用户名: 密码: 验证码:
基于空间形态的模糊数据集数字地貌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球表面是人类活动最为活跃的界面,地貌作为地球表层系统中的一个基本要素,它直接地影响人类活动。因此,地貌形态研究一直受到地理学家和地质学家的关注。过去三十年,数字高程模型(DEMs,Digital Elevation Models)广泛用于计算机的陆地模型数值分析,利用规则网格DEM数据,提取地貌形态参数制图,提取坡度(slope),坡向(aspect),地表凸度(convexity)和凹度(concavity),从相邻关系自动获得地貌属性。在土木工程(civil engineering),地质(geology),地貌(geomorphology),水文(hydrology),环境科学(environmental science),土地利用(landuse),土壤侵蚀(soil erosion)和植被覆盖(vegetation cover)等方面研究得到广泛应用。尤其在地貌和水文研究方面,基于DEM专题图研究方面应用更加普遍。
     如何从DEM定义地貌单元进行了许多努力。根据相应的地貌过程,使用DEM可以模拟为不同的地貌形态。通过层次细分将地貌形态分成不同的地貌单元。通过坡度、坡向和曲率来描述,将地貌划分为四个层次,即地貌元素、地貌类型、地貌系统和地貌区域,其中地貌元素和地貌类型是我们研究的重点也是最重要的。
     长期以来地貌研究采用野外地形测量和航空摄像测量的方法编译而来,这两种方法工作量大,研究区域受到很大的限制。因此一直停留在区域性详细地貌研究的阶段。近些年来随着航空航天事业的快速发展,及激光雷达技术的快速兴起,数据采集的手段长足进步,获得地表信息也不断丰富,例如美国航空航天局(NASA)获得的3弧秒的全球数字高程模型数据,以及日本经济产业省与美国航空航天局合作,利用ASTER立体像对制作的全球1弧秒数字高程模型(ASTER-GDEM)。为我们研究区域尺度乃至全球尺度及行星尺度的地貌形态提供了可靠的数据源。
     然而随着技术的发展,获取数据能力的增强,数据表现出了高维、高信息量的特点,在数据信息提取上提出了新的挑战。本文针对这个特点,总结前人的经验,试图寻找一个统一的框架,在探索地貌形态分类的同时,有效解决模糊数据信息提取的问题。
     数字计算机和地理信息系统排除了任何大小和空间分辨率区域基于地表几何形态分类的障碍。地形通过高程信息精细自动解析,通常高程数据以规则网格形式的数字高程模型来表达。
     本研究采用日本经济产业省与美国航空航天局于2006年6月29日发布的1弧秒(中纬度地区约26m)分辨率的ASTER—DEM数据,提出结合地貌形态参数化与自组织神经网络映射的方法,进行地貌形态分类研究。该方法能够对海量数据进行有效的降维,而且自动获得地貌形态分类阈值,减少了人工参与的主观影响。在一定程度上突破了地貌形态参数化方法分类类型数量的限制。减少了地貌形态类型误分现象。对长春地区的地貌形态研究取得了满意的效果。
     通过对长春地区的地貌分类定量研究,主要取得了以下成果:
     (1)改进了地表曲面模型的拟合方法,提出了不完全二元四次方程,推导出该方程模拟的地表曲面坡度、截面曲率、最大曲率和最小曲率公式,并制作了相应的长春地区地表参数图;
     (2)提出了结合地表参数化与自组织映射进行地貌形态分类,构建了长春地区地貌形态分类模型;
     (3)实现地貌分类定量化,分类的数目和阈值通过自组织映射神经网络训练获得,分类方案由计算机自动确定。
     通过研究实现了地貌形态分类的快速表达,减小了地貌人工解译制图的工作量,很大程度上提高了工作效率;自动获得分类阈值,不但增强了不同尺度空间信息研究的灵活性,而且提高了地貌分类的精度,为我们生态环境研究、精准农业、地质灾害评估、地质构造研究及流域划分等提供精确的背景参数;对土木工程、城市规划、自然保护区管理以及矿产普查等工作有现实的意义。
The earth surface is the most active interface of human activities. As a basic element of the earth surface system, the landscape directly influences the human activities. Therefore, research on landscape morphology has been being under the geologist’s attention. During the past three decades, the Digital Elevation models (DEMs) are widely used for computer numerical analysis of terrain. Use the regular grid DEM dataset to extract the slope, aspect, convexity, concavity and so on, and automatically get the physiognomy attributes from the neighboring relationship. It is widely applied in civil engineering, geology, geomorphology, hydrology, environmental science, landuse, soil erosion and vegetation cover. Especially in physiognomy and hydrological research, the application of the special charts based on DEM research is more common.
