-(Indo-3-yl)-[13]cytochalasans from Chaetomium spp. I. Production, isolation and some cytological effects of chaetoglobosins A-J. Chem Phann Bull,1982,30(5):1609-1617.
    [134]Jarvis BB. Mycotoxins and Indoor Air Quality. In:Biological Contaminants in Indoor Environments. Morey PR, Feely JC, Otten JA, Eds. Philadelphia:ASTM,1990.201-214.
    [135]Sekita S, Yoshihira K, Natori S, et al. Chaetoglobosins, cytotoxic 10-(Indo-3-yl)-[13]cytochalasans from Chaetomium spp. Ⅱ. Structures of chaetoglobosins A, B and D. Chem Phann Bull,1982,30(5):1618-1628.
    [136]Sekita S, Yoshihira K, Natori S, et al. Chaetoglobosins, cytotoxic 10-(Indo-3-yl)-[13]cytochalasans from Chaetomium spp. Ⅲ. Structures of chaetoglobosins C, E, F, G and J. Chem Pharm Bull,1982,30(5):1629-1638.
    [137]Sekita S, Yoshihira K, Natori S. Chaetoglobosins, cytotoxic 10-(Indo-3-yl)-[13]cytochalasans from Chaetomium spp. Ⅳ. 13C-Nuclear magnetic resonance spectra and their application to a biosynthetic study. Chem Phann Bull,1983, 31(2):490-498.
    [138]Christian OE, Compton J, Christian KR, et al. Cytotoxic cytochalasans from a Penicillium species separated from a marine alga. Nat Prod,2005,68:1592-1597.
    [139]Ludovic B, Jean-Claude C, Odile C, et al. New chaetoglobosins from maize infested by Phomopsis leptostromiformis fungi, production, identification, and semi-synthesis. Spectroscopy,2003,17(4):725-734.
    [140]Ichihara A, Katayama K, Teshima H, et al. Chaetoglobosin O and other phytotoxic metabolites from Cylindrocladium floridanum, a causal fungus of Alfalfa black rot disease. Biosci Biotech Bioch,1996,60(2):360-361.
    [141]Probst A, Tamm C. Chaetoglobosin L, a new metabolite of Diplodia macrospore. Helvetica Chimica Acta,1982,65(5):1543-1546.
    [142]Cocks S, Wigley SK, Chicrelli-Robinson M I, et al. High-performance liquid chromatography comparison of supercritical-fluid extraction and solvent extraction of microbial fermentation products. J Chromatogr A,1995,697:115-122.
    [143]Von Wallbrunn C, Luftmann H, Bergander K, et al. Phytotoxic chaetoglobosins are produced by the plant pathogen Calonectria morganii(anamorph Cylindrocladium scoparium). J Gen Appl Microbiol,2001,47:33-38.
    [144]Cui CM, Li XM, Li CS, et al. Cytoglobosins A G, cytochalasans from a marine-derived endophytic fungus, Chaetomium globosum QEN-14. J Nat Prod,2010,73:729-733.
    [145]Kirk TK, Shimada M. Lignin biodegradation:the microorganisms involved and the physiology and biochemistry of degradation by white-rot fungi. Biosynthesis and biodegradation of wood components (edited by Takayoshi Higuchi).Orlando Fla:Academic Press,1985.579-605.
    [146]Alexandropoulos CJ, Mims CW, Blackwell M. Introductory Mycology,4th ed. New York: JohnWiley and Sons Inc,1996.
    [147]Ejechi BO, Obuekwe CO, Ogbimi AO. Microchemical studies of wood degradation by brown rot and white rot fungi in two tropical timbers. Int Biodeterior Biodegrad,1996, 38(2):119-122.
    [148]Fogle MR, Douglas DR, Jumper CA, et al. Heat stability of chaetoglobosins A and C. Can J Microbiol,2008,54:423-425.
    [149]Ko HR, Kim BY, Ahn SC, et al. Chaetoglobosin A, an inhibitor of bleb formation on K562 cells induced by phorbol 12,13-dibutyrate. J Microbiol Biotechnol,1998,8:705-709.
    [150]Momesso LS, Kawano CY, Ribeiro PH, et al. Chaetoglobosinas produzidas por Chaetomium globosum, fungo endofitico associado a Viguiera robusta Gardn. (Asteraceae). Quim Nova,2008,31(7):1680-1685.
    [151]Ding G, Song YC, Chen JR, et al. Chaetoglobosin U, a cytochalasan alkaloid from endophytic Chaetomium globosum IFB-E019. J Nat Prod,2006,69:302-304.
    [152]Thohinung S, Kanokmedhakul S, Kanokmedhakul K, et al. Cytotoxic 10-(indol-3-yl)-[13] cytochalasans from the fungus Chaetomium elatum ChEOl. Arch Pharm Res,2010,33(8): 1135-1141.
