用户名: 密码: 验证码:
竹取物在食品品质改良及风险控制中的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国素有“竹子王国”之称,竹类资源丰富,竹林面积广阔,竹文化源远流长,来自竹林的众多产品具有悠久的食用和药用历史。竹取物(Extract of Bamboo)是指运用中药现代化技术和手段,从竹子不同部位获得的具有多种生理和药理活性的植物次生代谢产物(又称竹子化学素),包括竹叶黄酮、竹叶抗氧化物、竹茹三萜、竹笋甾醇、竹笋ACE抑制肽、竹子多糖等等。
     竹叶抗氧化物(Antioxidant of Bamboo Leaves, AOB),取自刚竹属(Phyllostachys Sieb.et Zucc.)竹叶的酚性部位,于2004年被批准列入《中华人民共和国食品添加剂使用卫生标准》(GB2760-2011)。有效成分主要为黄酮和酚酸类化合物,除了具有良好的抗汕脂氧化性能外,同时具有卓越的抑制热加工食品中内源性化学污染物(丙烯酰胺,俗称丙毒)形成的能力。
     竹青素(Green Bamboo Extract, GBE),以刚竹属竹子为原料,采用专利技术萃取竹子不同部分的有效成分,集竹叶多酚、竹茹多糖和竹笋多肽于一体,是一种生物抗氧化剂、脂代谢调节剂和免疫功能增强剂,内含丰富的植物次生代谢产物,主要包括黄酮、酚酸、多糖、三萜、内酯、蒽醌、氨基酸、多肽以及矿质元素等,具有作为天然物饲料添加剂研究开发和牛产应用的巨大潜力。
     本学位论文重点研究:1)AOB同时作为食品抗氧化剂和丙烯酰胺抑制剂在曲奇(种高油、高糖、高蛋白的酥性饼十)加工中的应用;2)GBE作为天然物饲料添加剂对养殖大黄鱼食用品质的改善和食用安全性的提高,以期为竹取物在食品和饲料行业的应用提供理论依据和实践指导。现将主要研究成果归纳如下:
     1、总黄酮含量测定是竹取物制剂质量控制的关键点之一。硝酸铝-亚硝酸钠可见分光光度法是目前用于测定植物提取物及其制品中总黄酮含量的最常用方法,通常以芦丁作为标准品,在510nm波长下进行测定。由于比色分析的十扰因素多,测定误差大,同时,竹叶及其提取物中基本上不含芦丁,故采用传统的总黄酮测定方法(硝酸铝-亚硝酸钠可见分光光度法)来标化竹叶提取物的质量存在一定的缺陷。本文首次建立了以异荭草苷(竹叶中最主要的一种黄酮类化合物)为标准品的紫外分光光度法,并与传统方法进行比较。利用聚酰胺吸附-解析净化处理竹叶提取物试样后,选择在340nm的紫外波长下、以异荭草苷作为标准品直接进行测定。方法学论证显示,该方法简捷、准确、灵敏度高、结果可靠,比传统硝酸铝-亚硝酸钠可见分光光度法更适用于竹叶提取物及其相关产品中总黄酮含量的测定。
     2、利用正交试验优化了微波提取竹叶总黄酮的工艺参数。通过极差分析确定了对黄酮提取率影响较大的因素依次为:乙醇浓度>微波功率>料液比>微波处理时间;方差分析显示,乙醇浓度、料液比和微波功率对黄酮提取率的影响极显著(p<0.01),微波处理时间的影响显著(p<0.05)。采用优化后的工艺参数(提取液乙醇浓度12.5%,料液比1:12,微波处理时间4.5mmin,微波功率900W),竹叶总黄酮的提取率为83.23%。研究表明,对比传统的热回流工艺,微波提取竹叶黄酮的效率明显提升,溶剂消耗少,加热时间短,有利于节能降耗、保护环境、提高效益,为规模化生产提供技术支持。
     3、将食品添加剂AOB应用于曲奇加工,可有效降低制品中丙烯酰胺的含量。结合体外抗氧化体系(DPPH和ABTS体系)评价发现,不同加工方法和制剂精度的AOB的抗氧化活性与其总黄酮含量成显著正相关。采用大孔树脂吸附-解析得到的AOB制剂,虽然总黄酮含量和抗氧化活性都高于采用有机溶剂液-液萃取精制得到的AOB制剂,但其对曲奇中丙稀酰胺形成的抑制效果却明显低于后者。研究发现,热加工食品中丙烯酰胺的抑制效果并非单纯依赖于AOB制剂的总黄酮含量,也不能仅用抗氧化能力的强弱来推断,AOB中所含的其他有效成分物质(如酚酸等)也是丙烯酰胺抑制的重要因素。用DPPH法,对曲奇进行抗氧化性能测定,发现添加AOB抑制丙烯酰胺形成的同时,产品体系的抗氧化性也随之降低,表明AOB在一定程度上对美拉德反应产生了影响,可能导致具有抗氧化活性的类黑精物质形成减少。研究比较了五种不同的食.品品抗氧化剂对曲奇丙烯酰胺形成的抑制效果,同时结合产品的感官评定,发现配料中添加0.2g/kg的AOB或0.1g/kg VE的均能取得理想效果,抑制率分别可达63.9%和71.2%,且能有效保持曲奇的感官品质。表明,AOB作为抗氧化和丙毒抑制的多功能食品添加剂在焙烤食品中具有广阔的应用前景。
     4、海水网箱养殖试验表明,将GBE应用于大黄鱼的人工养殖,可激活大黄鱼的脂质代谢,增强鱼体免疫力和抗应激能力,显著改善品质,并提高食用安全性。采用添加0.3%GBE的新型生态环保饲料(大黄鱼圈价膨化颗粒饲料,记作0#料)饲喂大黄鱼,与传统冰鲜喂养的大黄鱼及野生大黄鱼进行比较分析。饲喂6个月后,试验组大黄鱼的肝脏、腹肌、背肌中的脂肪含量均较冰鲜对照组显著减少,肝体比降低,脂肪肝症状缓解;鱼体脂肪酸组成中多不饱和脂肪酸(特别是亚汕酸、亚麻酸)含量增加。感官评价试验表明,试验组鱼品在风味、肉质、口感上与野生大黄鱼相似,相比传统冰鲜喂养的大黄鱼,品质大幅度提高。电镜观察表明,试验组大黄鱼肌肉中脂肪明显减少,胶原和线粒体丰富,肌丝条纹更接近野生大黄鱼。并且,用强化GBE的全价饲料代替冰鲜喂养,大大提高了养殖对象的免疫能力,增强了抗病性。同时,分析检测还表明,添加GBE的试验组成鱼体内积累的化学污染物(二噁英、多氯联苯和多溴联苯)的含量相比野生大黄鱼有所降低,食用安全性提高。
     5、在上述探索性试验的基础上,进一步优化GBE中来自竹子不同部位的植物化学素(竹叶提取物、竹茹提取物和竹笋提取物)的配比,加工成三种GBE添加量均为0.3%的大黄鱼全价膨化颗粒饲料,分别记作1“料、2“料和3#料,同时设置0.1%虾青素含量的阳性对照组、传统冰鲜喂养对照组及原GBE配方的0#料组,同步进行标准海水网箱的养殖对比试验。结果表明,1#和2“料在降低肌肉脂肪和肝脏脂肪含量方面均优于0#料,综合养殖效果接近甚至优于虾青素阳性对照。检测大黄鱼肝脏中脂联素的水平,表明虾青素组、1“料和2#料组饲养的大黄鱼肝脏脂联素水平升高,表明脂质代谢能力增强。同时,强化GBE的大黄鱼全价配合饲料能有效提升大黄鱼体内抗氧化酶(CAT和SOD)的活性,并显著降低脂质过氧化产物(MDA)的水平,减轻肝脏损伤。感官评价试验证明,1#和2“试验组鱼肉的风味和口感极大地超越了传统冰鲜喂养的大黄鱼。鱼肉氨基酸组成分析结果显示,食用品质的提升与鱼肉中呈味氨基酸总量的增加有关。综合分析表明,含0.3%GBE2#试验料在增加大黄鱼的氨基酸总量、必需氨基酸和呈味氨基酸含量、多不饱和脂肪酸(尤其是DHA和EPA)含量以及UFA/SFA指数等方面的作用可与添加0.1%虾青素的阳性对照媲美。表明GBE作为一种天然物饲料添加剂在高端水产品养殖业中具有广阔的应用前景。
China is known as'the kingdom of bamboo'. It is rich in not only the area of bamboo forest, but also the bamboo culture with long history. There are a wide range of edible and medicinal products from bamboo that have been used for a long history. Bamboo extract is a series of plant metabolites, produced from different parts of bamboo via modern technology, including flavone of bamboo leaves, antioxidant of bamboo leaves, triterpenoid of bamboo shavings, sterol of bamboo shoot, peptide of bamboo shoot, bamboo polysaccharide, etc.
     Antioxidant of bamboo leaves (AOB), is produced from the phenol composition of Phyllostachys Sieb. Et Zucc., in which the flavone of bamboo leaves is the main ingredient, and also approved as food antioxidants in Chinese national standards (GB-2760). AOB, with the flavonoids and phenol acids as main compounds, could not only inhibit oil oxidation, but also mitigate the formation of endogenous chemical pollutants (acrylamide) in the heating food producing.