     Many efforts have been made to examine how to define landform units from DEMs. Depending on the geomorphic processes which are considered, landforms may be modeled quite differently, we described landforms through a hierarchical subdivision of the land surface into relief units with homogenous gradient, aspect and curvature as well as form elements/facets with homogenous plan and profile curvature. Landform was described as hierarchical entities into four levels: landform elements, landform types, physiographic systems and physiographic regions, of which landform elements and types are the most important.
     For a long time, landform was compiled from aerial photographs and topographic maps, however, those are time-consuming and arduous, and the region of study range is restricted. So the work has remained in the regional detailed research of stage. With the rapid development of aerospace and the booming of the laser radar technique, methods of data collection make great progress, the land surface information collected become more various, such as the shuttle radar topography mission of NASA which gets global digital elevation models as 3 arc-second, and collaboration of Ministry of Economy, Trade and industry of Japan and NASA, GDEM was produced by stereo image. Those provid us reliable data for geomorphometry from regional scale to global and planet.
     However, with technological development, access to data capabilities, the data demonstrated a high-dimensional, high information content of features in the data to extract information on to us with new challenges. In this paper, the characteristics, summarized from previous experience, trying to find a unified framework, explore the landscape in the form of classification at the same time, an effective solution to the problem of fuzzy data extraction.
     Digital computer and geographic information systems precludes any size and spatial resolution surface geometry based on classification of the regional barriers. Fine terrain elevation information is now automatically parse through, usually elevation data to form a regular grid digital elevation models to express.
     In this study, use the ASTER-DEM data of 1 arc second (mid-latitudes of about 26m) resolution which was released on June 29. 2006 by METI and NASA, and put forward a method of integrating geomorphology parameterization and self-organizing neural network for classification research of landscape form. This method can be effective for the vast amounts of data dimensionality reduction, and automatic to get landform classification threshold, reducing the subjective impact of human involvement. To some extent, broking the limits on the number of classification of landscape form parameterization methods and also reducing the misclassification phenomenon of landform types. Changchun region geomorphic study achieved satisfactory results.
     Through the quantitative geomorphological classification research of Changchun,the main research results are showed as follows:
     (1) improved fitting method of surface,a partial quartic equation was proposed. Deduced formula of slope, cross-sectional curvature, maximum curvature and minimum curvature, and produced corresponding map of Changchun.
     (2) Integating geomorphology parameterization and self-organizing map to construct classification model;
     (3) To achieve quantitative geomorphological classification, types and thresholds are given by the self-organizing map neural network by training, classification scheme is determined by a computer program automatically.
     A rapid expression of geomorphological classification has been achieved by study on the landscape, and the workload of geomorphological map artificial interpretation has been reduced, which greatly improves the work efficiency; classification threshold is computed automatically, which not only enhances the spatial information of different scales of flexibility, but also improves the classification accuracy for environmental research, precision agriculture, geological hazard assessment, geological structure and basin delineation study to provide accurate background parameters; This research has practical significance on civil engineering, urban planning, management of nature reserves and mineral surveys, etc.
引文
[1]周成虎,程维明,钱金凯.数字地貌遥感解析与制图[M].北京:科学出版社, 2009.
    [2] McMahon G, Benjamin S P., Clarke K ,et al. Geography for a Changing World– A Science Strategy for the Geographic Research of the U.S. Geological Survey, 2005-2015, Sioux Falls, SD: U.S. Geological Survey Circular 1281, 2005.
    [3] Chaplot V, Darboux F, Bourennane H, et al. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density [J]. Geomorphology, 2006, 77(1-2): 126–141.
    [4] Van Niel T G, McVicar T R, Li Ling-tao, et al. The impact of misregistration on SRTM and DEM image differences [J]. Remote Sensing of Environment, 2008, 112(5):2430–2442.
    [5] Bolongaro-Crevenna A, Torres-Rodr(?)guez V, Sorani V, et al. Geomorphometric analysis for characterizing landforms in Morelos State, Mexico [J]. Geomorphology, 2005, 67(3-4): 407–422.