    [153]Tikoo A, Cutler H, Lo SH, et al. Treatment of Ras-induced cancers by the F-actin cappers tensin and chaetoglobosin K, in combination with the caspase-1 inhibitor N1445. Cancer J Sci Am,1999,5(5):293-300.
    [154]Vesely D, Vesela D, Jelinek R. Penicillium aurantiogriseum Dierckx produces chaetoglobosin A toxic to embryonic chickens. Mycopathologia,1995,132:31-33.
    [155]张玲琪,王海昆,邵华等.美登木内生真菌产抗癌物质球毛壳甲素的分离及鉴定.中国药学杂志,2002,37(3):172-175.
    [156]Kang JG, Kim KK, Kang KY. Production of antifungal compound and suppression of phytopathogens by Chaetomium sp. in pot soil. J Antibiot,2000,53(2):131-136.
    [157]Qin JC, Zhang YM, Gao JM, et al. Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett,2009, 19:1572-1574.
    [158]Namgoong J, Yeon SW, Paek NS, et al. Isolation and structural determination of anti-Helicobacter pylori compound from fungus 60686 Sanop Misaengmul Hakhoechi. Korean JAppl Microbiol Biotechnol,1998,26:137-142.
    [159]Flanagan MD, Lin S. Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin. J Biol Chem,1980,255:835-838.
    [160]Brenner SL, Kom ED. The effects of cytochalasins on actin polymerization and actin ATPase provide insights into the mechanism of polymerization. J Biol Chem,1980,255: 841-844.
    [161]Sato Y, Saito Y, Tezuka T, et al. Viscometric analysis of effects of cytochalasins on in vitro polymerization and depolymerization of microtubules. J Pharmacobiodyn,1982,5:418-422.
    [162]Kobayashi H, Namikoshi M, Yoshimoto T, et al. A screening method for antimitotic and antifungal substances using conidia of Pyricularia oryzae, modification and application to tropical marine fungi. J Antibiot (Tokyo),1996,49:873-879.
    [163]Foland TB, Dentler WL, Suprenant KA, et al. Paclitaxel-induced microtubule stabilization causes mitotic block and apoptotic-like cell death in a paclitaxel-sensitive strain of Saccharomyces cerevisiae. Yeast,2005,22:971-978.
    [164]Probst A, Tamm C. Biosynthesis of the cytochalasans. Biosynthetic studies on chaetoglobosin A and 19-O-acetylchaetoglobosin A. Helvetica Chimica Acta,1981,64(7): 2065-2077.
    [165]Turner GE, Borkovich KA. Identification of a G protein a subunit from Neurospora crassa that is a member of the Gi family. J Biol Chem,1993,268:14805-14811.
    [166]Neves SR, Ram PT, Iyengar R. G protein pathways. Science,2002,296:1636-1639.
    [167]Bolker M. Sex and crime:heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet Biol,1998,25:143-156.
    [168]Kays AM, Borkovich KA. Signal transduction pathwaysmediated by heterotrimeric G proteins. In:Brambl R, Marzluf GA, ed. The Mycota, Vol. Ⅲ:Biochemistry and Molecular Biology. Berlin-Heidelberg:Springer-Verlag,2004.175-207.
    [169]WestRE JR, Moss J, Vaughan M, et al. Pertussis toxin-catalyzed ADP-ribosylation of transducin. Cysteine 347 is the ADP-ribose acceptor site. J Biol Chem,1985,260:14428-14430.
    [170]Li L, Borkovich KA. GPR-4 is a predicted G-protein-coupled receptor required for carbon source-dependent asexual growth and development in Neurospora crassa. Eukaryot Cell, 2006,5:1287-1300.
    [171]Downes GB, Gautam N. The G protein subunit gene families. Genomics,1999,62:544-552.
    [172]Krystofova S, Borkovich KA. The heterotrimeric G-protein subunits GNG-1 and GNB-1 forma Gβγ dimer required for normal female fertility, asexual development, and Go. protein levels in Neurospora crassa. Eukaryot Cell,2005,4:365-378.
    [173]Kim H, Borkovich KA. A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol Microbiol,2004,52:1781-1798.
    [174]Yang Q, Poole SI, Borkovich KA. A G-protein β subunit required for sexual and vegetative development and maintenance of normal G a protein levels in Neurospora crassa. Eukaryot Cell,2002,1:378-390.
    [175]Venter J C, Adams MD, Myers EW, et al. The sequence of the human Total DNA. Science, 2001,291:1304-1351.
    [176]Klein PS, Sun TJ, Saxe CL, et al. A chemoattractant receptor controls development in Dictyostelium discoideum. Science,1988,241:1467-1472.
    [177]Raisley B, Zhang M, Hereld D, et al. A cAMP receptor-like G protein-coupled receptor with roles in growth regulation and development. Dev Biol,2004,265:433-445.