     Green bamboo extract (GBE), extracted from different parts of bamboo by patent technology, including the phenol acids of bamboo leaves, polysaccharide of bamboo shavings and peptide of bamboo shoot. It is a kind of excellent biological antioxidants, lipid metabolism regulator and immune function reinforcing agent, rich in plant secondary metabolites, which mainly included flavones, phenolic acid, polysaccharide, terpene lactones, anthraquinone, amino acids, polypeptides, mineral element and so on. GBE has the huge potential of research and application as feed additive.
     The key research contents:1) AOB was used in cookie (a kind of crisp biscuit with high level of oil, sugar, protein) processing as a food antioxidant and acrylamide inhibitor;2) GBE was used in cultured large yellow croaker as a feed additive to improve the edible quality and safety. The main research results were summarized as follows:
     1) Determination of total flavonoid content is the key point of bamboo extract quality control. Researchers found that bamboo extract contains a considerable amount of poly-hydroxyl phenolic acid, which also could chelate with aluminium ion, affecting the chromogenic reaction results; In addition, bamboo extract contains no rutin, but isoorientin as its characteristic flavonoid. These two reasons made the Al (NO3)3-NaNO2colorimetric method using rutin as standard not suitable for the total flavonoids determination of bamboo extract. This research established the ultraviolet spectrophotometric method with isoorientin as the standard in detection of total flavonoids of bamboo extract for the first time. After polyamide purification, bamboo extract could be directly detected at340nm with isoorientin as the standard, befitting the rapid detection in the bamboo extract production. This method was more suitable for the total flavonoids determination of bamboo extract and subsequent products than the Al (NO3)3-NaNO2colorimetric method, for its high reliability, accuracy and sensitivity.
     2) We optimized the microwave extraction technology of total flavonoids in bamboo leaves by orthogonal experiment. The influence of four factors on total flavonoids yield was sequenced by range analysis as follows:ethanol concentration> microwave power> liquid-solid ratio> microwave irradiation time. In the variance analysis, the ethanol concentration, microwave power and liquid-solid ratio affected the flavonoid yield very significantly (p<0.0\), while microwave irradiation time performed significantly (p<0.05). In the condition of ethanol concentration (12.5%), solid-liquid ratio (1:12), microwave irradiation time (4.5min) and microwave power (900W), the flavonoid yield could reach83.23%. Compared to the traditional heat reflux extraction, microwave technology could be more effective in the flavonoid extraction of bamboo leaves, with lower consumption of organic solvent, less heating time. This technology was an environmentally friendly and low-energy consumesd method, which would be more suitable for the large-scale production of bamboo leaves extract.
     3) Antioxidant of bamboo leaves (AOB), a legal food additive, used in cookies processing, could reduce the acrylamide level effectively. Tested in the antioxidant evaluation in-vitro system, antioxidant activity of AOB was found positively correlated with the content of flavonoid. The AOB prepared by solution adsorption method performed better than the AOB purificated by macro porous resin in acrylamide inhibition, although the latter had higher flavonoid content and stronger antioxidant activity. According to the composition analysis, the acrylamide inhibition ability of food additive couldn't be supposed to relate with flavonoid content and the antioxidant activity, which maybe actually relate with the other substances (such as phenolic acid, etc.) in the antioxidant. The antioxidant activity of cookie system decreased, along with the acrylamide inhibition by exogenous AOB. It indicated that AOB could influence the Millard reaction processing at a certain degree, leading to the reduction of melanoidins, which contributed obviously to the antioxidant activity. In comparison of five antioxidants in the inhibition of acrylamide formation and sensory evaluation, AOB (0.2g/kg) and VE (0.1g/kg) mitigated the formation of acrylamide by63.9%and71.2%, respectively, with the achievement of the balance between acrylamide reduction and sensory acceptance. This work showed the potential effectiveness of AOB in practical food system for decreasing acrylamide formation.
