用户名: 密码: 验证码:
胰岛素的聚乙二醇化和聚乙二醇化胰岛素降血糖作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以胰岛素为模型药物,研究了胰岛素的PEG化以及PEG化胰岛素的物理化学性质和生物活性,并以互穿网络超多孔水凝胶(SPH-IPN)为药物载体,研究了口服PEG化胰岛素的降血糖作用。
     1 PEG的活化
     采用N-羟基琥珀酰亚胺活化酯法对单甲氧基聚乙二醇(MPEG5000)进行活化,分别制备了单甲氧基聚乙二醇琥珀酸琥珀酰亚胺酯(MPEG5000-SS)和单甲氧基聚乙二醇羧甲基琥珀酰亚胺酯(MPEG5000-SCM)两种活性酯衍生物。比色法测定两种衍生物的活化度均超过90%。MPEG-SS和MPEG-SCM的红外光谱都具有以下特征峰:1740 cm~(-1)处为活性酯羰基的伸缩振动峰,1785 cm~(-1)附近和1813 cm~(-1)处分别为琥珀酰亚胺分子中两个羰基的伸缩振动峰。核磁共振分析结果表明两种衍生物均具备各自的特征基团。
     2 PEG化胰岛素的制备
     采用合成的MPEG5000-SS和MPEG5000-SCM对胰岛素进行随机修饰。以MPEG5000-SS为例,用三硝基苯磺酸(TNBS)比色法分析PEG化胰岛素混合物的平均修饰程度,SDS-PAGE分析联结不同数目PEG链的胰岛素组分分布,以平均修饰度和混合物的组分分布情况为考察指标,分别研究了反应溶剂、原料配比和反应时间对胰岛素PEG化合成的影响,确定了本文胰岛素PEG化的合成工艺:将适量胰岛素溶解于DMF/0.1 mol·l~(-1)pH 7.4硼酸盐缓冲液(60:40,v/v)混合溶剂中,制得浓度在1-10 mg·ml~(-1)范围内的胰岛素溶液。按照胰岛素/MPEG-NHS活性酯为1:5(mol/mol)的配比投入MPEG-NHS活性酯固体粉末,室温下搅拌反应4 h。加入相当于MPEG5000-NHS活性酯2倍摩尔量的6-氨基正己酸溶液终止反应。反应混合液对0.01%的NH_4HCO_3溶液进行彻底的透析,冷冻干燥,制得PEG化胰岛素混合物。
     采用Sephadex G75凝胶过滤色谱,Protein-Pak~(TM) SP 8HR阳离子交换色谱和C18反相高效液相色谱分离PEG化胰岛素。结果表明:Sephadex G75凝胶过滤色谱可以有效去除PEG化胰岛素混合物中未反应的胰岛素和小分子杂质,但不能将PEG化胰岛素按修饰度不同而逐一分离。而SP阳离子交换色谱和C18反相高效液相色谱都能够将PEG化胰岛素按修饰度不同而逐一分离。阳离子交换色谱各组分的洗脱顺序为,较高修饰度PEG化胰岛素先于较低修饰度PEG化胰岛素洗脱出来,胰岛素最后洗脱出来。而在C18反相高效液相色谱中,胰岛素最先洗脱出来,而较高修饰度PEG化胰岛素后于较低修饰度PEG化胰岛素洗脱出来,刚好与PEG化胰岛素经阳离子交换色谱分离的洗脱顺序相反。
     在上述分离工作的基础上,先后采用SP Sepharose阳离子交换色谱和QSepharose阴离子交换色谱分离纯化PEG化胰岛素,得到三种不同修饰度的PEG化胰岛素。三种PEG化胰岛素的纯度经RP-HPLC检测均在90%以上。
     3 PEG化胰岛素的表征
     采用非还原SDS-PAGE法和MALDI-TOF MS法测定单,双和三修饰PEG化胰岛素的分子量。SDS-PAGE测出三种PEG化胰岛素的表观分子量分别为11.1,23.5和35.0 KDa,除了单修饰PEG化胰岛素的表观分子量比较接近其实际分子量(10.8 KDa)外,双、三修饰PEG化胰岛素的表观分子量都大于其实际分子量(15.8和20.8 KDa)。MALDI-TOF MS测得的单、双修饰PEG化胰岛素的分子量分别为10.8 KDa和15.9 KDa,与实际分子量相符。MALDI-TOF MS未能检出三修饰PEG化胰岛素的分子量。
     三种PEG化胰岛素的紫外吸收光谱和胰岛素相比差异较小,在220 nm和275 nm附近均有吸收峰。通过测定275 nm处的吸光度值计算三种PEG化胰岛素溶液的浓度,将PEG化胰岛素的浓度以胰岛素浓度计。PEG化胰岛素的圆二色谱分析表明,胰岛素的PEG化不会对胰岛素的高级结构造成影响。PEG化胰岛素的自缔合受到一定程度的抑制,其自缔合状态随PEG化程度的提高而减少。
     采用加速振荡实验研究了胰岛素和三种PEG化胰岛素的物理稳定性。在37℃,200 rpm的加速振荡条件下,胰岛素分子发生纤维化反应,在12 h内基本沉淀完全。PEG化胰岛素的纤维化反应受到抑制,1PEG-insulin的物理稳定性至少是胰岛素的17倍。而2PEG-insulin和3PEG-insulin经过加速振荡24天时,溶液中样品含量仍保持在初始值的80%以上,物理稳定性远大于胰岛素和1PEG-insulin。
     胃蛋白酶、胰蛋白酶和糜蛋白酶对胰岛素和三种PEG化胰岛素的体外酶解试验表明,胰岛素的PEG化能够在一定程度上抑制三种蛋白酶对胰岛素的降解,而且抑制的程度随PEG化程度的提高而增加。
     4 PEG化胰岛素体内降血糖作用的研究
     比较了正常小鼠皮下注射(0.5 U·kg~(-1))胰岛素和PEG化胰岛素的降血糖作用。胰岛素给药后30 min左右血糖降至低谷,为初始值的26%左右;给药后3 h,血糖回复到初始值的90%以上。1PEG-insulin给药后90 min左右血糖降至低谷,为初始值的52%左右;5 h左右血糖回复到初始水平的90%左右。2PEG-insulin给药后120 min左右血糖降至低谷,为初始值的76%左右;3 h至4 h左右血糖回复到初始水平的90%左右。3PEG-insulin给药后90 min左右血糖降至低谷,仅为初始值的87%左右;2 h内血糖迅速回复到初始血糖水平。以胰岛素为基准,通过比较各给药组降血糖曲线上面积,计算得1PEG-insulin,2PEG-insulin和3PEG-insulin的生物活性分别为天然胰岛素的93%,46%和24%。正常大鼠静脉注射给药降血糖试验结果表明,1PEG-insulin具有明显的降血糖作用,其降血糖作用时间较胰岛素有所延长。2PEG-insulin和3PEG-insulin的活性损失较多,其体内降血糖作用不明显。
     采用吸附法将1PEG-insulin载入SPH-IPN,载药量达(10.52±0.87)%(wt)。体外释放试验结果表明,1PEG-insulin从SPH-IPN中释放较快,10 min时超过80%的药物被释放。
     将载有1PEG-insulin的SPH-IPN装于大鼠用普通肠溶胶囊中,大鼠口服给药,产生明显的降血糖作用,8-10 h左右血糖值降至最低,为初始值的65%左右。对照组口服给予胰岛素溶液,1PEG-insulin胶囊或空白SPH-IPN胶囊,均无明显的降血糖作用。以皮下注射(1 U·kg~(-1))胰岛素的PBS溶液为对照,计算得大鼠口服(40 U·kg~(-1))载1PEG5000-insulin的SPH-IPN胶囊的相对药理生物利用度为5.1±2.0%。
     胰岛素的PEG化在尽量不影响胰岛素生物活性的前提下,能够抑制胰岛素单体的自缔合,提高胰岛素的物理稳定性和抵抗蛋白酶降解的能力,延长胰岛素体内降血糖作用的时间,结合SPH-IPN具有的抑酶、促渗及黏膜黏附的作用,能够提高胰岛素的口服生物利用度,是一种较有前景的蛋白质多肽类药物口服给药技术。