    [178]Lengeler KB, Davidson RC, D'Souza C, et al. Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev,2000,64:746-785.
    [179]Lemaire K, Van de Velde S, Van Dijck P, et al. Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gprl in the yeast Saccharomyces cerevisiae. Mol Cell,2004,16:293-299.
    [180]Lorenz MC, Pan X, Harashima T, et al. The G protein-coupled receptor Gprl is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics, 2000,154:609-622.
    [181]Liang S, Wang ZY, Liu PJ, et al. A Gy subunit promoter T-DNA insertion mutant:A1-412 of Magnaporthe grisea is defective in appressorium formation, penetration and pathogenicity. Chin Sci Bull,2006,51:2214-2218.
    [182]Muller P, Leibbrandt A, Teunissen H, et al. The Gp-subunit-encoding gene bppl controls cyclic-AMP signaling in Ustilago maydis. Eukaryot Cell,2004,3:806-814.
    [183]Nishimura M, Park G, Xu JR. The G-β subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol Microbiol,2003,50: 231-243.
    [184]Bardwell L. A walk-through of the yeast mating pheromone response pathway. Peptides, 2005,26:339-350.
    [185]Borkovich KA, Alex LA, Yarden O, et al. Lessons from the Total DNA sequence of Neurospora crassa:tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev,2004,68:1-108.
    [186]Holsbeeks Ⅰ, Lagatie O, Van Nuland A, et al. The eukary'otic plasma membrane as a nutrient-sensing device. Trends Biochem Sci,2004,29:556-564.
    [187]Maidan MM, De Rop L, Serneels J, et al. The G protein-coupled receptor Gprl and the Ga protein Gpa2 act through the Camp-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol Biol Cell,2005,16:1971-1986.
    [188]Lafon A, Seo JA, Han KH, et al. The heterotrimeric G-protein GanB(α)-SfaD(β)-GpgA(γ) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans. Genetics,2005,171:71-80.
    [189]Fillinger S, Chaveroche MK, Shimizu K, et al. cAMP and Ras signalling independently control spore germination in the filamentous fungus Aspergillus nidulans. Mol Microbiol, 2002,44:1001-1016
    [190]Alspaugh JA, Pukkila-Worley R, Harashima T, et al. Adenylyl cyclase functions downstream of the Ga protein Gpal and controls mating and pathogenicity ofCryptococcus neoformans. Eukaryot Cell,2002,1:75-84.
    [191]Seiboth B, Gamauf C, Pail M, et al. The D-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and D-galactose catabolism and necessary for P-galactosidase and cellulase induction by lactose. Mol Microbiol,2007,66(4):890-900.
    [192]Schmoll M, Schuster A, do Nascimento Silva R, et al. The Ga protein GNA3 of Hypocrea jecorina(anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light. Eukaryot Cell,2009,8(3):410-420.
    [193]Gao SJ, Nuss DL, Distinct roles for two G protein a subunits in fungal virulence, morphology, and reproduction revealed by targeted gene disruption. Proceedings of the National Academy of Sciences,1996,93:14122-14127
    [194]Wang Y, Aisen P, Casadevall A. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun,1995,63:3131-3136.
    [195]Han KH, Seo JA, Yu JH. Regulators of G-protein signalling in Aspergillus nidulans:RgsA downregulates stress response and stimulates asexual sporulation through attenuation of GanB (Ga) signalling. Mol Microbiol,2004,53:529-540.
    [196]Hicks JK, Yu JH, Keller NP, et al. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA Ga protein-dependent signaling pathway. EMBO J,1997, 16:4916-4923.
    [197]Yu JH, Wieser J, Adams TH. The Aspergillus Flb ARGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J,1996,15:5184-5190.
    [198]Shimizu K, Hicks JK, Huang TP, et al. Pka, Ras and RGS protein interactions regulate activity of AflR, a Zn(II)2Cys6 transcription factor in Aspergillus nidulans. Genetics,2003, 165:1095-1104.
    [199]Seo JA, Yu JH. The phosducin-like protein PhnA is required for GPy-mediated signaling for vegetative growth, developmental control, and toxin biosynthesis in Aspergillus nidulans. Eukaryot Cell,2006,5:400-410
    [200]McDonald T, Devi T, Shimizu K, et al. Signaling events connecting mycotoxin biosynthesis and sporulation in Aspergillus and Fusarium spp. In New Horizon of Mycotoxicology for Assuring Food Safety, Proc. Int. Symp. Mycotoxicol., Kagawa, Jpn., ed. T Yoshizawa,2004, pp.139-147.
    [201]Tag A, Hicks J, Garifullina G, et al. G-protein signaling mediates differential production of toxic secondary metabolites. Mol Microbiol,2000,38:658-665.