     4) Green bamboo extract (GBE) was used in the cultivation of large yellow croaker, to activate its lipid metabolism, strengthen the body immunity and anti-stress ability, improve the quality and ameliorate the edible safety. The large yellow croaker fed by the new environmental feed added with0.3%green bamboo extract (0#feed), was compared with the control group and the wild ones. The results indicated that there is significant decrease in the fat content in the liver, abdominal muscle and back muscle of test group, after6-month feeding. The fatty liver disease symptom was improved obviously, along with the reduction of liver-body ratio. Moreover, the polyunsaturated fatty acids (particularly linoleic acid and linolenic acid) level in the fish meat increased, which was very important to the nutrition value and fish immunity. Sensory evaluation, including the flavor, meat quality and taste, showed that the similarity between0#group and wild ones was close to80%, with an obvious sensory improvement compared to control group. Transmission electron microscope results showed that the fish muscle from test group, whose muscle texture was closer to the wild group, was rich in collagen and mitochondria, but low in fat. In addition, large yellow croakers fed by GBE had built up greater immunity, and stronger disease resistance. In the measurement by a gas chromatograph coupled to a high resolution mass spectrometer, persistent organic pollutants level (including polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, and polybrominated diphenyl ethers) in fish from GBE group was lower than in wild group, which could be considered as a key factor to the edible safety.
     5) Based on the previous experiments, GBE was optimized by adjusting the ratio of bamboo leaves extract, bamboo shavings extract and bamboo shoots extract as three formulas(1#,2#,3#), which was then added in the feed by0.3%, compared with control group,0.1%astaxanthin positive control group and0#group in the sea-cages breeding of large yellow croaker. The results showed that1#and2#formulas performed better in reducing muscle fat and liver fat content than0#, close to and even better than the effect of astaxanthin. In measurement of adiponectin level, fish from1#and2#group activated in lipid metabolism, for the higher level of adiponectin, which indicated that the way of promoting lipid metabolism by these formulas was via regulating lipid metabolism related hormone. Feed added by GBE could effectively regulated the CAT and SOD activity, which could be considered as an important factor to enhance the body against free radicals, especially the degradation products of polyunsaturated fatty acid peroxidation (MDA, etc.), avoiding the liver damage. It was possible that the composition of flavour amino acids was the major cause of sensory improvement of GBE groups, according to the results of sensory evaluation and amino acid determination. Comprehensively, the feed added with0.3%GBE2#could increase the level of total amino acids, essential amino acids, flavour amino acids, polyunsaturated fatty acid (especially DHA and EPA) and UFA/SFA index, etc. similar to the effect of0.1%astaxanthin. It showed that GBE could be used as a natural feed additive in high-end aquatic breeding.
引文
Ako H., Tamaru C.S. Are feeds for food fish practical for aquarium fish? Intl Aqua Feeds,1999, 2:30-36.
    Azzini A., Leme P.R., Carvalho C.R.L. Mineral and bromatologic characterization of bamboo shoot residues as animal food. Bragantia,1995,54 (2):257-261.
    Becalski A., Lau B.P.Y., Lewis D., Seaman S.. Acrylamide in foods:Occurrence and sources. Association of Official Analytical Chemists (AOAC) Annual Meeting, Los Angeles, CA. 2002,22-26,.
    Bell J.G., Mc.Evoy J., Tocher D.R., Sargent J.R.. Depletion of a-tocopherol and astaxanthin in Atlantic salmon (Salmo salar) affects autoxidative defense and fatty acid metabolism. J Nutr.,2000,130:1800-1808.
    Berntssen H.G., Lundebye A.K., Torstensen B.E. Reducing the levels of dioxins and dioxin-like PCBs in farmed Atlantic salmon by substitution of fish oil with vegetable oil in the feed. Aquaculture Nutrition.,2005.11:219-31.
    Bricknell I., Dalmo R.A.. The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol.,2005.19:457-72.
    Brock J.H., Harris E.D.. Handbook of Nutritionally Essential Mineral Elements. NewYork: Marcel Dekker Inc,,1997,335-356.
    Butterworth B. E., Eldridge S. R., Sprankle C. S., Working P.K., Bentley K.S., HURTT M.E. Tissue-specific genotoxic effects of acrylamide and acrylonitrile. EnViron. Mol. Mutagen., 1992,20:148-155.
    Calleman C. J., Bergmark E., Costa L.G.. Acrylamide is metabolized to glycidamide in the rat: evidence from hemoglobin adduct formation. Chem. Res. Toxicol.,1990,3:406-412.
    Chen X.H., Lin K.B., Wang X.W.. Outbreaks of an iridovius disease in maricultured large yellow croaker, larimichthys crocea(Richardson), in China. Journal of Fish Disease,2003, 26:6125-619.
    Cheng K.W., Zeng X.H., Tang Y.S., Wu J.J., Liu Z.W., Sze K.H., Chu I.K., Chen F., Wang M.F. Inhibitory mechanism of naringenin against carcinogenic acrylamide formation and nonenzymatic browning in Maillard model reactions. Chem. Res. Toxicol.,2009,22 (8): 1483-1489.
    Choubert G., Storebakken T. Digestibility of astaxant hin and cant haxanthin in rainbow trout as aff cted by dietary concent ration,feeding rate and water salinity. Annales de Zootechnie, 1996,45:445-453.
    Christiansen R.,Glette J., Lie O., Torrissen O.J., Waagbo R.. Antioxidant statis and immunity in Atlantic salmon, Salmo salar, fed semi-purified diets with and without astaxant hin supplementation. J. Fish Diseases,1995,102:333.(a)
    Christiansen R,Lie O, Torrissen O.J. Growth and survival of Atlantic salmon,Salmo salar L, fed different dietary levels of astaxanthin:First feeding fry. Aquaculture Nutrition,1995,1: 189-198.(b)
    Claeys W.L., De Vleeschouwer K., Hendrickx M.E.. Effect of amino acids on acrylamide formation and elimination kinetics. Biotechnol. Prog.,2005,21:1525-1530. (a)
    Claeys W.L., de Vleeschouwer K., Hendrickx M.E.. Kinetics of acrylamide formation and elimination during heating of an asparagine-sugar model system. J. Agric. Food Chem., 2005,53 (26):9999-10005. (b)
    Claeys W.L., de Vleeschouwer K., Hendrickx M.E.. Quantifying the formation of carcinogens during food processing:acrylamide. Trends Food Sci. Technol.,2005,16 (5):181-193. (c)
    Cook D. J., Taylor A. J. On-line MS/MS monitoring of acrylamide generation in potato- and cereal-based systems.J. Agric. Food Chem.,2005,53:8926-8933.