    [6] Pike R J, Rozema W. J, Spectral Analysis of Landforms [J]. Annals of the Association of American Geographers, 1975, 65(4):499-516.
    [7] Centamore E, Ciccacci S, Del Monte M, et al. Morphological and morphometric approach to the study of the structural arrangement of northeastern Abruzzo (central Italy) [J]. Geornorphology, 1996, 16: 127-137.
    [8] Hamylton S M, Spencer T. Geomorphological modelling of tropical marine landscapes: Optical remote sensing, patches and spatial statistics [J]. Continental Shelf Research, 2011, 31(2): 151–161.
    [9] Wood J D. The geomorphological characterisation of digital elevation models [D]. Leicester: University of Leicester, 1996.
    [10] Prima O D A, Echigo A, Yokoyama R. Supervised landform classification of Northeast Honshu from DEM-derived thematic maps [J]. Geomorphology, 2006, 78(3-4): 373–386.
    [11] Iwahashi J, Pike R J. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature [J]. Geomorphology, 2007, 86(3-4): 409–440.
    [12] Saadat H, Bonnell R, Sharifi F, et al. Landform classification from a digital elevation model and satellite imagery [J]. Geomorphology, 2008, 100(3-4):453–464.
    [13] Grohmanna C H, Riccominib C, Alves F M. SRTM-based morphotectonic analysis of the Po(?)os de Caldas alkaline massif Southeastern Brazil [J]. Computers & Geosciences, 2007, 33(1):10–19.
    [14] Ehsania A H, Quiel F. A semi-automatic method for analysis of landscape elements using Shuttle Radar Topography Mission and Landsat ETM+ data [J]. Computers & Geosciences, 2009, 35 (2): 373–389.
    [15] Shary P A, Sharaya L S, Mitusov A V. Fundamental quantitative methods of land surface analysis [J]. Geoderma, 2002, 107(1-2): 1-32.
    [16] Dr?gu? L, Blaschke T. Automated classification of landform elements using object-based image analysis [J]. Geomorphology, 2006, 81(3-4): 330–344.
    [17] Centamore E, Palmieri E L. Morphological and morphometric approach to the study of the structural arrangement of northeastern Abruzzo (Central Italy) [J]. Geornorphology, 1996, 16(2): 127-137.
    [18] Wang Guang-xing, Gertner G, Parysow P, et al. Spatial prediction and uncertainty assessment of topographic factor for revised universal soil loss equation using digital elevation models [J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2001, 56(1):65–80.
    [19] Yokoyama R, Shlrasawa, M and Pike R J. Visualizing Topography by Openness: A New Application of Image Processing to Digital Elevation Models [J]. Photogrammetric Engineering & Remote Sensing, 2002, 68(3): 257-265.
    [20] Prima O D A, Yoshida T. Characterization of volcanic geomorphology and geology by slope and topographic openness [J]. Geomorphology, 2010, 118 (1-2): 22–32.
    [21] Alhoniemi E. Unsupervised Pattern Recognition Methods for Exploratory Analysis of Industrial Process Data [D]. Espoo: Helsinki University of Technology, 2002.
    [22] Sampsa L. Using visualization, variable selection and feature extraction to learn from industrial data [D]. Espoo: Helsinki University of Technology, 2003.
    [23] Shary P A. Land Surface in Gravity Points Classification by a Complete System of Curvatures [J]. Mathematical Geology, 1995, 27(3): 373-390.
    [24] Klingseisen B, Metternicht G, Paulus G. Geomorphometric landscape analysis using a semi-automated GIS-approach [J]. Environmental Modelling & Software, 2008, 23(1): 109-121.
    [25] Anders N S, Seijmonsbergen A C, Bouten W. Segmentation optimization and stratified object-based analysis for semi-automated geomorphological mapping [J]. Remote Sensing of Environment, 2011. doi:10.1016/j.rse.2011.05.007.
    [26] Speight J G. Landform. Australian soil and land survey field handbook [M].third, CSIRO Publishing, Collingwood, 2009, 15-37.
    [27] Evans, I.S. Geomorphometry and landform mapping: What is a landform? [J]. Geomorphology, 2011. doi:10.1016/j.geomorph.2010.09.029.
    [28] Greenwood S L, Kleman J. Glacial landforms of extreme size in the Keewatin sector of the Laurentide Ice Sheet [J]. Quaternary ScienceReviews, 2010, 29(15-16): 1894-1910.