    [202]Susstrunk U, Pidoux J, Taubert S, et al. Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor. Mol Microbiol,1998,30:33-46.
    [203]Thevelein JM., De Winde JH. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol,1999,33:904-918
    [204]Fillinger S, Chaveroche MK, Shimizu K, et al. cAMP and ras signalling independently control spore germination in the filamentous fungus Aspergillus nidulans. Mol Microbiol, 2002,44:1001-1016.
    [205]Roze LV, Beaudry RM, Keller NP, et al. Regulation of aflatoxin synthesis by FadA/cAMP/protein kinase A signaling in Aspergillus parasiticus. Mycopathologia,2004, 158:219-232.
    [206]Kozubowski L, Lee SC, Heitman J, Signalling pathways in the pathogenesis of Cryptococcus. Cell Microbiol,2009,11:370-380.
    [207]Mach-Aigner AR, Pucher ME, Steiger MG, et al. Transcriptional regulation of xyrl, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl Environ Microbiol,2008,74(21):6554-6562.
    [208]Harris PV, Welner D, McFarland K, et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 6:structure and function of a large, enigmatic family. Biochemistry,2010,49(15):3305-3316.
    [209]Hori C, Igarashi K, Katayama A, et al. Effects of xylan and starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose. FEMS Microbiol Lett, 2011,321(1):14-23.
    [210]Langston JA, Shaghasi T, Abbate E, et al. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol, 2011,77(19):7007-7015.
    [211]Wilson DB. Three microbial strategies for plant cell wall degradation. Annals of the New York Academy of Sciences,2008,1125:289-297.
    [212]Rabinovich ML, Melnick MS, Bolobova AV. The structure and mechanism of action of cellulolytic enzymes. Biochemistry,2002,67(8):850-871.
    [213]Herve C, Rogowski A, Blake AW, et al. Carbohydrate-binding modules promote the enzymatie deconstruction of intact plant cell walls by targeting and proximity effects. Proceedings of the National Academy of Sciences,2010,107(34):15293-15298.
    [214]Reese EG, Siu GH, Levision HS. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol,1950,59(9): 485-497.
    [215]WoodTM. Properties of cellulolytic enzyme system. Biochem Soci Trans.1985,13:407-410.
    [216]Faterstam LT, Pettersson LG. The 1,4-B-D-glucan cellobiohydrolases of Trichoderma reesei QM9414, A new type of cellulolytic synergism. FEBS Lett,1980,119:97-100.
    [217]Tian C, Beeson WT, Iavarone AT, et al. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci USA,2009,106(52): 22157-22162.
    [218]Ilme'n M, Saloheimo A, Onnela ML, et al. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl Environ Microbiol,1997,63,1298-1306.
    [219]Gielkens MM, Dekkers E, Visser J, et al. Two cellobiohydrolase-encoding genes from Aspergillus niger require D-xylose and the xylanolytic transcriptional activator XlnR for their expression. Appl Environ Microbiol,1999,65:4340-4345.
    [220]Bisaria VS, Mishra S. Regulatory aspects of cellulase biosynthesis and secretion. CRC Crit. Rev. Biotechnol.1989,9:61-103.
    [221]Mernitz G, Koch A, Henrissat B, et al. Endoglucanase II (EGII) oiPenicillium janthinellum: cDNA sequence, heterologous expression and promotor analysis. Curr Genet,1996,29: 490-495.
    [222]Hrmova M, Petrakova E, Biely P. Induction of cellulose-and xylan-degrading enzyme systems in Aspergillus terreus by homo-and heterodisaccharides composed of glucose and xylose. J Gen Microbiol,1991,137:541-547.
    [223]Ding SJ, Ge W, Buswell JA. Endoglucanase I from the edible straw mushroom, Volvariella volvacea. Purification, characterization, cloning and expression. Eur J Biochem,2001,268: 5687-5695.
    [224]Chikamatsu G, Shirai K, Kato M, et al. Structure and expression properties of the endo-b-1,4-glucanase A gene from the filamentous fungus Aspergillus nidulans. FEMS Microbiol Lett,1999,175:239-245.
    [225]Margolles-Clark M, Ilme'n M, Penttila M. Expression patterns of 10 hemicellulase genes from filamentous fungus Trichoderma reesei on various carbon sources. J Biotechnol,1997, 57:167-179.
    [226]Vaheri MP, Vaheri MEO, Kauppinen VS. Formation and release of cellulolytic enzymes during growth of Trichoderma reesei on cellobiose and glycerol. Eur J Appl Microbiol, Biotechnol,1979,8:73-80.
    [227]Nogawa M, Goto M, Okada H, et al. LSorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderma reesei. Curr Genet,2001,38:329-334.