    Costa G.G., Churchwell M.I., Hamilton L.P., Churchwell M.I., Hamilton L.P., Von Tungeln L.S., Beland F.A., Marques M.M., Doerge D.R. DNA adduct formation from acrylamide via conversion to glycidamide in adult and neonatal mice. Chem. Res. Toxicol.,2003,16: 1328-1337.
    Dale W.S., Ann O.S., Angie T., Testino A., Friedman M.. Acrylamide effects on kinesin-related proteins of the mitotic/meiotic spindle. Toxicology and Applied Pharmacology.,2007,222: 111-121.
    Ehling S., Shibamoto T.. Correlation of acrylamide generation in thermally processed model systems of asparagine and glucose with color formation, amounts of pyrazines formed, and antioxidative properties of extracts.J. Agricul. Food Chem.,2005,53 (12): 4813-4819.
    Fernadez S., Kurppa L., Hyvonen L.. Content of acrylamide decreased in potato chips with addition of a proprietary flovoniod spice mix (Flavomare) in frying. Innovation Food Technol.,2003,17 (2):24-26.
    Flurina C.C., Ramiro D., Hanspeter N. Expression profile of human cells in culture exposed to glycidamide, a reactive metabolite of the heat-induced food carcinogen acrylamide. Toxicology.,2007,240:111-124.
    Francisco J.C., Antonio H.S., Alfredo M.. Reduction of acrylamide content of ripe olives by selected additives. Food Chem.,2010,119(1):161-166.
    Friedman M., Ed. Nutritional and Toxicological Consequences of Food Processing. Plenum Press:New York,1991,541.
    Friedman M.. Food browning and its prevention:an overview. J. Agric. Food Chem.,1996,44: 631-653.
    Friedman M.. Chemistry, biochemistry, and dietary role of potato polyphenols. A review. J. Agric. Food Chem.,1997,45:1523-1540.
    Friedman M. Chemistry, biochemistry, and safety of acrylamide. A review. J. Agric. Food Chem.,2003,51:4504-4526.
    Friedman M. Effects of food processing In Encyclopedia of Grain Science; Wrigley, C., Ed.; Elsevier/Academic Press:Oxford, U.K.,2004,328-340.
    Fruebis J., Tsao T.S., Javorschi S., Ebbets-Reed D., Erickson M.R., Yen F.T., Bihain B.E., Lodish H.F.. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA.2001,98:2005-2010.
    Fuke S., Konosu S.. Taste-active components in some foods-a review of Japanese research. Physiology & Behavior.,1991,49 (5):863-868.
    Gabriel Mourente J., Gordon B., Douglas R. Tocher. Does dietary tocopherol level affect fatty acid metabolism in fish? Fish Physiol Biochem.2007,33:269-280.
    Gerenda's J., Heuser F., Sattelmacher B.. Influence of nitrogen and potassium supply on contents of acrylamide precursors in potato tubers and on acrylamide accumulation in French fries. J. Plant Nutr.,2007,30:1499-1516.
    Gul S., Belgekurutas E., Yildiz E. Pollution correlated modifications of liver antioxidant systems and histopathology of fish (Cyprinidae) livering in Seyhan Dam Lake, Turkey. Environment International,2004,30:6052-6060.
    Guenther H., Anklam E., Wenzl T.. Acrylamide in coffee:Review of progress in analysis, formation and level reduction. Food Additives and Contaminants, Supplement 1,2007,24 (S1):60-70.
    Halford N. G., Muttucumaru N., Curtis T.Y., Parry M.A.J.. Genetic and agronomic approaches to decreasing acrylamide precursors in crop plants. Food Addit. Contam.,2007,24:26-36.
    Halliwell B.. The antioxidant paradox.,2000,355 (9210):1179-1180.
    Hashimoto K., Tanii H.. Mutagenicity of acrylamide and it analogues in Salmonella typhimurium. Mutation Research.1985.158:129-133.
    Hedegaard R.V., Granby K., Frandsen H., Frandsen H. Thygesen J., Skibsted L.H. Acrylamide in bread. Effect of prooxidants and antioxidants. Eur. Food Res. Technol.,2008,227 (2): 519-525.
    Hu C., Zhang Y., Kitts D.D.. Evaluation of antioxidant and prooxidant activities of bamboo Phyllostachys nigra var. Henonis leaf extract in Vitro. J. Agric. Food Chem.,2000,48: 3170-3176.
    Jeney G., Anderson D.P.. Enhanced immune response and protection in rainbow trout to Aeromonas salmonicida bacterin following prior immersion in immunostimulants. Fish and Shellfish Immunology,1993,3:51-58.
    Jian J.C., Wu Z.H.. Effects of traditional Chinese medicine on nonspecific immunity and disease resistance of large yellow croaker, Pseudosciaena crocea (Richardson). Aquaculture,2003,218:1-9.
    Jiao J.J., Zhang Y., Liu C.M., Liu J., Wu X.Q., Zhang Y.. Separation and purification of tricin from an antioxidant product derived from bamboo leaves. J. Agr Food Chem,2007,55: 10086-10092.
    Jiao J.J., Zhang Y., Lou D.D... Antihyperlipidemic and antihypertensive effect of a triterpenoid-rich extract from bamboo shavings and vasodilator effect of friedelin on Phenylephrine-induced vasoconstriction in thoraeic aortas of rats. Phytother Res,2007,21: 1135-1141.
    Jun M., Tkeshi F. Identification and evaluation of antioxidant activities of bamboo extracts. Forestry Studies in China,2004,16:1-5.
    Kananbala Sarangthem, Thongam Nabakumar Singh. Biosynthesis of Succulent Bamboo Shoots of Bambusa balcooa into Phytosterols and Its Biotransformation into ADD. Acta Botanica Sinica,2003,1:45-48.
    Kim C.T., Hwang E.S., Lee H. J.. Reducing acrylamide in fried snack products by adding amino acids. J. Food Sci.,2005,70 (120):C354-C358.