Insulin was chosen as a model drug for the study of PEGylation of protein drugs. The physicochemical properties and bioactivity of PEGylated insulin were studied. And the hypoglycemic effect following the oral administration of mono-PEGylated insulin was studied with superporous hydrogel containing interpenetrating polymer networks(SPH-IPN)as a drug carrier.
     1 Activation of PEG
     Monomethoxy-poly(ethylene glycol) 5000(MPEG5000) was activated to produce MPEG-succinimidyl succinate(MPEG-SS) and succinimidyl ester of carboxymethyl MPEG(MPEG-SCM) with activity degree both over 90%.The characteristic absorption band at 1740 cm~(-1)(ester carbonyl),1785 cm~(-1) and 1813 cm~(-1) (carbonyl on succinimidyl) of the infrared spectrum of MPEG-SS and MPEG-SCM indicated the existence of MPEG succinimidyl active ester.The ~1H-NMR analysis demonstrated that each MPEG derivative contained the corresponding characteristic groups.
     2 Preparation of PEGylated insulin
     The resultant MPEG5000-SS and MPEG5000-SCM were used to modify insulin randomly.Taken MPEG5000-SS as an example,effects of reaction solvents,initial molar ratio of MPEG derivative to insulin and reaction time on synthesis of PEGylated insulin were investigated with TNBS spectrometry and SDS-PAGE analysis.And the optimal synthesis scheme was as follows:insulin was dissolved in the solvent of DMF/0.1 M borate buffer pH 7.4(60:40,v/v),and the concentration of insulin was in the range from 1 mg·ml~(-1) to 10 mg·ml~(-1).MPEG-NHS active ester powder was added at the ratio of 1:5(mol/mol) of insulin to MPEG-NHS active ester. After stirring at ambient temperature for 4 h,6-Aminocaproic acid about 2 molar times of MPEG-NHS active ester was added to quench the reaction.Then the reaction mixture was dialyzed against 0.01%NH_4HCO_3 solution and lyophilized.
     Gel filtration chromatography using Sephadex G75,cation exchange chromatography on Protein-Pak~(TM) SP 8H,C18 reversed-phase high performance liquid chromatography were employed to separate the PEGylated insulin.The results showed that SEC was able to separate PEGylated insulin from intact insulin and impurity,but did not exhibit heterogeneity of MPEG-insulin conjugates or remove the inactive MPEG from the mixture of PEGylated insulin.IEC and RP-HPLC could resolve heterogeneous composition or PEGylated insulin mixture.The elution sequence of PEGylated insulin in IEC was just the opposite in RP-HPLC.
     On the basis of the above research,SP Sepharose cation exchange chromatography and Q Sepharose anion exchange chromatography were used to separate PEGylated insulin in two steps,and three species of PEGylated insulin, namely mono-,di-,and tri-PEGylated insulin were purified,and the purity were above 90%according to the results of RP-HPLC.
     3 Characterization of PEGylated insulin
     The molecular weights of mono-,di- and tri-PEGylated insulin were determined through SDS-PAGE and MALDI-TOF MS.The apparent molecular weights of mono-, di-,and tri-PEGylated insulin were 11.1,23.5,35.0 KDa through SDS-PAGE,and the apparent molecular weight of mono-PEGylated insulin is closed to its' calculated molecular weight(10.8 KDa).The molecular weights of mono-,di-PEGylated insulin determined by MALDI-TOF MS were 10.8 KDa and 15.9 KDa,which were corresponding to the calculated molecular weights of them.