    [228]Gielkens MM, Dekkers E, Visser J, et al. Two cellobiohydrolase-encoding genes from Aspergillus niger require D-xylose and the xylanolytic transcriptional activator XlnR for their expression. Appl Environ Microbiol,1999,65(10):4340-4345.
    [229]Stricker AR, Grosstessner-Hain K, Wurleitner E, et al. Xyrl(xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell,2006,5(12):2128-2137.
    [230]Andersen MR, Vongsangnak W, Panagiotou G, et al. A trispecies Aspergillus microarray: comparative transcriptomics of three Aspergillus species. Proceedings of the National Academy of Sciences,2008,105(11):4387-4392.
    [231]Strieker AR, Mach RL, de Graaff LH. Regulation of transcription of cellulases-and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina{Trichoderma reesei). Appl Microbiol Biotechnol,2008,78(2):211-220.
    [232]Strieker AR, Trefflinger P, Aro N, et al. Role of Ace2(activator of cellulases 2) within the xyn2 transcriptosome of Hypocrea jecorina. Fungal Genet Biol,2008,45(4):436-445.
    [233]Aro N, Pakula T, Penttila M. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev,2005,29(4):719-739.
    [234]Flipphi M, van de Vondervoort PJI, Ruijter GJG, et al. Onset of carbon catabolite repression in Aspergillus nidulans. J Biol Chem,2003,278(14):11849-11857.
    [235]Schmoll M, Franchi L, Kubicek CP. Envoy, a PAS/LOV domain protein of Hypocrea jecorina(Anamorph. Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell,2005,4(12):1998-2007.
    [236]Schuster A, Kubicek CP, Friedl MA, et al. Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process. BMC Genomics,2007,8:449.
    [237]Schmoll M, Schuster A, do Nascimento Silva R, et al. The Ga protein GNA3 of Hypocrea jecorina(anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light. Eukaryot Cell,2009,8(3):410-420.
    [238]Seibel C, Gremel G, do Nascimento Silva R, et al. Light-dependent roles of the G-protein a subunit GNA1 of Hypocrea jecorina(anamorph. Trichoderma reesei). BMC biology,2009,7: 58.
    [239]Cherry JR. Fidantsef AL. Directed evolution of industrial enzymes:an update. Curr Opin Biotechnol,2003,14(4):438-443.
    [240]Martinez D, Berka RM, Henrissat B, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol, 2008,26(5):553-560.
    [241]Taleb F, Radford A. The cellulase complex of Neurospora crassa:cbh-1 cloning, sequencing and homologies. Gene,1995,161(1):137-138.
    [242]Hynes MJ. The Neurospora crassa genome opens up the world of filamentous fungi. Genome Biol,2003,4(6):217.
    [243]Kasbekar DP. Blueprint of a red mould:unusual and unexpected findings in the Neurospora genome sequence. J Biosci,2003,28(4):361-362.
    [244]Selker EU, Tountas NA, Cross SH, et al. The methylated component of the Neurospora crassa genome. Nature,2003,422(6934):893-897.
    [245]Galagan JE, Calvo SE, Borkovich KA, et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature,2003,422(6934):859-868.
    [246]Mannhaupt G, Montrone C, Haase D, et al. What's in the genome of a filamentous fungus? Analysis of the Neurospora genome sequence. Nucleic Acids Res,2003,31(7):1944- 1954.
    [247]Suominen PL, Mantyla AL, Karhunen T, et al. High frequency one-step gene replacement in Trichoderma reesei. II. Effects of deletions of individual cellulose genes. Mol Gen Genet, 1993,241(5/6):523-530.
    [248]Umikalsom MS, Ariff AB, Shamsuddin ZH, et al. Production of cellulase by a wild strain of Chaetomium globosum using delignified oil palm empty-fruit-bunch fibre as substrate. Appl Microbiol Biotechnol,1997,47:590-595.
    [249]Parani K, Eyini M. Effect of co-fungal treatment on biodegradation of coffee pulp waste in solid state fermentation. Asian J Exp Biol Sci,2010,1(2):352-359
    [250]Miettinen-Oinonen A, Paloheimo M, Lantto R, et al. Enhanced production of cellobiohydrolases in Trichoderma reesei and evaluation of the new preparations in biofinishing of cotton. J Biotechnol,2005,116(3):305-317.
    [251]Wesley SV, Helliwell CA, Smith NA, et al. Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal for Cell and Molecular Biology, 2001,27(6):581-590.
    [252]Schmit JP, Mueller GM, An estimate of the lower limit of global fungal diversity. Biodiversity and Conservation,2007,16:99-111.
    [253]Napoli C, Lemieux C, Jorgensen R, Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. The Plant Cell Online,1990,2:279-289.
    [254]Romano N, Macino G. Quelling:transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol,1992,6:3343-3353.
