用户名: 密码: 验证码:
海上地震数据多缆采集与记录系统设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,石油和天然气是不可再生资源,是重要的战略物资。现在中国对海外石油的依存度已经超过了50%,这已经威胁到国家的战略安全。由于我国地质条件较为复杂,石油和天然气勘探程度低,我国的石油储采比仅为14:1,远低于世界平均水平40:1。现在中国的陆上油汽勘探已经进入了中期,海上和深海却蕴藏丰富油气资源,如今勘探海上油气资源已经变得尤为重要和紧迫。
     海上地地震数据采集与记录系统是海洋石油勘探最为核心的装备,具体系统指标决定了勘探能力,也就决定了它在海洋物探采集装备方面的国际竞争力。因此,研发具有自主知识产权的海上地震数据采集与记录系统,是增强中国国力竞争、技术竞争、人才竞争和市场竞争等方面的综合需要。然而。长期以来在石油勘探探仪器方面,尤其是海洋石油地震勘探设备研发方面,我国一直处于落后的状态,目前国内采用的陆上和海上勘探仪器基本全部都是进口的,这严重制约了我国石油地震勘探行业和石油工业的健康发展。此外,计算机技术、网络通信技术、电子信息技术和材料科学技术等领域日新月易的进步,给我们提供了跨越式发展地震勘探仪器的良好机遇。
     根据以上背景,2001年,“863”国家高科技研究计划就立项开始研究具有自主知识产权的海上油藏勘探设备。从2002年10月至2010年12月,中国科学技术大学与中海油田服务有限公司双方合作,承担了多项国家“863”科研项目。其中,“时移地震采集关键设备研制”项目中,完成时移地震数据采集与记录系统的调研、样机设计和海洋实验,使用压电陶瓷检波器,采用高密度的单点检波器,用先进电子技术构成高性能价格比的系统。在“高精度地震拖缆采集系统工程化样机研制”项目中,研制出国内首套具有自主知识产权的“海亮”高精度海上地震采集系统,研制过程历尽原理样机和工程样机两个过程,并于2009年到2011年分别在渤海和南海开展长期的海上实际作业活动,以验证该系统的整体性能和可靠性。在多年的研发实验过程中,我们认识到在地震仪器开发中,除了单纯的电子设备和用户界面之外,还有很多重要因素。为了能更好地、更主动地设计勘探设备,而不盲目地设计系统和追求高的性能指标,同时能够与国际大型海上地震勘探仪器相比具有竞争力,需要从设计方法上对海上地震数据采集与记录系统的设计进行分析,把目前最新的相关实用技术引入到仪器设计中,为具体仪器设计提供方法基础和设计方案,确立了“海上地震数据多缆采集与记录系统设计研究”的博士研究课题。
     本文首先根据勘探地震原理和海上地震数据采集技术,归纳和总结出海上地震数据采集与记录系统的系统组成、技术特点和作业特点。然后根据这些特点建立出海上地震数据采集与记录系统的逻辑模型,这个模型主要由水下地震数据采集、水下地震数据传输、船载室内数据处理以及控制记录系统组成,这四个子系统共同构成一个海上地震数据采集与记录系统的四层逻辑模型。接下来分别对这四个子系统的设计细节进行描述。最后给出依据该设计方法而设计成功的两个海上地震数据多缆采集与记录系统的设计实例。
     本论文分为七章,各章的主要内容如下:
     第1章:绪论
     本章首先介绍地震勘探技术的基本原理和海上地震勘探的工作方法和步骤,归纳和总结出高分辨三维地震勘探对地震勘探仪器的基本要求,接着叙述海上地震勘探仪器的发展现状,最后给出本论文的课题意义和主要研究内容。
     第2章:海上地震数据采集技术
     本章首先分析了海上地震地质条件,根据海上地震勘探工作的方法特点,分别从震源、导航定位和地震数据接收系统三个方面(地震因素)论述海上地震勘探技术。
     第3章:海上地震数据多缆采集与记录系统设计概论
     地震数据获取系统的设计应该采用适当的技术,满足石油勘探的需要,体现地球物理的前沿进展,而不是单纯地追求最新技术和最高指标。本章通过论述三维地震勘探工作的必要性和海上实现三维地震勘探的数据获取系统设计方法,引出海上地震数据多缆采集与记录系统设计,并给出了系统设计的一些基本指标要求及其所带来的技术难点
     第四章:水下采集与传输系统设计
     水下地震数据采集子系统负责将人工产生的地震反射波模拟信号转换成数字信号,包括检波器、前端模拟预处理电路和数字化处理电路。水下地震数据采集子系统是海上地震数据采集与记录系统的最前端模拟处理部分,它决定了系统的一些关键指标,比如谐波失真、动态范围和增益等。水下采集子系统部分主要描述了其各个组成部分的实现技术细节以及根据勘探目标而提出的指标要求。水下地震数据传输子系统采用全数字信号的传输方式,提高了数据传输距离和传输速率的限制,从而使得大覆盖面积的三维地震勘探成为可能。但当道数超多时,对水下数据传输子系统的设计提出了具体要求,主要包括传输系统拓扑结构和传输实现方式。水下数据传输子系统部分重点描述一种具有二级流水线拓扑结构的数据传输子系统以及电传输和光传输这两种传输方式。
     第五章:多缆系统的室内控制与记录系统设计
     多缆系统的室内控制与记录系统是海上地震数据采集与记录系统的船载部分,完成地震数据的实时数据传输、接收、处理与记录,以及实现对整个采集系统的整体控制功能和采集过程中的实时监控功能。本章以海上四缆和十六缆地震数据获取系统来讨论处理平台的设计和实现。
     第六章:海上地震数据多缆采集与记录系统设计实例
     本章描述了两个地震数据获取系统的设计实例:四缆地震数据采集与系统设计和一种基于四缆子系统为单元扩展的十六缆记录系统设计
     第七章:总结与展望
     本章总结了本人研究过程中取得的创新和进展,并展望了海上地震数据获取系统的未来发展方向,以及将来需要进行的工作。
It is well-known that the oil and natural gas are non-renewable which makes them important strategic resources. The increasing dependence of china on foreign oil production, which is over50%, has threatened our national security. However, due to the complex geological conditions, the oil and natural gas exploration level remains low. China's reserve-production ratio is merely14:1which is far below the world average level of40:1. Nowadays, china onshore oil and gas exploration has reached to the middle stage, this make it an urgent task to exploit the rich offshore oil resources that were buried abundantly in deep sea.