     The ultraviolet absorption spectra of three species of PEGylated insulin were similar to that of insulin,which had absorption peaks at about 220 nm and 275 nm.So the concentration of PEGylated insulin could be calculated as the concentration of insulin solution that could be determined by measuring OD_(275).The circular dichroic spectra analysis of PEGylated insulin demonstrated that the attachment of PEG to insulin does not alter the tertiary structure of conjugates as compared to native insulin. The self-association of PEGylated insulin was inhibited and the inhibition correlated with the degree of PEGylation.
     The physical stability of insulin and three species of PEGylated insulin were studied with accelerated shake test under the condition of 200 rpm of shaking speed at 37℃,the fibrillation of mono-PEGylated insulin was inhibited,and it gave at least 17-fold increase of physical stability as compared to insulin while the physical stability of di- and tri-PEGylated insulin were greatly enhanced more than insulin and mono-PEGylated insulin.
     The in vitro enzymatic degradation experiment showed that the degradation of insulin by pepsin,trypsin and chymotrypsin could be inhibited through PEGylation, and the inhibition correlated with the degree of PEGylation.
     4 The hypoglycemic effect of PEGylated insulin
     The hypoglycemic effect of PEGylated insulin was compared with insulin after subcutaneous injection(0.5 U·kg~(-1)) in healthy mouse.In the group of insulin,the blood glucose level reduced to 26%of the control value within 30 min then started rising and approach to 90%of the control value within 3 h.In the groups of mono-, di-,and tri-PEGylated insulin,the blood glucose level reduced to 52%,76%,and 87% of the control value within 90min,120min,and 90min,respectively.After that,the blood glucose level rose to 90%of the control value within 5 h in mono-PEGylated insulin group that is a little slower than di-(3-4 h) and tri-(2 h) PEGylated insulin. Using insulin as a standard,the hypoglycemic effects of mono-PEGylated insulin, di-PEGylated insulin and tri-PEGylated insulin were calculated by comparing the AAC of serum glucose level-time course curve between different groups,which were 93%,46%and 24%of native insulin respectively.The hypoglycemic effect of intravenous administration of insulin and three species of PEGylated insulin in healthy rats showed that mono-PEGylated insulin had an evident hypoglycemic effect and a longer hypoglycemic time comparing to insulin.The activity of di-PEGylated insulin and tri-PEGylated insulin had a great loss and their hypoglycemic effects in vivo were not obvious.
     A drug loading of(10.52±0.87)%(wt) was achieved by loading the SPH-IPN with mono-PEGylated insulin by adsorption.The result of drug release experiment in vitro showed that mono-PEGylated insulin was released from the SPH-IPN rapidly and the amount of released drug exceeded 80%in 10 min.
     The enteric-coated capsules for rat were filled with mono-PEGylated insulin loaded SPH-IPN.After oral administration of these capsules for rats,obvious hypoglycemic effect was observed.The blood glucose level declined to the nadir in 8-10 h that was approximately 65%of the initial value.The control groups were orally administered with insulin solution,enteric-coated capsules filled with mono-PEGylated insulin or enteric-coated capsules filled with SPH-IPN respectively and notable hypoglycemic effect failed to be found out in these condition.And a relative pharmacological availability(PA) of 5.1±2.0%was achieved after oral administration of mono-PEGylated insulin loaded SPH-IPN compared with subcutaneous administration of insulin solution.
     PEGylation of insulin could inhibit the self-association tendency of insulin,and increase the physical stability as well as resistance to proteolysis while retaining most bioactivity of native insulin.And with the functions of enzyme inhibition,permeation enhancing and adhesion to mucous membrane,SPH-IPN could increase the pharmacological availability of PEGylated insulin after oral administration. Combination of PEGylation and SPH-IPN would be a promising technique for oral delivery of protein and peptide drugs.
引文
[1]Nucci ML,Shorr R,Abuchowski A.The therapeutic value of poly(ethylene glycol)-modified proteins[J].Adv.Drug Deliv.Rev.,1991,6:133-151.
    [2]Abuchowski A.,Es T.V.,Palczuk N.C.,et al.Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol[J].J.Biol.Chem.,1977,252:3578-3581.
    [3]Pascal B.and Wolfgang B.Polyethylene glycol-conjugated pharmaceutical proteins[J].Pharm.Sci.Technol.Today,1998,1(8):352-356.
    [4]Fuertges F.and Abuchowski A.The clinical efficacy of poly(ethylene glycol)-modified proteins[J].J.Contd.Release,1990,11:139-148.
    [5]Kenneth D.H.and Sung W.K.Effects of PEG conjugation on insulin properties[J].Adv.Drug Deliver.Rev.,2002,54:505-530.
    [6]Harris J.M.,Martin N.E.and Modi M.Pegylation A Novel Process for Modifying Pharmacokinetics[J].Drug Deliver.Systems,2001,40(7):539-551.
    [7]王俊,裴元英.用聚乙二醇修饰大分子药物的研究进展[J].中国医药工业杂志,2004,35(11):696-701.
    [8]周笑艳.聚乙二醇(PEG)对大肠杆菌L-天冬酰胺酶的化学修饰及其性质研究[D].南京:中国药科大学,2000:
    [9]K.Rajender R.,Marlene W.M.,and Simon P.Use of peginterferon alfa-2a(40 KD)(Pegasys~(?)) for the treatment of hepatitis C[J].Adv.Drug Deliver.Rev.,2002,54:571-586.
    [10]Conan,J.F.and James,M.V.A.PEG-proteins:reaction engineering and separation issues[J].Chem.Eng.Sci.,2006,61:924-939.
    [11] Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice [J]. J. Pharm. Sci. 1994, 83(4): 601-606.
