用户名: 密码: 验证码:
基于DEM的川西高原构造地貌特征提取与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着3S技术的不断发展,构造地貌信息的提取方法呈现出多元化趋势。DEM是一种新兴的地貌特征信息提取工具,加强其技术方法的研究有利于推进构造地貌实现定量化研究,并带动DEM在断裂带识别应用中相关模块的开发,从而进一步揭示研究区地貌特征和丰富研究区构造地貌研究的信息库内容。川西高原是青藏高原东缘与四川盆地的盆山耦合交接带,加强其地貌特征研究将为青藏高原隆升机理的研究提供依据。本文以川西高原松潘-阿坝地区为研究区域,采用SRTM-DEM数据和ArcGIS空间分析技术,结合野外考察资料,在对该区地貌形态的空间分析和线性地貌特征的提取的基础上,对龙门山构造带和岷江断裂带的线性断裂构造进行自动提取与解译,研究结果如下:
     (1)通过对海拔高程、地表坡度、地势起伏度等要素的分级和统计分析,对松潘-阿坝地区地形地貌分布形态进行了空间分析研究,制作了松潘-阿坝地区数字高程模型图,分析发现研究区域由于断裂构造及造山作用而使地形强烈起伏,而地势及地表坡度变化强烈的地区往往是断裂构造较发育或活动的区域。
     (2)通过山脊线、沟谷线和沟壑密度等线性地貌的分析研究,发现研究区宏观尺度和构造带内的沟壑密度均存在较大的差异。宏观区域分析结果表明:高程对其影响相对有限,地形坡度以及地形起伏度与沟壑密度均呈现负相关。因此,地块稳定性越强、地质沉积年龄越轻、地质构造越复杂的地区其沟壑密度越大。(3)典型区线性断裂构造的提取方法的研究。以区域地质构造资料为理论
     基础,通过利用高程、坡度、坡向、坡向变率的指标进行栅格运算,结合线性地貌山脊线、沟谷线和沟谷网络的分析,采用算法复合完成研究区主断裂的自动提取,并进一步以遥感影像和地质数据为参考,进行研究区断裂线的解译。
     通过对松潘-阿坝地区地貌的分析研究,最终实现了一种基于DEM的线性构造地貌的提取方法,进一步印证了研究区造山带构造特征,从而为青藏高原东缘地貌演化提供了新的研究资料。
With the constant development of modern technology, approaches on the extraction of information about tectonic geomorphology characteristics reflect multi-dimensional trends. DEM is a new tool in extracting information of geomorphology characteristics, which would contribute to the integration of new technique and traditional methods, and to the analysis of different case areas and to the building and management of database of tectonic geomorphology information. Western Sichuan Plateau is the transitional region of East Tibetan Plateau and Sichuan Basin. The analysis on tectonic geomorphology characteristics in this area would provide fundamental technology and data for the researches on the mechanism of uplift of the Tibetan Plateau. In this paper, we extract geomorphology and physiognomy information in Songpan-Aba area, and make a series of spatial analysis based on the data of SRTM-DEM and the spatial analysis tool, ArcGIS, as well as the observations obtained from geological field survey. Meanwhile, we extract some information of Longmen Mountain structural belts and Minjiang Fault Belt’s liner fault structure characteristics. The results were:
     (1)Spatial analysis on tectonic geomorphology morphology, and the digital elevation map of Songpan-Aba region were done according to classification and statistic analysis on the factors of elevation, slope and relief and so on. It could be concluded that fault structure and intracontinental orogenesis make researching region relief with great degree and the regions with geomorphology and slope changed greatly sometimes are the area with fault structure developed or structure activity frequent.
     (2)According to analysis of liner terrain feature on ridge line, valley line and gully density, we find that the character of gully density within macroscopical dimension is quite different from that of structure belts. The result of analysis for macroscopical dimension indicates that elevation only plays a minor role on the distribution of gully density, while the value of slope and relief are negatively correlated with gully density. Therefore, areas with stronger geological stability, younger geological sediment age and more complex tectonics possess denser gully.
     (3)Based on the above analysis, we explored, at the first time, the approach of how liner fault structure can be extracted in study area. The approach includes: grid operation based on elevation, slope, aspect and slope of aspect, and regional tectonic data; analysis of physiognomy ridge, gully and gully web; automatic extraction of main rupture according to combined calculation, and at last translate rupture line of study area according to remote sensing image and geologic data.
     Through the physiognomy analysis in Songpan-Aba region, the extraction of liner fault structure was finally fulfilled based on DEM, which further verified the tectonic geomorphology characteristics and provided new data for the evolvement of geomorphology of eastern Tibetan Plateau.