     The Marine Seismic Data Acquisition and Recording System is believed to be the core equipment in offshore oil exploration. The specific system indicator determines not only its exploration capability but also its international competitiveness in the marine exploration. Therefore, developing our marine seismic data acquisition and recording system with independent intellectual property rights becomes the comprehensive requirements in terms of enhancing china's national competition, technology competition, talent and market competition. Even though China has been lagged behind in the research and development of marine oil seismic exploration equipment for a long time, majority of our current domestic onshore and offshore equipments are imported, which has been seriously hampered the healthy development of our oil seismic exploration and oil industry. The rapid development in computer technology, network communication, electronic and information technology, along with material science, has provided us with excellent opportunity enabling us to achieve a leap in developing our seismic exploration equipments.
     In according with the above mentioned background,'863', the national high-tech research program launched research plans in2001aim to develop offshore oil reservoir exploration equipment with Chinese self-owned intellectual property rights. From10/2001to12/2010, under close collaboration with the China Oilfield Services Limited, China Science and Technology University participated in several'863' research projects. The first project is to develop the'Time-lapse marine Seismic Data Acquisition and Recording System (TMSDARS)'. In this work, we successfully realized the time-lapse seismic data acquisition and recording system adjustment, prototype design and marine experiments by using the piezoelectric ceramic detector and high density single-point detector. This system is proved to be low in cost while having high performance. The second project is the development of High-precision Deep Marine Seismic Data Acquisition System. With great effort we have developed the national first'sea bright'high-precision marine seismic acquisition system with dependent intellectual property rights. This development process went through two stages including the sample prototype and engineering prototype. Other than this, the overall performance and reliability of the system is further tested and verified with the long term practical on-sea work undertaken in Bo Hai and South Sea respectively between2009and2010. In this development process, it was aware that there are some important factors, apart from the simple electronic device and user interface, needed to consider based on our years of research and development experiences. In order to achieve the goal of designing better exploration system being competitive to the advanced large scale international marine exploration system, rather than merely blindly concentrated on pursuing high performance, it is necessary to analyze the system design concept so as to introduce the up to date applicable technology to the equipment design, this, hence, enables us to establish design foundation and scheme for specific instrument development. As a result, I setup the Research and Design on Marine Multi-Streamer Seismic Data Acquisition and Recording System (MMSDARS) as my Doctor's thesis project.