    [29]王乃樑.法国地貌现状[J].地理学报, 1963,29(1):52-62.
    [30]李炳元,潘保田,韩嘉福.中国陆地基本地貌类型及其划分指标探讨[J].第四纪研究, 2008, 28(4): 535-543.
    [31]陈志明.区域地貌的某些分类问题及其制图的分析方法[J].河南大学学报.1988(1): 35-40.
    [32]王乃樑,潘德扬.南口山前地貌与第四纪沉积物特征及其对于新构造运动与气候变迁的影响[J].北京大学学报, 1956(3):377–401.
    [33]裘善文,李风华.试论地貌分类问题[J].地理科学, 1982, 2(4): 327-345.
    [34]谭云贵.我国区域地貌学研究进展及问题初探[J].地理研究, 1990, 9(4): 104-109.
    [35]徐汉明,张伟,陈晓玲,等.地貌系统演化模式初探[J].湖北大学学报(自然科学版), 1992, 14(2):183-187.
    [36]张珂.论地貌的平衡与演化[J].热带地理,1999,19(2):97-106.
    [37]刘爱利,汤国安.中国地貌基本形态DEM的自动划分研究[J].地球信息科学,2006, 8(4): 8-15.
    [38]刘爱利.基于1:100万DEM的我国地形地貌特征研究[D].西安:西北大学, 2004.
    [39]高玄彧.地貌类型主维分类法的研究[D].成都:成都理工大学, 2006.
    [40]李春华,沙晋明. Matlab自组织竞争神经网络遥感图像分类[J].遥感技术与应用,2006,21(6):507-511.
    [41]宋佳.基于DEM的我国地貌形态类型自动划分研究[D].西安:西北大学, 2006.
    [42]周访滨.基于栅格DEM自动划分微观地貌形态的研究[D].长沙:长沙理工大学, 2006.
    [43]曹颖.基于DEM的地貌分形特征研究[D].西安:西北大学, 2007.
    [44]肖飞,张百平,凌峰,等.基于DEM的地貌实体单元自动提取方法[J].地理研究, 2008, 27(2): 459-466.
    [45]钟业勋,胡宝清,朱根雄.基本地貌形态数学定义体系研究[J].桂林工学院学报, 2009. 29(4): 481-484.
    [46]韩海辉.基于SRTM-DEM的青藏高原地貌特征分析[J].兰州:兰州大学, 2009.
    [47]周启鸣,刘学军.数字地形分析[M].北京:科学出版社, 2006.
    [48]吴立新,史文中.地理信息系统原理与算法[M].北京:科学出版社, 2003.
    [49]罗蒙诺索夫M.论地层[M].马万钧译.北京:科学出版社,1958.
    [50]高明星,刘少峰. DEM数据在青藏高原地貌研究中的应用[J].国土资源遥, 2008(1): 59-65.
    [51]施炜.鄂尔多斯高原东西两侧构造地貌特征分析及新构造意义[D].北京:中国地质大学, 2006.
    [52]王睿博.基于DEM的川西高原构造地貌特征提取与分析[D].北京:中国地质大学, 2008.
    [53]张会平,杨农,张岳桥,等.基于DEM的岷山构造带构造地貌初步研究[J].国土资源遥感, 2006(4): 54-58.
    [54]张会平.青藏高原东缘、东北缘典型地区晚新生代地貌过程研究[D].北京:中国地质大学(北京), 2006.
    [55]程维明,柴慧霞,周成虎,等.新疆地貌空间分布格局分析[J].地理研究, 2009, 28(5): 1157-1169.
    [56]王猛,刘焰,何延波,等.喜马拉雅山脉的地质地貌特征:来自SRTM数字高程模型和降水量数据的约束[J].地质科学, 2008, 43 (3) : 603-622.
    [57] Chen Y H, Liu C Y. Quadric surface extraction using genetic algorithms [J]. Computer-Aided Design, 1999, 31(2): 101–110.
    [58]梁立恒.基于DEM的地表过程研究[D].长春:吉林大学, 2007.
    [59]景才瑞.论地貌发育的相关阶段[J].华中师范大学学报(自然科学版), 1991, 25(1): 110-114.
    [60]莫申国.基于DEM的秦岭数字地貌格局研究[J].华中师范大学学报(自然科学版), 2008(2): 8-14.