    [12] Gaertner HF, Offord RE. Site-specific attachment of functionalized poly(ethylene glycol) to the amino terminus of proteins [J]. Bioconjug Chem., 1996; 7: 38-44
    [13] Patricia M.G. and George S.E. Pathogenesis, prediction and trials for the prevention of insulin-dependent (type 1) diabetes mellitus [J]. Adv. Drug Deliver. Rev., 1999, 35:143-156.
    [14] Banting, F.G. and Best, C.H. Pancreatic extracts [J]. J. Lab. Clin. Med., 1922, 7: 464-472.
    [15] Blundell T., Dodson G., Hodgkin D., et al. Insulin: the structure in the crystal and its reflection in chemistry and biology [J]. Adv. in Protein Chem., 1972, 26: 279-402.
    [16] Kang S., Brange J., Burch A., et al. Subcutaneous insulin absorption explained by insulin's physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogs in humans [J]. Diabetes Care, 1991,14: 942-948.
    [17] Brange J., Andersen L., Laursen E.D., et al. Toward understanding insulin fibrillation [J]. J. Pharm. Sci., 1997, 86: 517-525.
    [18] Brange J., and Langkjar L. Chemical stability of insulin: 3. Influence of excipients, formulation, and pH [J]. Acta Pharm. Nord., 1992,4:149-158.
    [19] Brange J. Chemical stability of insulin: 4. Kinetics and mechanism of the chemical transformation in pharmaceutical formulation [J]. Acta Pharm. Nord., 1992, 4: 209-222.
    [20] Schilling R.J. and Mitra A.K. Degradation of insulin by trypsin and alpha-chymotrypsin [J]. Pharm. Res., 1991, 8(6): 721-727.
    [21] Omathanu P. and Ramesh P. Insulin therapies-past, present and future [J]. Durg Discov. Today, 2001, 6(20): 1056-1061.
    [22] Lowe P.J., and Temple C.S. Calcitonin and insulin in isobutylcyanoacrylate nanocapsules: protecting against protease and effect in intestinal absorption [J]. J. Pharm. Pharmcol, 1994, 46(7): 547-552.
    [23] Damge C., Hilaire-Buys D., Puech R., et al. Effect of orally administered insulin nanocapsules in normal and diabetic dogs [J]. Diab. Nutr. Metab., 1995, 8: 3-8.
    [24] Morishita M., Morishita I., Takayama K., et al. Hypoglycemic effect of novel oral microspheres of insulin with protease inhibitor in mormal and diabetic rats [J]. Int. J. Pharm., 1992,78(1): 9-16.
    [25] Cunha A.S., Grossiord J.L., Puisieux F., et al. Insulin in w/o/w multiple emulsions: biological activity after oral administration in normal and diabetic rats [J]. J. Microencapsul., 1997,14(3): 321-333.
    [26] Li C.L., and Deng Y.J. Oil-based formulations for oral delivery of insulin [J]. J. Pharm. Pharmacol., 2004, 56(9): 1101-1107.
    [27] Manosroi A., and Manosroi J. Microencapsulation of human insulin DEAE-dextran complex and complex in lipsome by emulsion non-solvent addition method [J]. J. Microencapsul., 1997,14(6): 761-765.
    [28] Kisel M.A., Kulik L.N., Tsybovsky I.S., et al. Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: studies in the rat [J]. Int. J. Pharm., 2001, 216(1-2): 105-114.
    [29] Hashizume M., Douen T., Murakami M., et al. Improvement of large intestinal absorption of insulin by chemical modification with palmitic acid in rats [J]. J. Pharm. Pharmacol, 1992, 44(7): 555-559.
    [30] Kenneth D.H., Kathleen M.C., Kathleen M.H., et al. PEGylated insulin in PLGA microparticles. In vivo and in vitro analysis [J]. J. Contrl. Release., 2005, 104: 447-460.
    [31] Calceti P., Salmaso S., Walker G., et al. Development and in vivo evaluation of an oral insulin-PEG delivery system [J]. Eur. J. Pharm. Sci., 2004, 22: 315-323.
    [32] Kenneth H., Jae J.K., Lias J., et al. Synthesis and characterization of poly(ethylene glycol)-insulin conjugates [J]. Bioconjugate Chem., 2000,11:195-201.
    [33] J. Gordon S. Development of oral insulin: progress and current status [J]. Diabetes Metab. Res. Rev., 2002,18(suppl 1): s29-s37.
    [34] Stephen C, Paresh D., J. Gordon S., et al. Oral modified insulin (HIM2) in patients with type 1 diabetes mellitus: Results from a phase I/II clinical trial [J]. Metabolism, 2004, 53(1): 54-58.
    [35] Chet L.L., John S.P., Kimberly M.P., et al. Dry powder formulation of inhaled PEG-insulin yields prolonged systemic activity in dogs [R]. New Orleans, Louisiana, USA: American Diabetes Association, 2003:
    [1]Takashi U.,Miroslav B.,Feng L.,et al.Site-specific insulin conjugates with enhanced stability and extended action profile[J].Adv.Drug Deliver.Rev.,1999,35:289-306.
    [2]Pascal B.,and Wolfgang B.Polyethylene glycol-conjugated pharmaceutical proteins[J].Pharm.Sci.Technol.Today,1998,1(8):352-356.
    [3]Iwashita Y.,Ajisaka K.,and Iwasaki K.Oxygen Carrier[P].USA:4412989,1983-11-01.
    [4]Abuchowski A.,Kazo G.M.,Verhoest C.R.Cancer therapy with chemically modified enzymes.I.Antitumor properties of polyethylene glycol-asparaginase conjugates[J].Cancer.Biochem.Biophys.,1984,7:175-186.
    [5]Zalipsky S.,Gilon C.,and Zilkha A.Attachment of drugs to polyethylene glycols [J].Eur.Polym.J.1983,19:1177.