    [255]Cogoni C, Irelan JT, Schumacher M, et al. Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. The EMBO journal,1996,15:3153.
    [256]Nakayashiki H, Nguyen QB, RNA interference:roles in fungal biology. Curr Opin Microbiol,2008,11:494-502.
    [257]Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell,2009, 136:642-655.
    [258]Ghildiyal M, Zamore PD. Small silencing RNAs:an expanding universe. Nat Rev Genet, 2009,10:94-108.
    [259]Hannon GJ. RNA interference. Nature,2002,418:244-251.
    [260]Allen E, Xie'Z, Gustafson AM, et al. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell,2005,121:207.
    [261]Gent JI, Lamm AT, Pavelec DM, et al. Distinct Phases of siRNA Synthesis in an Endogenous RNAi Pathway in C. elegans Soma. Molecular Cell,2010,37:679-689.
    [262]Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation. RNA, 2003,9:277-279
    [263]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell,2004,116: 281-297
    [264]Cogoni C, Macino G. Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proceedings of the National Academy of Sciences,1997,94:10233-10238.
    [265]Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature, 2009,457:413-420.
    [266]Jiang N, Yang Y, Janbon G, et al. Identification and functional demonstration of miRNAs in the fungus Cryptococcus neoformans. PLoS One,2012,7(12):e52734.
    [267]Li L, Chang S, Liu Y, RNA interference pathways in filamentous fungi. Cellular and Molecular Life Sciences,2010,67:3849-3863.
    [268]Catalanotto C, Azzalin G, Macino G, et al. Transcription:Gene silencing in worms and fungi. Nature,2000,404:245-245.
    [269]Catalanotto C, Azzalin G, Macino G, et al. Involvement of small RNAs and role of the qde genes in the gene silencing pathway in Neurospora. Gene Dev,2002,16:790-795.
    [270]Maiti M, Lee HC, Liu Y. QIP, a putative exonuclease, interacts with the Neurospora Argonaute protein and facilitates conversion of duplex siRNA into single strands. Gene Dev, 2007,21:590-600.
    [271]Aramayo R, Metzenberg RL. Meiotic transvection in fungi. Cell,1996,86:103-113.
    [272]Shiu PKT, Metzenberg RL. Meiotic silencing by unpaired DNA:properties, regulation and suppression. Genetics,2002,161:1483-1495.
    [273]Shiu PKT, Raju NB, Zickler D, et al. Meiotic silencing by unpaired DNA. Cell,2001,107: 905-916.
    [274]Alexander WG, Raju NB, Xiao H, et al. DCL-1 colocalizes with other components of the MSUD machinery and is required for silencing. Fungal Genet Biol,2008,45:719-727.
    [275]Salame Tomer M, Ziv Carmit, Hadar Yitzhak, et al. RNAi as a potential tool for biotechnological applications in fungi. Appl Microbiol Biotechnol,2011,89:501-512.
    [276]Goldoni M, Azzalin G, Macino G, et al. Efficient gene silencing by expression of double stranded RNA in Neurospora crassa. Fungal Genet Biol,2004,41:1016-1024.
    [277]Liu H, Cottrell TR, Pierini LM, et al. RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics,2002,160:463-470.
    [278]Mouyna Ⅰ, Henry C, Doering TL, et al. Gene silencing with RNA interference in the human pathogenic fungus Aspergillusfumigatus. FEMS Microbiol Lett,2004,237:317-324.
    [279]Moriwaki A, Ueno M, Arase S, et al. RNA-mediated gene silencing in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol Lett,2007,269:85-89.
    [280]Fitzgerald A, Van Kan JA, Plummer KM. Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats. Fungal Genet Biol,2004,41:963-971.
    [281]Rappleye CA, Engle JT, Goldman WE, RNA interference in Histoplasma capsulatum demonstrates a role for alpha-(1,3)-glucan in virulence. Mol Microbiol,2004,53:153-165.
    [282]McDonald T, Brown D, Keller NP, et al. RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol Plant Microbe In,2005,18:539-545.
    [283]Krajaejun T, Gauthier GM, Rappleye CA, et al. Development and application of a green fluorescent protein sentinel system for identification of RNA interference in Blastomyces dermatitidis illuminates the role of septin in morphogenesis and sporulation. Eukaryot Cell, 2007,6:1299-1309.
    [284]Takeno S, Sakuradani E, Murata S, et al. Establishment of an overall transformation system for an oil-producing filamentous fungus, Mortierella alpina 1S-4. Appl Microbiol Biotechnol,2004,65:419-425.
    [285]Namekawa SH, Iwabata K, Sugawara H, et al. Knockdown of LIM15/DMC1 in the mushroom Coprinus cinereus by double stranded RNA-mediated gene silencing. Microbiology,2005,151:3669-3678.