    Kita A., Brathen E., Knutsen S.H., Wicklund T.. Effecitive ways of decreasing acrylamide content in potato crisps during processing. J. Agric. Food Chem.,2004,52:7011-7016.
    Klaunig J. E. Acrylamide Carcinogenicity. J. Agric. Food Chem.,2008,56:5984-5988.
    Kolek E., Simko P., Simon P.. Effect of NaCl on the decrease of acrylamide content in a heat-treated model food matrix. J. Food Nutr. Res.,2006,45 (126):17-20.
    Kolek E., Simon P., Simko P.. Nonisothermal kinetics of acrylamide elimination and its acceleration by table saltsa model study. J. Food Sci.,2007,72:E341-E344.
    Kurebayashi H., Ohno Y.. Metabolism of acrylamide to glycidamide and their cytotoxicity in isolated rat hepatocytes:protective effects of GSH precursors. Arch Toxicol.,2006,80: 820-828.
    Kweon M.H., Hwang H.J., Sung H.C.. Identification and antioxidant activity of novel chlorogenic acid derivatives from Bamboo(Phyllostachys edulis). J.Agric.Food Chem., 2001,49:4646-4655.
    Laszlo Ardo, Guojun Yin, Pao Xu, Varadi Laszlo, Szigeti Gabor, Jeney Zsigmond, Jeney Galina. Chinese herbs (Astragalus membranaceus and Lonicera japonica) and boron enhance the non-specific immune response of Nile tilapia (Oreochromis niloticus) and resistance against Aeromonas hydrophila. Aquaculture,2008,275:26-33.
    Law R.J., Allchin C.R., de Boer J., Covaci A., Herzke D., Lepom P., Morris S., Tronczynski J. and de Wit C.A. Levels and trends of brominated flame retardants in the European environment. Chemosphere.,2006,64:187-208.
    Lu B.Y., Wu X.Q., Shi J.Y., Dong Y.J., Zhang Y.. Toxicology and safety of antioxidant of bamboo leaves. Part 2:Developmental toxicity test in rats with antioxidant of bamboo leaves. Food and Chemical Toxicology,2006,44:1739-1743.
    Mai Kangsen, Wan Junli, Ai Qinghui, Tan Beiping, Li Huitao, Zhang Lu. Dietary methionine requirement of large yellow croaker, Pseudosciaena crocea R.. Aquaculture,2006,253: 564-572.
    Mark F., Me. Carty. Full-spectrum antioxidant therapy featuring astaxanthin coupled with lipoprivic strategies and salsalate for management of non-alcoholic fatty liver disease. Medical Hypotheses,2011,77:550-556.
    Marco K., Karoline S., Silvia W., Dekant W., Volkel W.. Quantitation of mercapturic acids from acrylamide and glycidamide in human urine using a column switching tool with two trap columns and electrospray tandem mass spectrometry. Journal of Chromatography A,2006, 1131:58-66.
    Melanie I. B., Hermann M. B., Drexler J. A.. Excretion of mercapturic acids of acrylamide and glycidamide in human urine after single oral administration of deuterium-labelled acrylamide. Arch Toxicol,2006,80:55-61.
    Mestdagh F. J., de Meulenaer B., van Poucke C., Detavernier C., Cromphout C., van Peteghem C. Influence of oil type on the amounts of acrylamide generated in a model system and in french fries. J. Agric. Food Chem.,2005,53 (15):6170-6174.
    Mottram D. S., Wedzicha B. L., Dodson A. T. Acrylamide is formed in the Maillard reaction. Nature,2002,419:448-449.
    Mourente G., Tocher D.R., Diaz E. Relationships between antioxidants, antioxidant enzyme activities and lipid peroxidation products during early development in Dentex dentex eggs and larvae. Aquaculture,1999,179:30923-24.
    Mourente G., Diaz-Salvago E., Bell J.G., Tocher D.R.. Increased activities of hepaticant-oxidant defence enzymes in juvenile gilthead sea bream Sparus aurata L. fed dietary oxidized oil: attenuation by dietary vitamin E. Aquaculture,2002,214:343-361.
    Muir D.C.G., Yarechewski A.L.. Dietary accumulation of four chlorinated dioxin congeners by rainbow trout and fathead minnows. Environ Toxicol Chem.,1988,7227-7236.
    Mulla M.Z., Vikas R.B, Uday S.A., Rekha S.S. Effect of damaged starch on acrylamide formation in whole wheat flour based Indian traditional staples, chapattis and pooris. Food Chemistr,2010,120:805-809.
    Muttucumaru N., Halford N. G., Elmore J. S., Dodson A. T., Parry M., Shewry P. R., Mottram D. S.. Formation of high levels of acrylamide during the processing of flour derived from sulfate-deprived wheat. J. Agric. Food Chem.,2006,54:8951-8955.
    Naguib Y.M.A. Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem,2000,48:1150.
    Nakagawa K, Kang S, Park D. Inhibition by beta-carotene and astaxant hin of NADPH-dependent microsomal phospholipid peroxidation. JNutrit Sci Vitamin,1997,43: 345.
    Nakanishi K. Volatile components in boiled and raw bamboo shoots(Phyllostachys pubescens). Journal of the Japanese Society for Food Science and Technology,1996,43 (3):259-266.
    Nakano T.,Tosa M., Takeuchi M. Improvement of biochemical features in fish health by red yeast and synthetic astaxanthin. J Agric Food Chem,1995,43:1570-1573.
    Napolitano A., Morales F., Sacchi R., Fogliano V. J.. Relationship between virgin olive oil phenolic compounds and acrylamide formation in fried crisps. Agric. Food Chem.,2008, 56:2034.
    Nishikawa Y.,Minenaka Y.,Ichimura M.. Physiological and biochemical effects of carotenoid (beta-carotene and astaxanthin) on rat. Kashien Daigku Kiyo,1997,25:19.
    Ou Shiyi, Shi Jianjun, Huang Caihuan, Zhang Guangwen, Teng Jiuwei, Jiang Yue, Yang Baoru. Effect of antioxidants on elimination and formation of acrylamide in model reaction systems. Journal of Hazardous Materials,2010,182:863-868.
    Palazoglu T. K., Gokmen V. Reduction of acrylamide level in French fries by employing a temperature program during frying. J. Agric. Food Chem.,2008,56:6162-6166.
    Park Eun-Jin, Jhon Deok-Young. Effects of bamboo shoot consumption on lipid profiles and bowel function in healthy young women. Nutrition,2009,25:723-728.