引文
[1] 陈明. 摩天岭地块及东南缘地质构造演化与成矿作用. 矿物岩石,1998,18:36~37
    [2] 陈楠,王钦敏,汤国安. 自 DEM 由不同算法提取坡度的对比分析. 测绘工程,2006,15(1):6~9
    [3] 陈文凯,张景发,姜文亮,等. 基于 TM 和 DEM 的茅山地区断裂构造解译. 地壳构造与地壳应力文集(19),2006,67~75
    [4] 程维明. 中国 1:100 万地貌-地表覆被-景观生态制图方法研究. 中国科学院地理科学与资源研究所,2006
    [5] 邓起东,陈社发,赵小麟. 龙门山及其邻区的构造和地震活动及动力学. 地震地质, 1994,16(4):389~403
    [6] 冯益民,曹宣铎,张二朋,等. 西秦岭造山带结构造山过程及动力学. 西安:西安地图出版社,2002
    [7] 高旭. 若尔盖中间地块地质构造特征及其新生代隆升的研究. 硕士学位论文. 北京:中国地质大学,2007
    [8] 洪顺英,申旭辉,荆风,等. 基于 SRTM-DEM 的阿尔泰山构造地貌特征分析. 国土资源遥感,2007,3(74):61~66
    [9] 郎玲玲,程维明,朱启疆,等. 多尺度 DEM 提取地势起伏度的对比分析--以福建低山丘陵区为例. 地球信息科学 2007,9(6):1~6
    [10] 李钜章. 中国地貌基本形态划分的探讨. 地理研究,1987,6(2):32~38
    [11] 李勇,周荣军,Densmore AL,等. 青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志. 第四纪研究,2006,26(1):40~51
    [12] 刘东生. 中国的黄土堆积. 北京:科学出版社,1965
    [13] 刘金兰,李庆春,赵斌. 位场场源边界识别新技术及其在山西古构造带与断裂探测中的应用研究. 工程地质学报,2007,15(4):569~574
    [14] 刘静,丁林,曾令森,等. 青藏高原典型地区的地貌量化分析--兼对高原"夷平面"的讨论.地学前沿,2006,13(5):285~299
    [15] 刘少峰,王陶,张会平,等. 数字高程模型在地表过程研究中的应用. 地学前缘,2005,12(1):303~309
    [16] 刘树根,罗志立,赵锡奎,等. 中国西部盆山系统的耦合关系及其动力学模式--以龙门山造山带一川西前陆盆地系统为例. 地质学报,2003,77(2):177~186
    [17] 刘咏梅,汤国安. 黄土丘陵沟壑区不同数据结构 DEM 转换精度研究.水土保持通报,2003,23(2):40~43
    [18] 刘振东,孙玉柱,涂汉明.利用 DTM 编制小比例尺地势起伏度图的初步研究.测绘学报,1990,(1):57~62
    [19] 龙恩,程维明,周成虎,等. 基于 Srtm-DEM 与遥感的长白山基本地貌类型提取方法. 山地学报,2007,25(5):557~565
    [20] 闾国年,钱亚东,陈钟明. 基于栅格数字高程模型提取特征地貌技术研究. 地理学报,1998a,53(6):562~568
    [21] 闾国年,钱亚东,陈钟明. 基于栅格数字高程模型自动提取黄土地貌沟沿线技术研究. 地理科学,1998b,18(6):567~573
    [22] 齐跃明,梁杏,万军伟. TM 图像上断裂构造的识别及其地质应用--以安徽南部东西向断裂构造为例. 华南地质与矿产,2003,2:68~71
    [23] 秦承志. 基于栅格 DEM 的数字地形分析模型与方法研究. 中国科学院地理科学与资源研究所,2006
    [24] 沈玉昌,苏时雨,尹泽生. 中国地貌分类、区划与制图研究工作的回顾与展望. 地理科学,1982,2(2):97~105
    [25] 沈玉昌,左大康,谭见安,等. 我国地理学的方向与任务若干问题的商讨. 地理学报,1980,(2):108~115
    [26] 四川省地质矿产局. 四川省区域地质志,北京:地质出版社,1991
    [27] 苏时雨,李钜章,苏映平,等. 中国 1:100 万地貌图设计中若干问题的探讨. 地理学报,1982,37(1):8~16
    [28] 苏时雨. 地貌制图. 北京:测绘出版社,1999
    [29] 汤国安,龚健雅,陈正江,等. 数字高程模型地形描述精度量化模拟研究. 遥感学报,2001,30(4):361~365
    [30] 汤国安,刘学军,闾国年. 数字高程模型及地学分析的原理与方法,北京:科学出版社,2005
    [31] 汤国安,宋佳. 基于 DEM 坡度图制图中坡度分级方法的比较研究. 水土保持学报,2006,20(2):157~192
    [32] 涂汉明,刘振东. 中国地势起伏度研究. 测绘学报,1999,20(14):311~319
    [33] 王万银,刘金兰,邱之云,等. 利用卫星重力异常研究南黄海地区中生界厚度. 中国海上油气,2004,16(3):151~156
    [34] 吴正,黄山,胡守真,等. 华南海岸风沙地貌研究. 北京:科学出版社,1995, 59~63
    [35] 膝佃波,汪鹏程,王赞,等. 前 KirchhOff 积分偏移识别小断裂与低幅度构造.地球物理学进展,2005,20(4):1035~1038
    [36] 熊立华. 利用 DEM 提取地貌指数的方法述评. 水科学进展,2002,13(6):775~780
    [37] 杨国东,胡卓玮,刘占声. 利用 DEM 和遥感进行平原地区地表水系的研究. 工程勘察,2003(6):47~49
    [38] 游长江,肖禧砥. 壳体地貌初论. 大地构造与成矿学,1998,20(2):151~158
    [39] 张会平,杨农,张岳桥,等. 岷江水系流域地貌特征及其构造指示意义. 第四纪研究,2006,26(1):126~135
    [40] 赵希刚,吴汉宁,韩玲,等. 鄂尔多斯盆地环弧构造的多源信息特征识别. 西北大学学报(自然科学版),2006,36(2):275~278
    [41] 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室. 中华人民共和国 1:100 万数字地貌制作规范,2005
    [42] 中华人民共和国 1:100 万数字地貌图制图规范(征求意见稿),中科院地理科学与资源研究所(资源与环境信息系统国家重点实验室),2005
    [43] 周启鸣,刘学军. 数字地形分析/地理信息系统理论与应用丛书. 北京:科学出版社,2006
    [44] 周荣军,蒲晓虹,何玉林,等 四川岷江断裂带北段的新活动、岷山断块的隆起及其与地震活动的关系. 地震地质,2000,22(3):285~294
    [45] 朱叶飞,张万昌,蒋建军. 基于 DEM 的 ETM^+图像辐射校正及汉江流域反照率的计算. 国土资源遥感,2004,3:8~13
    [46] 朱震达. 荒漠化概念的新进展. 干旱区研究,1993,(4):145~153