     In this article, we first summarized the systematic composition of the marine seismic data acquisition and recording system, and its technology and operation characteristic according to the seismic exploration principle and offshore seismic acquisition technology. We then came up with the logic model of marine seismic data acquisition and recording system. This model consists the underwater seismic data acquisition subsystem and transmission subsystem, shipboard indoor data controlling subsystem and recording subsystem. These four subsystems work together to acts as four-layer logic model for seismic data acquisition and processing. We will describe in details these four subsystems separately in the following chapters. In the end of the article, we present the two examples of marine seismic multi-cable data acquisition and recording system designed according to the above introduced methods.
     This thesis is made up of seven chapters; the abstract of each chapter is introduced as followings:
     Chapter1Introduction
     Chapter Ⅰ begins with the introduction of the principle of seismic exploration, along with the methods and procedures undertaken in the marine seismic exploration to summarize the equipment required by the3D high resolution seismic exploration. This is followed by the description of the history and development prospective of seismic exploration equipment. In the end, the importance of this research project and content is presented.
     Chapter2Technology of marine seismic exploration In this chapter, we will analyze the geological condition of marine seismic and introduce systematically the technology related to seismic exploration in terms of the sources, GPS and data collecting.
     Chapter3Brief Description of MMSDARS Design
     In this chapter, we present the necessity of carrying out3D seismic exploration and relevant design scheme for achieving this goal. We think the design of MMSDARS should target to meet the need of oil exploration and development of physical geography with the help of proper technologies rather than focusing on the pursuit of new technologies and high performances. This model is the basic subject of discussion for the continued chapters and is regarded as guidline for practical system design. Finally, some difficult point came crossed in the design process are put forward along with the basic index requirement for system design.
     Chapter4Design of Acquisition and Transmission System (ATS)
     This chapter introduces the front-end seismic acquisition sub-system that converts analog seismic signal to digital signals and the seismic data transmission sub-system that transfers digital data from data acquisition modules to indoor recording system. The acquisition sub-system is composed of sensors, analog pre-processing and digital processing circuits. It is the choke point and restricts the key performances of the ATS, such as dynamic range and total harmonic distortion. The transmission sub-system has a multi-level architecture and uses topologies of pipeline, which can enhance limits of the data transmission distance and speed, hence, enabling the feasibility of large coverage area3D seismic exploration. Additionally, the design plan of the system synchronization and cables power supply are also presented.
     Chapter5Design of Recording and Controlling System This chapter discussed in details the design scheme and realization of the multi-cable indoor high-speed recording and controlling system in terms of the in-time data transmission, receiving, processing and recording, in addition to the in-time monitor function regarding the overall system control and data acquisition process. The design scheme composed of two aspects including system hardware design and software design on three workstations. In the end of this chapter mass data record and record formats of seismic data on tape and RAID is also introduced.
     Chapter6:MMSDARS Design Examples This chapter describes two design examples of MMSDARS. One has4streamer cables and another has16streamer cables. The former example is actual system and has been tested and accepted by related departments. The latter one is still an experimental prototype and has not been given sea onfield testing.
     Chapter7:Conclusions and Outlook This chapter summarizes the innovation and progress achieved in the development of MMSDARS and provides insights into the future development prospective of the marine seismic data acquisition sytem. Some meaningful future work is also pointed out in end of the chapter.