    Park Eun-Jin, Jhon Deok-Young. The antioxidant, angiotensin converting enzyme inhibition activity, and phenolic compounds of bamboo shoot extracts. LWT-Food Science and Technology,2010,43:655-659.
    Parzefall W. Minireview on the toxicity of dietary acrylamide. Food Chem Toxicol.,2008, 46(4):1360-1364.
    Pascual P., Pedrajas J.R., Toribio F., Lopez-Barea J., Peinado J.. Effect of food deprivation on oxidative stress biomarkers in fish (Sparus aurata). Chem. Biol. Interact. 2003,145:191-199.
    Puppel N., Tjaden Z., Fueller F., Marko D.. DNA strand breaking capacity of acrylamide and glycidamide in mammalian cells. Mutation Research,2005,580:71-80.
    Rehulka J. Influence of astaxanthinon growth rate,condition,and some blood indices of rainbow trout. Aquaculture,2000,190:27-47.
    Polyzos S.A., Toulis K.A., Goulis D.G., Zavos C., Kountouras J.. Serum total adiponectin in nonalcoholic fatty liver disease:a systematic review and meta—analysis. Metabolism, 2011,60(3):313-326
    Rommens C.M., Ye J., Richael C., Swords K.. Improving potato storage and processing characteristics through all-native DNA transformation.J. Agric. Food Chem.,2007,54: 9882-9887.
    Rydberg P., Eriksson S., Tareke E., Karlsson P., Ehrenberg L., To"rnqvist M.. Investigations of factors that influence the acrylamide content of heated foodstuffs.J. Agric. Food Chem., 2003,51,7012-7018.
    Sega G.A., Generoso E.E., Brimer P.A.. Acrylamide exposure induces a delayed unscheduled DNA-synthesis in germ-cells of male-mice that is correlated with the temporal pattern of adduct formation in testis DNA. EnViron. Mol. Mutagen.,1990,16:137-142.
    Segerback D., Calleman C.J., Schroeder J.L., Costa L.G., Faustman E.M. Formation of N-7-(2-carbamoyl-2-hydroxyethyl)guanine in DNA of the mouse and the rat following intraperitoneal administration of [14C]acrylamide. Carcinogenesis,1995,16:1161-1165.
    Sharma Arun, Deo Ashutosh D., Riteshkumar S. Tandel, Chanu Thongam Ibemcha, Das Arabinda. Effect of Withania somnifera (L. Dunal) root as a feed additive on immunological parameters and disease resistance to Aeromonas hydrophila in Labeo rohita (Hamilton) fingerlings. Fish & Shellfish Immunology.2010,29 (3):508-512.
    Shen H.T., Ding G.Q., Han G.G., Wang X.F., Xu X.M., Han J.L., Lou X.M., Xu C.J., Cai D.L., Song Y.H., Lu W. Distribution of PCDD/Fs, PCBs, PBDEs and organochlorine residues in children's blood from Zhejiang, China. Chemosphere.2010,80:170-175.
    Sakai K., Komiya T., Katsuzaki H., Achiwa Y., Imai K., Komiya T.. Isolation of antioxidative compounds from bamboo shoots sheath. Nippon Shokuhin Kagaku Kaishi,1999,46(7): 491-493.
    Sakai M.. Current research status of fish immunostimulants. Aquaculture,1999,172:63-92.
    Simopoulos A.P. The impoaance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp BiolMed(Maywood),2008,233(6):674-688.
    Smith P.J.. Loss of gentic diversity due to fishing pressure. Fishery Research,1991,10: 309-311.
    Stadler R. H., Blank I., Varga N., Robert F., Hau J., Guy P. A., Robert M. C., Riediker S. Acrylamide from Maillard reaction products. Nature,2002,419:449-450.
    Stadler R.H., Robert F., Riediker S., Varga N., Davidek T., Devaud S., Goldmann T., Hau J., Blank I.. In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction. J. Agric. Food Chem.,2004,52:5550-5558.
    Sumner S. C., Fennell T. R., Moore T. A., Chanas B., Gonzalez F., Ghanayem B.I.. Role of cytochrome P450-2E1 in the metabolism of acrylamide and acrylonitrile in mice. Chem. Res. Toxicol.,1999,12:1110-1116.
    Swedish National Food Administration, Information about Acrylamide in Food,24 April 2002, http://www.slv.se.
    Tareke E. Identification and origin of potential background carcinogens:Endogenous isoprene and oxiranes, dietary acrylamide. Ph.D.Dissertation, Department of Environmental Chemistry, Stockholm University,2003.
    Tilson H.A.. The neurotoxicity of acrylamide:An overview. Neurotoxicol Teratol.,1981,3 (4): 445-461.
    Trenzado C., Hidalgo M.C., Gareia-Gallego M., Morales A.E., Furne M., Domezain A., Domezain J., Sanz A.. Antioxidant enzymes and lipid Peroxidation in sturgeon Acipenser naccarii and trout Oncorhynchus mykiss:A comparative study. Aquaeulture, 2006,254:758-767.
    Torrissen O.J.,Christiansen R. Requirements for carotenoids in fish diets. J. Appl. Ichthyol.,1995,11:225.
    Wilson J.H., Ruszler P.L. Long term effects of born on layer bone strength and production parameters. Br. pouh. sci.1998.39:111-115.
    Xiao L. D., Mai K. S., Ai Q.H., Xu W., Wang X. J., Zhang W. B., Liufu Z.G.. Dietary ascorbic acid requirement of cobia, Rachycentron canadum Linneaus. Aquaculture Nutrition, 2010,16 (6):582-589.
    Xu S.L.. Effects of Duzhong on cell immunization LJJ. Chinese Traditional and Herbal Drugs, 1985,16(9):15-17.
    Ye W. F.. Advance in studies on chemical ingredient and pharmacological activities of Eucom miaulmoide, liver leaves and their utility. Journal of Chemical Industry of Forest Products, 2004,38 (5):40-44.
    Yin G., Jeney G., Racz T., Pao X., Jeney Z.. Effect of two Chinese herbs (Astragalus radix and Scutellaria radix) on non-specific immune response of tilapia, Oreochromis niloticus. Aquaculture,2006,253:39-47.
    Zhang Y., Ding X.L., The Bio-antioxidative Activity of Funetional Factorsin Bmboo Leaves, in: Processing of The 3rd International Conferenee of Food Science andTecnology, Oetober 19-23,1997, Davis, U.S.A. Ed. J.R.Whitaker, Food and Nutrition Press,1998,266-271.