    [47] Adiyaman, ?. Chorowicz, J. K?se, O. Relationships between volcanic patterns and neotectonics in Eastern Anatolia from analysis of satellite images and DEM. Journal of Volcanology and Geothermal Research, 1998, 85: 17~32
    [48] Barka, A.A., Kadinsky-Cade, K. Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonics, 1998, 17(3): 141~168
    [49] Burbank, D.W., Anderson, R.S. Tectonic geomorphology. Blachwell Science Press, Massachusetts, USA, 2001, 1~274
    [50] Chaplot, V. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology, 2006, 77(1-2): 126~141
    [51] Clark, M.K., Royden, L.H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 2000, 28(8): 703~706
    [52] Crone, A.J., Machette, M. Surface faulting accompanying the Borah peak earthquake, Central Idaho. Geology, 1984, 12: 149~158
    [53] Dhont, D., Chorowicz, J., Yücrür, T. et al. Polyphased block tectonics along the North Anatolian Fault in the Tosya basin area (Turkey). Tectonophysics, 1998, 299: 231~227
    [54] Favalli, M., Innocenti, F., Pareschi, M.T. et al. The DEM of Mt. Etna: geomorphological and structural implications. Geodinamica Acata, 1999, 12(5): 279~290
    [55] Fielding, E.J. Morphtectonic evolution of the Himalayas and Titan Plateau. In: Summerfield, M.A. eds. Geomorphology and global tectonics. London: John Wiley and Sons Press, Ltd., 2000, 201~222
    [56] Fielding, E.J., Isachs, B., Barazangi, M. et al. How flat is Tibet? Geology, 1994, 22(2): 163~167
    [57] Irvin, B. J., Ventura, S.J., Slater, B.K. Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin. Geoderma, 1997, (77): 137~154
    [58] Johansson, M. Analysis of digital elevation data for palaeo-surfaces in south-western Sweden. Geomorphology, 1999, 26: 279~295
    [59] Jordan, G., Meijninger, B.M.L., Van Hinsbergen, D.J.J. et al. Extraction of morphotectonic features from DEMs: Development and applications for study areas in Hungary and NW Greece. International Journal of Applied Earth Observation and Geoinformation, 2005, 163~182
    [60] Kirby, E., Reiners, P.W., Krol, M.A. et al. Late Cenozoic evolution of eastern margin of the Tibetan Plateau: Interences from 40A r/39A r and (U~Th)/He thermochronology. Tectonics, 2002, 21(1): 1~20
    [61] Kirby, E., Whipple, K.X., Burchfiel, B.C. et al. Neotectonics of the Min Shan, China: implications for mechanisms driving Quatemary deformation along the eastern margin of the Tibetan Plateau. Geological Society of American Bulletin, 2000, 112(3): 375~393
    [62] Kuhni, A., Pfiffner, O.A. The relief of the Swiss Alps and adjacent areas and its relation to Lithology and structure: topographic analysis from a 250-m. Geomorphology, 2001, (41): 285~307
    [63] López, E., Bocco, G., Mendoza, M. et al. Predicting land-cover and land-use change in the urban fringe: A case in Morelia city, Mexico. Landscape and Urban Planning, 2001, (55): 271~285
    [64] Mcmillan, M.E. Basin fill erosion surface and tilted markers: evidence of Late Cenozoic tectonic uplift of the Rocky Mountain orogenic plateau. University of Wyoming, 2003, 1~118