引文
蒋有录,石油天然气地质与勘探[M],北京:石油工业出版社,2006.
    阮福明,时移地震中高精度数据采集和大容量记录系统的研究[D],合肥:中国科学技术大学,2005.
    毛宁波,海洋石油地震勘探[M],武汉:湖北科学技术出版社,2004.
    云美厚,地震子波频率浅析[J],石油物探,2005,44(6):578-581
    大港油田科技丛书编委会,地震勘探资料采集技术[M],北京:石油工业出版社,1999.
    杨晓军,高速时移地震数据采集系统的研究[D],合肥:中国科学技术大学,2003.
    陆基孟,地震勘探原理(上册)[M],北京:中国石油大学出版社,2006.
    王云峰,刘卫华.海上高分辨率采集[J]中国造船2003 44(z1)
    牛华伟,刘金水.大面积三维地震勘探技术及其在东海的应用[C],东海陆架盆地油气资源勘探论文集,2002.
    中海油海上地震数据采集服务,2010[EB/OL]http://www.cosl.com.cn/gsyw/sdyw/ftkcfw/wtcj/index.shtml
    谢胜文,姜亮.海上多源多缆三维地震采集技术[C],东海陆架盆地油气资源勘探论文集2002.
    明治良,贺新蔚等.苏里格地区低渗透砂岩气藏多波地震勘探技术及应用[J],中国石油勘探2011,16(5):103-110
    王喜双,谢文导,邓志文.高密度空间采样技术地震技术发展与展望[J],中国石油勘探2007,12(1):49-53
    Nick Moldoveanu, etc地震技术向四维发展[C],石油物探译丛1996
    Helgerud,M.B. etc.4D in the deepwater Gulf of Mexico:Hoover, Madison, and Marshall fields[C], Leading Edge,2011,Vol30(9):1008-1018
    James Martin, etc. Acquisition of marine point receiver seismic data with a towed streamer[C]. SEG 2000
    Jose Camara Alfaro,etc. Reducing Exploration Risk[EB/OL] www.slb-sis.com.cn/toc/2007/2007-spring-3.pdf
    何汉漪.海上高分辨率地震技术及应用[M],北京:地质出版社,2001.
    朱书阶.气枪震源子波特征及应用研究[J],勘探地球物理进展,2008,,31(4):265-269
    Phil Christie, David Nichols, etc提高地震数据质量的标准[M],油田新技术,2001
    王云峰,刘卫华.海上高分辨率采集[J],中国造船,2003,44(z1)
    马在田.三维地震勘探方法[M],北京:石油工业出版社,2003.
    曹平.勘探地震数据获取系统设计[D],合肥,中国科学技术大学,2007.
    王立明,罗文造,胡雅杰等.南海东北部海域环境因素对海洋地震勘探作业的影响与分析[J],气象水文海洋仪器,2010,27(1):38-42
    罗文造,韦成龙等.海上地震勘探主要采集参数的选取与验证——以南海北部某调查区为例[J],热带海洋学报,2009(4):93-101
    马灵,杨俊峰等,高精度地震拖缆采集系统中水下拖缆电源供电系统分析[J],中国科学技术大学学报,2012(待录用)
    范坤泰.压电陶瓷基本知识[M].济南:山东大学信息学院出版社,2005
    袁子龙,狄帮让,肖忠祥.地震勘探仪器原理[M],北京:石油工业出版社,2005
    袁子龙.层状吸收介质地震反射参数的计算.大庆石油学院学报.2005,29(3):4-9
    马灵,FCI板硬件详细设计[R],中国科学技术大学快电子学实验室,2010
    王东旅,传输板硬件详细设计文档[R],中国科学技术大学快电子学实验室,2009
    宋克柱,四缆地震数据采集与记录系统详细设计方案[R],中国科学技术大学快电子学实验室,2011
    胡婷婷.海上地震数据获取系统记录软件设计与实现[J].计算机工程,2009,35(20):
    宋克柱,四缆采集系统整机联调实验报告[R],中国科学技术大学快电子学实验室,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700