    Zhang Yu, Bao Bili, Lu Boyi, Ren YP, Tie XW, Zhang Y. Determination of flavone C-glucosides in antioxidant of bamboo leaves(AOB) fortified foods by reversed-phase high-performance liquid chromatography with ultraviolet diode array detection. Journal of Chromatography A,2005,1065:177-185.
    Zhang Chunxiao. Ai Qinghui, Mai Kangsen, Tan Beiping, Li Huitao, Zhang Lu. Dietary lysine requirement of large yellow croaker. Pseudosciaena crocea R.. Aquaculture,2008,283: 123-127.
    Zhang Y., Ying T. J., Zhang Y. Reduction of acrylamide and its kinetics by addition of antioxidant of bamboo leaves (AOB) and extract of green tea (EGT) in asparagine-glucose microwave heating system.J. Food Sci.,2008,73, C60-C66. (a)
    Zhang Y., Zhang Y. Effect of natural antioxidants on kinetic behavior of acrylamide formation and elimination in low-moisture asparagine-glucose model system. J. Food Eng,.2008,85: 105-115. (b)
    Zhang Yu, Jiao Jingjing, Liu Chengmei, Wu Xiaoqin, Zhang Ying. Isolation and purification of four flavone C-glycosides from antioxidant of bamboo leaves by macroporous resin column chromatography and preparative high-performance liquid chromatography, Food Chemistry.,2008,107:1326-1336.(c)
    Zeng Xiaohui, Cheng KaWing, Jiang Yue, Lin ZhiXiu, Shi JianJun, Ou ShiYi, Chen Feng, Wang Mingfu. Inhibition of acrylamide formation by vitamins in model reactions and fried potato strips. Food Chemistry,2009,116:34-39.
    陈纯馨,陈浙.竹叶叶绿素的提取及其稳定性研究.食品研究与开发,2000,(3):17-18.
    陈飞.浙江大黄鱼养殖产业化发展研究.(硕士论文),浙江海洋学院,2010.6.
    陈泉,吴立军,王军,李华.中药淡竹叶的化学成分研究.沈阳药科大学学报,2002,19(1):23-25.
    程东岩,王隶书,王海生,刘永宏.赤雹不同药用部位中总黄酮含量的测定.时珍国医国药,2010,12:3108-3109
    大黄鱼养殖,福建省科学技术厅编写,海洋出版社,2004.
    邓国艳,周仙.浅谈无公害水产养殖的现状与对策.水产科技,2005,4:25-27.
    邓胜国,邓洋元,范亚苇.紫外分光光度法测定荷叶总黄酮含量.南昌大学学报:理科版,2008,32(2):148-150.
    丁光,陈振昆,王晓霞.3种中药添加剂对草鱼增重的比较研究.水利渔业,2006,26(2):79-8.
    董华强,宁正祥,崔志新,等.微波辅助提取多穗柯嫩叶黄酮工艺研究.农业工程学报,2007,23(2):213-217.
    段青源,钟惠英,斯列钢.网箱养殖大黄鱼与天然大黄鱼营养成分的比较分析.浙江海洋学院学报(自然科学版),2000,19(2):22-24.
    傅剑云,夏勇,郑云燕,陈玉满,宋燕华.竹叶抗氧化物的致畸和致突变性研究.浙江预防医学,2004,160:15-18.
    龚金炎,竹子外表皮中护肤功能因子的研究.博士论文,2010,浙江大学.
    龚金炎,吴晓琴,夏道宗,张英RP-HPLC法测定竹叶提取物中黄酮类和酚酸类成分.中 草药,2010,41(1):63-65.
    韩妍妍,张裕阳,王维娜.中草药对鲫鱼诱食作用的初步研究.水利渔业,2003,23(4):53-54.
    黄玉柳,黄国秋.中草药在水产健康养殖中的应用.安徽农业科学,2010,38(11):5725-5727.
    焦晶晶,竹叶特征性黄酮类化合物研究.博士论文,浙江大学,2008年.
    金征宇,过世东,吕玉华.饲料中添加富含虾青素的法夫酵母对罗氏沼虾的体色及生长状况的影响.饲料工业,1999(20):29-31.
    雷红伟,陆付耳,徐丽君,董慧,邹欣,黄召谊.紫外分光光度法测定马齿苋总黄酮的含量.中西医结合研究,2010,3:126-128.
    李春红,田吉,何兵,肖顺汉.紫外分光光度法测定黄芪总黄酮的含量.重庆医科大学学报,2011,36(8):954-956.
    李栋,金成,汤谷平,张英.丙烯酰胺代谢机理及其体内毒性防护的研究进展.中国食品学报,2011,11(4):139-146.
    李锐.中药黄茂提取物质量标准及慈竹茹的化学成分研究(硕士论文),中国科学院研究生院(成都生物研究所),2005.
    梁艳,应苗苗,吕英华等.微波辅助提取仙人掌多糖的工艺研究.农业工程学报,2006,22(7):159-162.
    刘力,余世袁.高节竹笋加工废料的纤维素酶水解及饲料开发.浙汀林学院学报,1997,14(3):262-266.
    刘为军.中国食品安全控制研究(硕士论文),西北农林大学,2006年.
    林利民,王秋荣,:王志勇等.不同家系大黄鱼肌肉营养成分的比较.中国水产科学,2006,13(2):286-291.
    林倩,竹笋短肽制备及其抗氧化活性研究(硕士论文).中国农业科学院,2011年.
    陆柏益,张英,吴晓琴.竹叶黄酮的抗氧化性及其心脑血.管药理活性研究进展.林产化学与工业.2005,3:121-124.
    陆柏益.竹笋中甾醇类化合物的研究(博士学位论文).浙江大学.2007.6.
    陆志科,廖威.毛竹叶化学成分的初步测定.山西大学学报(自然科学版),2003,26(1):46-48.
    罗琳,高鹏.薛敏,杨禄良.复合甜菜碱对鲤鱼生长和脂肪代谢的影响研究.饲料研究, 2003,8:1-3.
    企汇网,揭秘金华新型地沟油事件由变质内脏提炼而成http://news.qihuiwang.com/, 2012-5-2.
    融甫.大黄鱼和小黄鱼不是一种鱼.食品与生活,2002,3:34-35.
    上海市水产研究所鱼类学研究室.大黄鱼.水产科技情报,1973,05:29-30.
    沈健,冯磊.竹叶提取物降低小鼠脂质过氧化、升高GSH-Px和SOD活力的作用研究.现代康复,1999,3(3):334-336.