    [61]李钜章.中国地貌形态基本类型数量指标初探[J].地理学报, 1982, 37(1): 17-26.
    [62] Li Xi-guang, Li Zhi-yong, Zeng Zuo-xun. Curvature Analysis and Geometric Description of Landforms Using MATLAB [C]. 2nd Conference on Environmental Science and Information Application Technology, 2010, 712-715.
    [63] Booth A M, Roering J Ja, Perron J T. Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon [J]. Geomorphology, 2009, 109(3-4): 132–147.
    [64] Grenon M, Laflamme AJ. Slope orientation assessment for open-pit mines, using GIS-based algorithms. Computers and Geosciences, 2011. doi:10.1016/j.cageo.2010.12.006.
    [65] Lucieer A, Stein A. Texture-based landform segmentation of LiDAR imagery [J]. International Journal of Applied Earth Observation and Geoinformation, 2005, 6(3-4): 261–270.
    [66] Hughes M W, Schmidt J, Almond P C. Automatic landform stratification and environmental correlation for modelling loess landscapes in North Otago, South Island, New Zealand [J]. Geoderma, 2009, 149(1-2): 92–100.
    [67] Fu Hong, Chi Zhe-ru, Feng Da-gan. An efficient algorithm for attention-driven image interpretation from segments [J]. Pattern Recognition, 2009, 42: 126– 140.
    [68] Asselen S, Seijmonsbergen A C. Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM [J]. Geomorphology, 2006, 78(3-4): 309–320.
    [69] Nasri S, Cudennec C, Albergel J, et al. Use of a geomorphological transfer function to model design floods in small hillside catchments in semiarid Tunisia [J]. Journal of Hydrology, 2004, 287(1-4): 197–213.
    [70] Westenl C J, Soeters R, Sijmonsl K. Digital geomorphological landslide hazard mapping of the Alpago area, Italy [J]. JAG, 2000, 2(1): 51-60.
    [71] Jordan G, Meijninger B M L, Hinsbergen D J J, et al. Extraction of morphotectonic features from DEMs: Development and applications for study areas in Hungary and NW Greece [J]. International Journal of Applied Earth Observation and Geoinformation, 2005, 7(3): 163–182.
    [72] Siart C, Bubenzer O, Eitel B. Combining digital elevation data (SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for geomorphological mapping: A multi-component case study on Mediterranean karst in Central Crete [J]. Geomorphology, 2009, 112(1-2): 106-121.
    [73] Mark D M. Geomorphometric Parameters: A Review and Evaluation [C]. Geografiska Annaler. Series A, Physical Geography, 1975, 57(3-4): 165-177.
    [74] Dr?gu? L, Eisank C, Strasser T. Local variance for multi-scale analysis in geomorphometry [J].Geomorphology, 2011, 130(3-4): 162-172.
    [75] Strahler A N. Dynamic Basis of Geomorphology [J]. Bulletin of the Geological Society of America, 1952, 63(9): 923-938.
    [76] Bubenzer O, Bolten A. The use of new elevation data (SRTM/ASTER) for the detection and morphometric quantification of Pleistocene megadunes (draa) inthe eastern Sahara and the southern Namib [J]. Geomorphology, 2008,102(2): 221–231.
    [77] Arrella K E, Fisherb P F, et al, A fuzzy c-means classification of elevation derivatives to extract the morphometric classification of landforms in Snowdonia, Wales[J]. Computers & Geosciences, 2007, 33(10): 1366–1381.
    [78] MacMillan R A, Martin T C, Earle T J, et al. Automated analysis and classification of landforms using high-resolution digital elevation data: applications and issues [J]. Can. J. Remote Sensing, 2003, 29(5): 592–606.
    [79] Chang Yet-Chung, Sinha G. A visual basic program for ridge axis picking on DEM data using the profile-recognition and polygon-breaking algorithm [J]. Computers & Geosciences, 2007, 33: 229–237.
    [80] Miliaresis G C. Extraction of bajadas from digital elevation models and satellite imagery [J]. Computers & Geosciences, 2001, 27(10): 1157–1167.
    [81] Martin W K E, Timmer. V R. Capturing spatial variability of soil and litter properties in a forest stand by landform segmentation procedures [J]. Geoderma, 2006, 132(1-2): 169–181.