    [6]Yamasaki N.,Matsuo A.,and Isobe H.Novel polyethylene glycol derivatives for modification of proteins[J].Agric.Biol.Chem.,1988,52:2125.
    [7]Andreas F.B.,Michael M.,G(o|¨)te J.Functionalization of poly(ethylene glycol) and monomethoxy-poly(ethylene glycol)[J].Makcromol.Chem.,1981,182:1379-1384.
    [8]Leonard M.,Neel J.,and Dellacherie E.Synthesis of monomethoxypolyoxyethylene-bound haemoglobins[J].Tetrahedron,1984,40:1581-1584.
    [9]Closson W.D.,Peter W.,and Shelton B.Reductive cleavage of toluenesulfonates with sodium naphthalene[J].J.Am.Chem.Soc.,1966,88:1581-1583.
    [10]Talia M.,and Meir W.A spectrophotometric assay for soluble and immobilized N-hydroxysuccinimide esters[J].Anal.Biochem.1982,126:433-435.
    [11]Harris J.M.,and Kozlowski A.Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications[P].USA:5672662,1997-09-30.
    [12]Hadley K.B.,and Sato P.H.Catalytic activity of administered gulondactone oxidase polyethylene glycol conjugate[J].Enzyme,1989,42:225.
    [13]Zalipsky S.,Gilon C.,and Zilkha A.Esterification of polyethylene glycols[J].J.Marcromol.Sci.,-Chem.,1984,A21:839-845.
    [14]Herman S.,Hooftman G.,and Schacht E.Poly(ethylene glycol) with reactive endgroups:Ⅰ.Modification of proteins[J].J.Bioact.Compt.Polymers,1995,10:145-187.
    [15]Roberts M.J.,Bentley M.D.,and Harris J.M.Chemistry for peptide and protein PEGylation[J].Adv.Drug Deliver.Rev.,2002,54:459-476.
    [16]Shmuel Z.E.Active acrbonates of polyalkylene oxides for modification of polypeptides[P].USA:5122614,1992-01-16.
    [17]Katre N.V.,Knanuf M.J.,and Larid W.J.Chemical modification of recombinant interleukin 2 by polyethylene increases its potency in the murine meth A sarcoma model[J].Proc.Natl.Acad.Sci.U.S.A.,1987,84:1487-1491.
    [18]Royer G.P.,and Anantharmaiah G.M.Peptide synthesis in water and the use of immobilized carboxypeptidase Y for deprotection[J].J.Am.Chem.Soc.,1979,101:3394-3396.
    [19]Ehrat M.,and Luisi EL.Sunthesis and spectroscopic characterization of insulin derivatives containing one or two poly(ethylene oxide) chains at specific positions[J].Biopolymers,1983,22:569-573.
    [20]胡小剑,何明磊,谭天伟等.羧甲基化单甲氧基聚乙二醇的制备及其对a-干扰素的修饰[J].过程工程学报,2003,3(2):146-150.
    [21]熊成东,王亚辉,袁明龙,邓先模.聚乙二醇衍生物的合成研究进展[J].高分子通报,2000,1:39-45.
    [22]Scott N.D.,Walker J.F.,and Hansley V.L.Sodium naphthalene.I.A new method for the preparation of addition compounds of alkali metals and polycyclic aromatic hydrocarbons[J].J.Am.Chem.Soc.,1936,58:2442-2444.
    [1]陈建海,任非,李宝红,罗奇志.胰岛素口服制剂的研究进展[J].中国医药工业杂志,2002,33(1):42-45.
    [2]Trehan A.,and Agsar A.Recent approachesin insulin delivery[J].Drug Dev.Ind.Pharm.,1998,24:589-597.
    [3]John S.P.,Julie B.,Sudha N.Inhaled insulin[J].Adv.Drug Deliver.Rev.,1999,35:235-247.
    [4]王耀平,高宝文,张一婷.胰岛素非注射途径给药的研究进展[J].中华临床医药,2003,4(16):108-110.
    [5]Omathanu P.and Ramesh P.Insulin therapies-past,present and future[J].Drug Discover.Today,2001,6(20):1056-1061.
    [6]Jens B.and Aage V.Insulin analogs with improved pharmacokinetic profiles[J].Adv.Drug Deliver.Rev.,1999,35:307-335.
    [7]Muneaki H.,Kanji T.,Yoshiaki K.,et al.Synthesis of palmitoyl derivatives of insulin and their biological activities[J].Pharm.Res.,1989,6(2):171-176.
    [8]Sanjay J.,Dale H.H.,Brenda M.,et al.Polysialylated insulin:synthesis,characterization and biological activity in vivo[J].Biochim.Biophys.Acta.,2003,1622:42-49.
    [9]Takashi U.,Miroslav B.,Feng L.,et al.Site-specific insulin conjugates with enhanced stability and extended action profile[J].Adv.Drug Deliver.Rev.,1999,35:289-306.
    [10]Kenneth D.H.and Sung W.K.Effects of PEG conjugation on insulin properties [J].Adv.Drug Deliver.Rev.,2002,54:505-530.
    [11]Stephen L.S.,and Philip Z.S.An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines[J].Anal.Biochem.,1975,64:284-288.
    [12]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000:80.
    [13]Steven B.Z.,and Lizabeth D.M.Electrophoresis of polyethylene glycols and related materials as sodium dodecyl sulfate complexes[J].Anal.Biochem.,1996,234:190-193.
    [14]Kenneth H.,Jae J.K.,Lisa J.,et al.Synthesis and characterization of poly(ethylene glycol)-insulin conjugates[J].Bioconjugate.Chem.,2000,11:195-201.
    [15]Qiang Y.,Ting C.,Guifeng Z.,Jingxiu B.,Guanghui M.and Zhiguo S.Novel polyethylene glycol derivative suitable for the preparation of mono-PEGylated protein [J].Biotechnol.Letters,2005,27:213-217.