    沈建福,张英,吴晓琴等.竹叶黄酮糖苷的水解及其苷元的抗氧化性能研究-Ⅱ黄酮苷元抗油脂氧化性能的初步评价.中国粮油学报,2001,16(4):14-17.
    施安辉,萧海杰.目前国内外虾青素研究的进展.生物工程进展,1999,1:29-31.
    史国举.紫外-可见分光光度法测定复力红景天胶囊中总黄酮含量.中国医药科学,2011,1(14):45-46;
    石英,冷向军,李小勤,李宝山,胡斌.杜仲叶提取物对异育银鲫生长、血清非特异性免疫和肌肉品质的影响.浙江大学学报(农业与生命科学版),2008,34(2):200-206,220.
    水木.2010年中国水产养殖行业研究报告.北京:水清木华研究中心,2010.
    苏永全等.大黄鱼养殖.北京:海洋出版社,2004.
    孙武兴,李铣,李宁,孟大利.毛金竹叶提取物化学成分的分离与鉴定.沈阳药科大学学报,2008,25(1):39-43.
    孙媛.竹茹现代研究概况.黑龙江医药,2008,21(6):78-89.
    松针叶粉可改善粗纤维鱼肉品质.现代渔业信息,2004,19,11:35.
    唐宏刚.鱼蛋白水解物对大黄鱼生长代谢、肌肉品质、免疫及抗氧化性能的影响(博士论文).浙江大学,2008年7月.
    唐江芳,水产药物残留的研究现状.南方农业,2007,1:39-41,52.
    唐筱,王珺,徐后国,艾庆辉,左然涛.氧化鱼油和维生素E对大黄鱼SOD和CAT酶活性的影响.中国海洋大学学报,2010,40:55-58.
    唐莉莉,徐榕榕,丁霄霖.竹叶多糖对小鼠移植瘤的抑制作用.无锡轻工大学学报,1998,17(3):62-65.
    新民晚报.鱼类市场发现苏丹红第二农业部严查孔雀石绿http://finance.sina.com.cn, 2005-7-12.
    徐继林,朱艺峰,严小军.养殖与野生大黄鱼肌肉脂肪酸组成的比较.营养学报,2005,27(3):256-258.
    王菊花,薛敏,丁建中,任泽.林鱼类营养性脂肪肝的研究进展.饲料工业,2008,29(4)34-37.
    魏东,严小君.天然虾青素的超级抗氧化活性及其应用.中国海洋药物,2001,82:45-50.
    于力.动物疫情暴露三大监管漏洞.中国食品报,2006-1-2(第1版):24-26.
    王瑾.大黄鱼的命运.食品与生活,2009,5:27.
    杨启超,迟健,李宏刚.鲫鱼中草药诱食剂的研究.黑龙江水产,2010,4:21-27.
    姚晓宝,竹茹中三萜类化合物的研究(硕士论文).浙江大学,2004.
    张建友,竹叶黄酮的提取、纯化、鉴定及其抗氧化和抑菌活性研究(博士论文).浙江大学,2010.
    张士斌.水产养殖滥用药物的危害及保障水产品质量安全的措施.黑龙江水产,2010,5:30-32.
    张水波,鱼类脂肪肝的成因及防治对策.中国水产,2011,2:55-55.
    张英.竹叶保健功能因子的研究(博士学位论文).无锡轻工大学,1995.
    张英,丁霄霖.竹叶有效成分和抗活性氧自由基效能的研究.竹子研究汇刊,1996,15(3):17-24.
    张英,丁霄霖.竹叶特种氨基酸的存在及其生物学意义.无锡轻工大学学报,1997,16(1):29-32.
    张英,唐莉莉.毛金竹叶提取物抗衰老作用的实验研究.竹子研究汇刊,1997,16(4):62-67.
    张英,丁霄霖.竹叶提取物类SOD活性的邻苯三酚法测定.食品科学,1997,18(5):47-49.
    张英.竹叶功能性成分类SOD活性的综合考察.中国食品学报,1998,2(2):62-66.(a)
    张英.从竹叶中提取黄酮类化合物浸膏或粉剂的生产方法,中国专利,ZL98104564.2,1998-03-17
    张英,唐莉莉,丁霄霖.竹叶功能因子生物抗氧化活性的研究.营养学报,1998,20(3):367-371.(b)
    张英,汤坚,袁身淑等.竹叶精油和头香的CGC-MS-DS研究.天然产物研究与开发,1998,10(4):38-44.
    张英,吴晓琴,俞卓裕等.从竹子中提取的三菇总皂贰元的组成、方法及其用途.中国发明专利,N02154401.8,2002-12-10.
    张英,吴晓琴,陆柏益.竹叶总黄酮作为抗衰老护肤因子在化妆品中的应用.中国专利,CN03115653.3,2003-03-03.(a)
    张英,吴晓琴,张泳华等.竹叶总黄酮在前列腺疾病防治药物及其保健食品中的应用.中国专利,CN03125559.8,2003-05-25.(b)
    张英,俞卓裕,吴晓琴.中草药和天然植物有效成分提取新技术-微波协助萃取.中国中药杂志,2004,29(2):104-108.
    张英,龚金炎,吴晓琴.竹茹提取物的有效成分及其生物学功能研究.营养强化剂及特种营养食品专业委员会2008年年会论文集,2008,128-131.
    张英,龚金炎,吴晓琴.竹叶黄酮最新研究进展之一—竹叶黄酮制剂中酚酸类化合物的存在及其作用.中国食品添加剂,2009,4:46-53.
    张英,吴晓琴,金成,奚君阳,李栋.油炸马铃薯片专用的复合型丙烯酰胺抑制剂.专利号:201110410097
    张佐玉,张喜.竹子在中医药和保健品开发中的潜力.世界科学技术:中药现代化,2000,2(3):54-56.
    赵利民.2009年浙江省海洋环境公报.杭州:浙江省海洋与渔业局,2010.
    中国科学家成功绘制大黄鱼全基因图谱.水产养殖,2011,4:7.
    中华人民共和国卫生部公告2005年第4号.2005年,http://www.moh.gov.cn.se.
    中华人民共和国食品添加剂使用卫生标准(GB 2760-2011).
    周建钟,刘力,冯炎龙.氨化竹笋加工下脚料饲用价值研究.竹子研究汇刊,2001,20(4):52-56.
    周兆祥.竹叶的化学成分与研究.天然产物研究与开发,1992,4(1):44-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700