    [82] Zogning A, Ngouanet C, Tiafack O. The catastrophic geomorphological processes in humid tropical Africa: A case study of the recent landslide disasters in Cameroon [J]. Sedimentary Geology, 2007, 199(1-2): 13–27.
    [83] Masoud A, Koike K. Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt [J]. Journal of African Earth Sciences, 2006, 45(4-5): 467–477.
    [84] RennóC D, Nobre A D, Cuartas L A, et al. HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia [J]. Remote Sensing of Environment, 2008, 112(9): 3469–3481.
    [85] Ballantine J A C, Okin G S, Prentiss D, et al. Mapping North African landforms using continental scale unmixing of MODIS imagery [J]. Remote Sensing of Environment, 2005, 97(4): 470-483.
    [86]苏时雨,李钜章.地貌制图[M].北京:测绘出版社, 1998.
    [87]宗永强,林晓东,黄光庆,等.地貌统计[M].广州:科学普及出版社广州分社, 1989.
    [88] Hyv?rinen A, Karhunen J, Oja E.独立成分分析[M].周宗潭,董国华,徐昕,胡德文,等译.北京:电子工业出版社, 2007.
    [89]韩力群.人工神经网络理论、设计及应用—人工神经细胞、人工神经网络和人工神经系统[M].北京:化工工业出版社教材发行中心,2002.
    [90] Bandyopadhyay S, Saha S, Pedrycz W. Use of a fuzzy granulation–degranulation criterion for assessing cluster validity [J]. Fuzzy SetsandSystems, 2011, 170(1): 22–42.
    [91] Irvin B J., Ventura S J, Slater B K. Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin [J]. Geoderma, 1997, 77(2-4): 137-154.
    [92] Burrough P A, Gaans P F M , MacMillan R A. High-resolution landform classication using fuzzy k-means [J]. Fuzzy Sets and Systems 2000, 113(1): 37-52.
    [93]梁立恒,邢立新,李桐林,等.数字地貌形态分类优化方法[J].吉林大学学报(地球科学版), 2011, 41:401-406.
    [94] Lo S H, Wang W X. Finite element mesh generation over intersecting curved surfaces by tracing of neighbours [J]. Finite Elements in Analysis and Design, 2005, 41(4): 351–370.
    [95] Koike K, Nagano S, Kawaba K. Construction and analysis of interpreted fracture planes through combination of satellite image derived lineaments and digital elevation model date [J]. Computers & Geosciences, 1998, 24(6): 573-583.
    [96] Carranza E J M., Wibowo H, Barritt S D,et al. Spatial data analysis and integration for regional-scale geothermal potential mapping, West Java, Indonesia [J]. Geothermics, 2008, 37(3): 267–299.
    [97] Dehn M, G(a|¨)rtner H , Dikau R. Principles of semantic modeling of landform structures [J]. Computers & Geosciences, 2001, 27(8): 1005–1010.
    [98] Schmidt J, Hewitt A. Fuzzy land element classification from DTMs based on geometry and terrain position [J]. Geoderma, 2004, 121(3-4): 243-256.
    [99] MacMillan R A, Pettapiec W W, Nolan S C, et al. A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic [J].Fuzzy Sets and Systems, 2000, 113(1): 81-109.
    [100] Wilson J P, Digital terrain modeling [J] Geomorphology, 2011. doi:10.1016/j.geomorph.2011.03.012.
    [101] CHANG Yet-chung, SONG Gwo-Shyh, HSU Shu-kun. Automatic extraction of ridge and valley axes using the profile recognition and ploygon-breaking algorithm [J]. Computers & Geosciences, 1998, 24(1): 83-93.
    [102] Kohonen T. The self-organizing map [J]. Neurocomputing, 1998, 21(1-3): 1-6.
    [103] Vesanto J, Himberg J, Alhomiemi E, et al. SOM toolbox for Matlab 5 [M]. Finland: Libella Oy, 2000.
    [104] Vesanto J, Alhoniemi E. Clustering of the self-organizing map [J]. IEEE Transactions on Neural Networks, 2000, 11(3): 586–600.
    [105] Kohonen T. Self-Organized Formation of Topologically Correct Feature Maps [J]. Biological Cybernetics, 1982, 43(1): 59-69.
    [106] Ehsani A H, Quiel F. Application of Self Organizing Map and SRTM data to characterize yardangs in the Lut desert, Iran[J]. Remote Sensing of Environment [J]. 2008, 112(7): 3284–3294.