    [16]于爱平,蒋中华,钟根深,董春娜,吴祖泽.聚乙二醇修饰水蛭素的分离纯化和活性研究[J].药物生物技术,2004,11(5):302-305.
    [17]Seely J.E.,Richey C.W.(2001) Use of ion-exchange chromatography and hydrophobic interaction chromatography in the preparation and recovery of polyethylene glycol-linked proteins[J].J.Chromatogr.A,908:235-241.
    [18]Piquet G.,Gatti M.,Barbero L.,Traversa S.,Caccia P.,and Esposito P.(2002)Set-up of large laboratory-scale chromatographic separations of poly(ethylene glycol)derivatives of the growth hormone-releasing factor 1-29 analogue[J].J.Chromatogr.A,944:141-148.
    [19]Youn Y.S.,Na D.H.,Yoo S.D.,Song S.C.,and Lee K.C.(2004)Chromatographic separation and mass spectrometric identification of positional isomers of polyethylene glycol-modified growth hormone-releasing factor(1-29)[J].J.Chromatogr.A,1061:43-49.
    [20]杨瑞娥.聚乙二醇化学修饰重组人粒细胞集落刺激因子技术研究[D].北京:北京化工大学,2004:
    [1]Bailon P.and Berthold W.Polyethylene glycol-conjugated pharmaceutical proteins [J].Pharm.Sci.Technol.Today 1998,1:352-6
    [2]Kenneth H.,Jae J.K.,Lisa J.,et al.Synthesis and Characterization of Poly(ethylene glycol)-Insulin Conjugates[J].Bioconjugate Chem.,2000,11:195-201.
    [3]Calceti P.,Salmaso S.,Walker G.,et al.Development and in vivo evaluation of an oral insulin-PEG delivery system[J].Eur.J.Pharm.Sci.,2004,22:315-323.
    [4]Jose G.and Frederick H.C.Zinc Binding,Circular Dichroism,and Equilibrium Sedimentation Studies on Insulin(Bovine) and Several of Its Derivatives[J].Biochemistry,1974,13(22):4566-4574.
    [5]Qiang Y.,Rui E.Y.,Ting C.,Jingxiu B.,Guanghui M.and Zhiguo S.Reproducible preparation and effective separation of PEGylated recombinant human granulocyte colony-stimulating factor with novel "PEG-pellet" PEGylation mode and ion-exchange chromatography[J].J.Biotechnol.,2005,118:67-74.
    [6]Yatin R.G.Hydrodynamic Behavior and Thermal Stability of a PEGylated Protein:Studies with Hen Egg Lysozyme[D].India,University of New Hampshire,2003:
    [7]Michael J.R.Characterizing Pegylation and Depegylation of Proteins for Drug Delivery Application[D].USA,University of Alabama,1997:
    [8]Kenneth D.H.A study of poly(ethylene glycol)-insulin conjugates[D].USA,The University of Utah,2001:
    [9]Pocket Y.and Biswas S.B.Conformational dynamics of insulin in solution.Circular dichroic studies[J].Biochemistry,1980,19:5043-5049.
    [10]Molecular structure of insulin:the insulin monomer and its assembly[J].British Medical. Bulletin, 1989, 45: 4-18.
    [11] Brange J., Andersen L., Laursen E.D., et al. Toward Understanding Insulin Fibrillation [J]. J. Pharm.Sci., 1997, 86(5): 517-525.
    [12] Victoria S., Janet A.T., Alexander M., et al. Kinetics of Insulin Aggregation in Aqueous Solutions upon Agitation in the Presence of Hydrophobic Surfaces [J]. PNAS, 1991,88(21): 9377-9381.
    [13] Waugh D.F. A fibrous modification of insulin. I. The heat precipitate of insulin [J]. J. Amer. Chem. Soc, 1946, 68: 247-250.
    [14] Waugh D.F. Reactions involved in insulin fibril formation [J]. Federation. Proceedings, 1946, 5:111-123.
    [15] Waugh D.F., Wilhelmson D.F., Commerford S.L., et al. Studies on nucleation and growth reactions of selected types of insulin fibrils. J. Amer. Chem. Soc, 1953, 75: 2592-2600.
    [16] Waugh D.F. A mechanism for the formation of fibrils from protein molecules [J]. J. Cell Comp. Physiol., 1957, 49:145-164.
    [17] Brange J., Dodson G.G., Edwards D.J., et al. A model of insulin fibrils derived from x-ray crystal structure of monomeric insulin (despentapeptide insulin) [J]. Proteins: Structure, Function, and Genetics, 1997,27:507-516.
    [1]薛伟明,刘袖洞,雄鹰等.胰岛素口服给药[J].科学通报,2002,47(14):1044-1049.
    [2]Calceti P.,Salmaso S.,Walker G.,et al.Development and in vivo evaluation of an oral insulin-PEG delivery system[J].Eur.J.Pharm.Sci.,2004,22:315-323.
    [3]Dorkoosh F.A.,Setyaningsih D.,Borchard G.,et al.Effects of superporous hydrogels on paracellular drug permeability and cytotoxicity studies in Caco-2 cell monolayers[J].Int.J.Pharm.,2002,241:35-45.
    [4]Dorkoosh F.A.,Borchard G.,Rafiee-Tehrani M.,et al.Evaluation of superporous hydrogel(SPH) and SPH composites in porcine intestine ex-vivo:assessment of drug transport,morphology effect,and mechanical fixation to intestinal wall[J].Eur.J.Pharm.Biopharm.2002,53:161-166.
    [5]Dorkoosh F.A.,Verhoefm J.C.,Borchard G.,et al.Development and characterization of a novel peroral peptide drug delivery system[J].J.Control.Rel.,2001,71:307-318.