    [286]de Jong JF, Deelstra HJ, Wosten HA, et al. RNA-mediated gene silencing in monokaryons and dikaryons of Schizophyllum commune. Appl Environ Microbiol,2006,72:1267-1269.
    [287]Rappleye CA, Engle JT, Goldman WE, RNA interference in Histoplasma capsulatum demonstrates a role for alpha-(l,3)-glucan in virulence. Mol Microbiol,2004,53:153-165.
    [288]Nguyen QB, Kadotani N, Kasahara S, et al. Systematic functional analysis of calcium signaling proteins in the genome of the rice blast fungus Magnaporthe oryzae, using a high-throughput RNA silencing system. Mol Microbiol,2008,68:1348-1365.
    [289]Kirk PM, Cannon PF, Minter DW, et al.. Ainsworth & Bisby's dictionary of the fungi.10th ed. CABI Europe:UK,2008.640
    [290]Janbon G, Maeng S, Yang DH, et al. Characterizing the role of RNA silencing components in Cryptococcus neoformans. Fungal Genet Biol,2010,47:1070-1080.
    [291]Moriwaki A, Katsube H, Ueno M, et al. Cloning and characterization of the BLR2, the homologue of the blue-light regulator of Neurospora crassa WC-2, in the phytopathogenic fungus Bipolaris oryzae. Curr Microbiol,2008,56:115-121.
    [292]McDonald T, Brown D, Keller NP, et al. RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol Plant Microbe In,2005,18:539-545.
    [293]Leng Y, Wu C, Liu Z, et al. RNA-mediated gene silencing in the cereal fungal pathogen Cochliobolus sativus. Mol Plant Pathol,2011,12:289-298.
    [294]Engh I, Nowrousian M, Kuck U. Regulation of melanin biosynthesis via the dihydroxynaphthalene pathway is dependent on sexual development in the ascomycete Sordaria macrospora. FEMS Microbiol Lett,2007,275:62-70.
    [295]Moriwaki A, Kihara J, Kobayashi T, et al. Insertional mutagenesis and characterization of a polyketide synthase gene(pksl) required for melanin biosynthesis in Bipolaris oryzae. FEMS Microbiol Lett,2004,238:1-8.
    [296]Takano Y, Kubo Y, Shimizu K, et al. Structural analysis of pksl, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Mol Gen Genet,1995,249: 162-167.
    [297]Wheeler MH, Bell AA. Melanins and their importance in pathogenic fungi. Curr Top Med Mycol,1988,2:338-387.
    [298]Tanguay P, Bozza S, Breuil C. Assessing RNAi frequency and efficiency in Ophiostoma floccosum and O. piceae. Fungal Genet Biol,2006,43:804-812.
    [299]Chang SS, Zhang Z, Liu Y. RNA interference pathways in fungi:Mechanisms and functions. Annu Rev Microbiol,2012,66:305-323.
    [300]Caterina C, Massimiliano P, Paul R, et al. Redundancy of the Two Dicer Genes in Transgene-Induced Posttranscriptional Gene Silencing in Neurospora crassa. Mol Cell Biol, 2004,24(6):2536-2545.
    [301]Feng B, Wang X, Hauser M, et al. Molecular cloning and characterization of WdPKSl, a gene involved in dihydroxynaphthalene melanin biosynthesis and virulence in Wangiella (Exophiala) dermatitidis. Infect Immun,2001,69:1781-1794.
    [302]Calvo AM, Wilson RA, Bok JW, et al. Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev,2002,66:447-459.
    [303]Grosse C, Heinekamp T, Kniemeyer O, et al. Protein kinase A regulates growth, sporulation, and pigment formation in Aspergillus fumigatus. Appl Environ Microbiol,2008,74:4923-4933.
    [304]Kawamura C, Tsujimoto T, Tsuge T. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Mol Plant Microbe Interact,1999,12:59-63.
    [305]Wolf JC, Mirocha CJ. Regulation of sexual reproduction in Gibberella zeae (Fusarium roxeum "graminearum") by F-2 (Zearalenone). Can J Microbiol,1973,19:725-734.
    [306]Schimmel TG, Coffman AD, Parsons S J. Effect of butyrolactone I on the producing fungus, Aspergillus terreus. Appl Environ Microbiol,1998,64:3707-3712.
    [307]Zhou R, Rasooly R, Linz JE. Isolation and analysis of fluP, a gene associated with hyphal growth and sporulation in Aspergillus parasiticus. Mol Gen Genet,2000,264:514-520.
    [308]Silverton J, Kabuto C. Akiyama T. The structure of chaetoglobosin A:a novel use of quartet invariants. Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry,1978,34:588-593..
    [309]Lee Inhyung, Oh Jee-Hwan, Keats Shwab E, et al. HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genet Biol,2009,46:782-790.