    [65] Mike, J., Smith, P.D., Chris, D.C. An Overview of Sub-glacial Bed-forms in Ireland, Mapped from Digital Elevation Data, 2006, (3): 2132~2142
    [66] Miliaresis, G. A region-growing algorithm for the segmentation of alluvial fans from digitalelevation models. Proceedings, 1st International Symposium on Imaging Applications in Geology (GeoVision 99). Liege, Belgium, 1999a, 189~192
    [67] Miliaresis, G. Automated segmentation of alluvial fans to regions of high to intermediate flood hazard from Land-sat Thematic Map-per imagery. Proceedings, 2nd International Symposium on Operationalization of Remote Sensing. Enscheda-ITC, The Netherlands, 1999b, 6~7
    [68] Miliaresis, G. Segmentation of Alluvial Aprons from the USGS Digital Elevation Models with Spacing 2-Arc Seconds. Proceedings, RGS-IBG 2000, Session on Surface Modeling in Geography, Sussex, 2000, (1): 4~7
    [69] Miliaresis, G., Argialas, D. Extraction and delineation of alluvial fans from digital elevation models and landsat thematic mapper images. Photogrammetric Engineering & Remote Sensing, 2000, 66: 1093~1101
    [70] Molnar, P., England, P. Late Cenozoic uplift of mountain ranges and global climate change: chichen or eggs? Nature, 1990, 346: 29~34
    [71] Montgomery, D.R., Brandon, M.T. Topgraphic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters, 2002, 201: 481~489
    [72] Murthy, S. N. B. Proceedings of the Workshop on Engine-Airframe Integration Short-Haul Aircraft. Annapolis, 1977, (5): 11~12
    [73] Oguchi, T., Aoki, T., Matsuta, N. Identification of an active fault in the Japanese Alps from DEM-based hill shading. Computers and Geosciences, 2003, 29(7): 885~891
    [74] Philip, T.G. Geomorphologic signatures: Classification of aggregated slope unit objects from digital elevation and remote sensing data. Earth Surface Processes and Landforms, 1998, 23(7): 581~594
    [75] Prima, O. D., Ardiansyah, R. DEM Generation Method from Contour Lines Based on the Steepest Slope Segment Chain and a Monotone Interpolation Function. ISPRS Journal of Photogrammetry & Remote Sensing, 2002, 57: 86~101
    [76] Rodriguez, F., Maire, E., Courjault-Rade, P. et al. The Black Top Hat function applied to a Dem: a tool to estimate recent incision in a mountainous watershed. Geophysical Research Letters, 2002, 29(6): 91~94
    [77] Small, E. E., Anderson, R.S. Pleistocence relief production in Laramide mountain ranges, western United States. Geology, 1998, 26: 123~126
    [78] United States Geological Survey. Shuttle Radar Topography Mission documentation: SRTM Topo. http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
    [79] Zhang, H.P., Liu, S.F., Yang, N. Geomorphic characteristics of the Minjiang drainage basin (eastern Tibetan Plateau) and its tectonic implications: New insights from a digital elevation model study. Island Arc, 2006, 15: 239~250
    [80] Zhang, P., Molnar, P., Downs, W.R. Increased sedimentation rates and grain seize 2-4 Myr ago due to the influence of climate change on erosion rates. Nature, 2001, 410: 829~897

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700