    [107] Wu S, Li J, Huang G H. A study on DEM-derived primary topographic attributes for hydrologic applications: Sensitivity to elevation data resolution [J]. Applied Geography, 2008, 28(3): 210–223.
    [108] Liang Liheng, Li Tonglin, Xing Lixin; et al. Study on digital geomorphologic parameterization and classification[C].2011 International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2011, 2011, 1647-1651.
    [109] Liang Liheng, Li Tonglin, Xing Lixin, et al. Study on geomorphologic spatial information mining and application [J]. Advanced Building Materials, 2011, 250-253, 1236-1242.Florinsky I V. Quantitative topographic method of fault morphology recognition [J]. Geomorphology, 1996, 16(2): 103-119.
    [110] Sesnie S E, Gessler P E, Finegan B, et al. Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments [J]. Remote Sensing of Environment, 2008, 112(5): 2145–2159.
    [111] Chartin C, Bourennane H, Salvador-Blanes S, et al., Classification and mapping of anthropogenic landforms on cultivated hillslopes using DEMs and soil thickness data—Example from the SW Parisian Basin, France [J]. Geomorphology, 2011. doi:10.1016/j.geomorph.2011.07.020.
    [112] Ho L T K, Umitsu M. Micro-landform classification and flood hazard assessment of the Thu Bon alluvial plain, central Vietnam via an integrated method utilizing remotely sensed data [J]. Applied Geography, 2011, 31(3): 1082-1093.
    [113] Salcher B C, Hinsch R, Wagreich M. High-resolution mapping of glacial landforms in the North Alpine Foreland, Austria [J]. Geomorphology, 2010, 122 (3-4) 283–293.
    [114] Iwahashia J, Watanabe S, Furuya T. Landform analysis of slope movements using DEM in Higashikubiki area, Japan [J]. Computers & Geosciences, 2001, 27 7): 851–865.
    [115] Van Dam R L. Landform characterization using geophysics—Recent advances, applications, and emerging tools [J]. Geomorphology, 2010. doi:10.1016/j.geomorph.2010.09.005
    [116] Frankl A, Nyssen J, Calvet M, et al. Use of Digital Elevation Models to understand and map glacial landforms—The case of the Canigou Massif (Eastern Pyrenees, France) [J]. Geomorphology, 2010,115(1-2): 78–89
    [117] CarréF, McBratney A B. Digital terron mapping [J]. Geoderma, 2005,128 (3-4) 340– 353.
    [118] Minár J. Evans I S. Elementary forms for land surface segmentation: The theoretical basis of terrain analysis and geomorphological mapping [J]. Geomorphology, 2008, 95(3-4): 236–259.
    [119] Gonga-Saholiariliva N, Gunnell Y, Harbor D,et al. An automated method for producing synoptic regional maps of river gradient variation: Procedure, accuracy tests, and comparison with other knickpoint mapping methods [J]. Geomorphology, 2011, 134(3-4): 394–407.
    [120] Bishop M P, James L A, Shroder Jr J F, et al., Geospatial technologies and digital geomorphological mapping: Concepts, issues and research, Geomorphology, 2011. doi:10.1016/j.geomorph.2011.06.027.
    [121] Stevenson J A, Sun Xian-fang, Mitchell N C. Despeckling SRTM and other topographic data with a denoising algorithm [J]. Geomorphology, 2010, 114(3): 238-252.
    [122] MacMillan R A, Jones R K, McNabb D H. Defining a hierarchy of spatial entities for environmental analysis and modeling using digital elevation models (DEMs) [J]. Computers, Environment and Urban Systems, 2004, 28(3): 175-200.
    [123] Sweeney M R, McDonald E V, Etyemezian V. Quantifying dust emissions from desert landforms, eastern Mojave Desert, USA [J]. Geomorphology, 2011. doi:10.1016/j.geomorph.2011.07.022.
    [124] Dill H G, Ludwig R-R. Geomorphological-sedimentological studies of landform types and modern placer deposits in the savanna (Southern Malawi) [J]. Ore Geology Reviews, 2008, 33 (3-4): 411–434.
    [125] Carranza E J M, Wibowo H, Barritt S D, et al. Spatial data analysis and integration for regional-scale geothermal potential mapping, West Java, Indonesia [J]. Geothermics, 2008, 37(3): 267–299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700