    [310]Scherlach K, Boettger D, Remme N, et al. The chemistry and biology of cytochalasans. Nat Prod Rep,2010,27:869■886.
    [311]Reithner B, Brunner K, Schuhmacher R, et al. The G protein a subunit Tgal of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol,2005,42:749-760.
    [312]Bumpus JA, Tien M, Wright D, et al. Oxidation of persistent environmental pollutants by a white rot fungus. Science,1985,228:1434-1436.
    [313]Eaton DC. Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium, a ligninolytic fungus. Enzyme Microb Technol,1985,7:194-196.
    [314]Moredo N, Lorenzo M, Dominguez A, et al. Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World J Microb Biotechnol,2003,19:665-669.
    [315]Jorgensen H, Morkeberg A, Krogh KBR, et al. Production of cellulases and hemicellulases by three Penicillium species:Effect of substrate and evaluation of cellulose adsorption by capillary electrophoresis. Enzyme & Microbial Technol,2005,36:42-48.
    [316]Mishra MM, Singh CP, Kapoor KK, et al. Degradation of lignocellulosic material and humus formation by fungi. Ann Microbiol (Paris).1979,130 (4):481-486.
    [317]Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Research,1997,7:986-995.
    [318]Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods,2008,5:621-628.
    [319]Wang TY, Chen HL, Lu MY, et al. Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. Biotechnol Biofuels,2011,4:24.
    [320]Aro N, Ilmen M, Saloheimo A. et al. ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl Environ Microbiol,2003,69(1):56-65.
    [321]Schmoll M, Kubicek CP. Regulation of Trichoderma cellulase formation:lessons in molecular biology from an industrial fungus. A review. Acta Microbiologica Immunologica Hungarica,2003,50(2-3):125-145.
    [322]Regaieg H, Ciancio A, Raouani NH, et al. Effects of culture filtrates from the nematophagous fungus Verticillium leptobactrum on viability of the root-knot nematode Meloidogyne incognita. World J Microb Biot,2010,26:2285-2289.
    [323]Rodrigue-Kabana R, Canullo GH. Cropping systems for the management of phytonematodes. Phytoparasitica,1992,20:211-224.
    [324]Evans K, Kerry B. Changing priorities in the management of potato cyst nematodes. Outlooks on Pest Management,2007,18:265-269.
    [325]Le Dang Q, Son SW, Cheon HM, et al. Pyochelin isolated from Burkholderia arboris KRICT1 carried by pine wood nematodes exhibits phytotoxicity in pine callus. Nematology, 2011,13:521-528.
    [326]Chen S, Dickson D, Mitchell D. Viability of Heterodera glycines exposed to fungal filtrates. Journal of nematology,2000,32:190.
    [327]Kerry B. Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol,2000,38:423- 441.
    [328]Meyer SLF, Massoud SI, Chitwood DJ, et al. Evaluation of Trichoderma virens and Burkholderia cepacia for antagonistic activity against root-knot nematode, Meloidogyne incognita. Nematology,2000,2:871-879.
    [329]Sharon E, Bar-Eyal M, Chet I, et al. Biological Control of the Root-knot Nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology,2001,91,687-693.
    [330]Lopez-Llorca L, Jansson H. Fungal parasites of invertebrates:multimodal biocontrol agents. In Exploitation of Fungi; Robson GD, van West P, Gadd GM, Eds. Cambridge University Press:Cambridge,2006, pp 310-335.
    [331]Chen S, Dickson D. A technique for determining live second-stage juveniles ofHeterodera glycines. Journal of nematology,2000,32:117.
    [332]Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol, 1925,18:265-267.
    [333]Piskiewicz AM, de Milliano MJK, Duyts H, et al. Plant ectoparasitic nematodes prefer roots without their microbial enemies. Plant and soil,2009,316:277-284.
    [334]Ruanpanun P, Laatsch H, Tangchitsomkid N, et al. Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita. World J Microb Biot,2011,27:1373-1380.
    [335]Du SS, Zhang HM, Bai CQ, et al. Nematocidal flavone-C-glycosides against the root-knot nematode(Meloidogyne incognita) from Arisaema erubescens tubers. Molecules,2011,16: 5079-5086.
    [336]Niu XM, Wang YL, Chu YS, et al. Nematodetoxic aurovertin-type metabolites from a root-knot nematode parasitic fungus Pochonia chlamydosporia. J Agr Food Chem,2009, 58:828-834.
    [337]Yahara I, Harada F, Sekita S, et al. Correlation between effects of 24 different cytochalasins on cellular structures and cellular events and those on actin in vitro. J Cell Biol,1982,92: 69-78.
    [338]Sato Y, Saito Y, Tezuka T, et al. Viscometric analysis of effects-of cytochalasins on in vitro polymerization and depolymerization of microtubules. Journal of pharmacobio-dynamics 1982,5:418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700