    [6]Dorkoosh F.A.,Verhoef J.C.,Ambagts M.H.C.,et al.Peroral delivery system based on superporous hydrogel polymers:release characteristics of the peptide drugs buserelin,octreotide and insulin[J].Eur.J.Pharm.Sci.2002,15:433-439.
    [7]Kenneth D.H.A study of poly(ethylene glycol)-insulin conjugates[D].USA,The University of Utah,2001:
    [8]Kenneth D.H.and Sung W.K.Effects of PEG conjugation on insulin properties[J].Adv.Drug Deliver.Rev.,2002,54:505-530.
    [9]Caliceti P.and Veronese F.M.Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates[J].Adv.Drug Deliv.Rev.,2003,55:1261-1277.
    [10]唐翠.基于含Carbopol~(?)的超多孔水凝胶复合物(SPHCc)载体的胰岛素新型口服给药系统研究[D].上海,复旦大学,2005:
    [11]Yatin R.G.Hydrodynamic Behavior and Thermal Stability of a PEGylated Protein:Studies with Hen Egg Lysozyme[D].India,University of New Hampshire,2003:
    [12]Zalipsky S.and Harris J.M.Introduction to chemistry and biological applications of poly(ethylene glycol)[A].in:Harris J.M.and Zalipsky S.(Ed.).Poly(ethylene glycol) Chemistry and Biological Applications[M].New York:Plenum Press,1992:1-12.
    [1]Abuchowski A,Es T.V.,Palczuk N.C.,Davis F.F.Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol[J].J.Biol.Chem.,1977,252:3578-3581
    [2]Burnham NL.Polymers for delivering peptides and proteins[J].Am.J.Hosp.Pharm.,1994,51:210-8
    [3]Roberts M.J.,Bentley M.D.and Harris J.M.Chemistry for peptide and protein PEGylation[J].Adv.Drug Deliv.Rev.,2002,54:459-476.
    [4]Bailon P,Berthold W.Polyethylene glycol-conjugated pharmaceutical proteins[J].Pharm.Sci.Technol.Today,1998,1:352-356
    [5]Yatin R.G.Hydrodynamic Behavior and Thermal Stability of a PEGylated Protein:Studies with Hen Egg Lysozyme[D].India,University of New Hampshire,2003:
    [6]Lumry R.,Eyring H."Conformational changes of proteins"[J].J.Phys.Chem.,1954,58:110-120.
    [7]Caliceti P.and Veronese F.M.Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates[J].Adv.Drug Deliv.Rev.,2003,55:1261-1277.
    [8]Kenneth D.H.A study of poly(ethytene glycol)-insulin conjugates[D].USA,The University of Utah,2001:
    [9]Harris J.M.,Martin N.E.and Modi M.Pegylation A Novel Process for Modifying Pharmacokinetics[J].Drug Deliver.Systems,2001,40(7):539-551.
    [10]Abuchowski A.,Kazo G.M.,Verhoest C.R.Cancer therapy with chemically modified enzymes.I.Antitumor properties of polyethylene glycol-asparaginase conjugates [J]. Cancer. Biochem. Biophys., 1984, 7:175-186.
    [11] Miron T. and Wilchek M. A simplified method for the preparation of succinimidyl carbonate polyethylene glycol for coupling to proteins [J]. Bionconjugate Chem., 1993,4(3): 568-569.
    [12] Hadley K.B. and Sato P.H. Catalytic activity of administered gulondactone oxidase polyethylene glycol conjugate [J]. Enzyme, 1989, 42: 225.
    [13] Veronese KM., Largajolli R., Boccu E., et al. Surface modification of proteins. Activation of monomethoxy-polyethylene glycols by phenylchloroformates and modification of ribonuclease and superoxide dismutase [J]. Appl. Biochem. Biotechnol., 1985,11:141-152.
    [14] Kinstler O.B., Brems D.N., Lauren S.L., et al. Chracterization and stability of N-terminally PEGylated rhG-CSF [J]. Pharm. Res, 1996,13: 996-1002.
    [15] Nilsson K. and Mosbach K. Immobilization of ligands with organic sulfonyl chlorides [J]. Methods Enzymol., 1984,104: 56-69.
    [16] Veronese F.M. and Pasut G. PEGylation, successful approach to drug delivery [J]. DDT, 2005,10(21): 1451-1458.
    [17] Woghiren C., Shama B, and Stein S. Protected thiol-polyethylene glycol: a new activated polymer for reversible protein modification [J]. Bioconjugate Chem, 1993, 4: 314-318.
    [18] Goodson R.J. and Katre N.V. Site-directed pegylation of recombinant interleukin-2 at its glycosylation site [J]. Biotechnol, 1990, 8: 343-346.
    [19] Morpurgo M, Veronese F.M, Kachensky K, et al. Preparation and characterization of poly(ethylene glycol) vinyl sulfone [J]. Bioconjugate Chem, 1996, 7: 363-368.
    [20] Kynclova E, Eisner E, Kopf A, et al. Novel method for coupling of polyethylene glycol to carboxylic acid moieties of proteins [J]. J. Mol. Recognit, 1996, 9: 644-651.
    [21] Zalipsky S. Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates [J]. Bioconjugate Chem, 1995, 6:150-165.
    [22] Sato H. Enzymatic prodedure for site-specific pegylation of proteins [J]. Adv. Drug Deliv. Rev, 2002, 54: 487-504.
    [23] Kenneth H, Jae J.K, Lias J, et al. Synthesis and characterization of poly(ethylene glycol)-insulin conjugates [J]. Bioconjugate Chem, 2000,11:195-201. [24] Morpurgo M, Monfardini C., Hofland L.J, et al. Selective alkylation and acylation of a and e amino groups with PEG in a somatostatin analogue:tailored chemistry for optimized bioconjugates[J].Bioconjugate chem.,2002,13:1238-1243.
    [25]Hershfield MS.PEG-ADA-An alternative to haploidentical bone-marrow transplantation and an adjunct to gene-therapy for adenosine-deaminase deficiency[J].Hum.Mutat.,1995,5(2):107.
    [26]Hershfield MS.PEG-ADA replacement therapy for adenosine-deaminase deficiency-An update after 8.5 years[J].Clin.Immunol.Immunopathol.,1995,76(3):s228.
    [27]Ashihara Y,Kono T,Yamazaki S,et al.Modification of E.Coli L-Asparaginase with polyethylene glycol:disappearance of binding ability to anti-asparaginase serum [J].Biochem.Biophys.Res.Commun.,1978,83(2):385.
    [28]周笑艳,刘景晶.聚乙二醇对大肠杆菌L-天冬酰胺酶的化学修饰[J].中国药科大学学报,2000,31(3):230.
    [29]曹淑桂,田浩,赵秋宇等.几种因素在L-天冬酰胺酶化学修饰中对酶活力及抗原性的影响[J].药学学报,1990,25(10):732.
    [30]夏曙辉译编.抗肿瘤药Pegaspargase[J].中国新药杂志,1996,5(4):316.
    [31]Holle,LM.Pegaspargase:An alternative?[J].Ann.Pharmacother.,1997,31(5):616.
    [32]Sekine T,Kodera Y,Saito T,et al.L-asparaginase modified by poly(ethylene glycol) derivative with a comb-shaped form-antitumor-activity and induction of immune tolerance[J].Biomed.Res.,1995,16:121
    [33]Kodera Y,Sekine T,Yasukohchi T,et al.Stabilization of L-asparaginase modified with comb-shaped poly(ethylene glycol) derivatives,in vivo and in vitro[J].Bioconjugate Chem.,1994,5:283
    [34]Katre NV,Knauf MJ,and Laird WJ.Chemical modification of recombinant interleukin 2 by polyethylene glycol increases its potency in murine Meth A sarcoma model[J].Proc.Natl Acad.Sci.USA,1987,84(6):1487.
    [35]王立夫,吴裕忻,章永平等.rIL-2的聚乙二醇修饰物的制备及其体内外抗肝癌细胞作用[J].肿瘤,1997,17(5):349.
    [36]郑宝胜,徐明波,沈倍奋.重组人白介素-2的化学修饰.军事医学科学院院刊[J],1994,18(1):60.
    [37]冯学胜,汤钊猷,刘康达等.聚乙二醇修饰的rIL-2体内抗小鼠肝癌活性的研究[J].中华肿瘤杂志,1993,16(4):256.
    [38]Goodson RJ,Katre NV.Site-directed PEGylation of recombinant interleukin-2 at its glycosylation site [J]. Bio/Technol., 1990, 8(4): 343.
    [39] Tsutsumi Y, Tsunoda SI, Kamada H, et al. PEGylation of interleukin-6 effectively increases its thrombopoietic potency [J]. Thromb. Haemost., 1997, 77(1): 168.
    [40] Tsutsumi Y, Kihira T, Tsunoda S, et al. Molecular design of hybrid tumour necrosis factor alpha with polyethylene glycol increases its anti-tumour potency [J]. Br. J. Cancer, 1995, 71(5): 963.
    [41] Tsunoda S, Ishikawa T, Yamamoto Y, et al. Enhanced antitumor potency of polyethylene glycolylated tumor necrosis factor-a: A novel polymer-conjugation technique with a reversible amino-protective reagent [J]. J. Pharmacol. Exp. Then, 1999, 290(1): 368.
    [42] J. Gordon S. Development of oral insulin: progress and current status [J]. Diabetes Metab. Res. Rev., 2002,18(suppl 1): s29-s37.
    [43] Stephen C., Paresh D., J. Gordon S., et al. Oral modified insulin (HIM2) in patients with type 1 diabetes mellitus: Results from a phase I/II clinical trial [J]. Metabolism, 2004,53(1): 54-58.
    [44] Chet L.L., John S.P., Kimberly M.P., et al. Dry powder formulation of inhaled PEG-insulin yields prolonged systemic activity in dogs [R]. New Orleans, Louisiana, USA: American Diabetes Association, 2003:
    [45] Kenneth D.H., Kathleen M.C., Kathleen M.H., et al. PEGylated insulin in PLGA microparticles. In vivo and in vitro analysis [J]. J. Contrl. Release., 2005, 104: 447-460.
    [46] Sharon B, Nadine T, Tomoaki I, et al. Relationship between molecular mass and duration of activity of polyethylene glycol conjugated granulocyte colony-stimmulating factor mutein [J]. Exp. Hematol., 1999, 27(3): 425.
    [47] Niven RW, Whitcomb KL, Shaner L, et al. Pulmonary absorption of polyethylene glycolated recombinant human granulocyte-colony-stimulating factor (PEG-rhG-CSF) [J]. J. Control. Release, 1994,32(2): 177.
    [48] Knusli C, Delgado C, Malik F, et al. polyethylene glycol (PEG) modification of granulocyte-macrophage colony stimulating factor (GM-CSF) enhances neutrophil priming activity but not colony stimulating activity [J]. Br. J. Haematol., 1992, 82(4): 654.
    [49] Malik F, Brew J, Maidment SA, et al. PEG-modified erythropoietin with improved efficacy [J]. Exp. Hematol., 2000, 28(7): s106.
    [50] Harker LA, Marzec UM, Novembre F, et al. Treatment of thrombocytopenia in chimpanzees infected with human immunodeficiency virus by pegylated recombinant human megakaryocyte growth and development factor[J].Blood,1997,90(10):754.
    [51]Guerra PI,Acklin C,Kosky AA,et al.PEGylation prevents the N-terminal degradation of megakaryocyte growth and development factor[J].Pharm.Res.,1998,15(12):1822.
    [52]Beauchamp CO,Gonias SL,Menapace DP,et al.A new procedure for the synthesis of polyethylene glycol-protein adducts;effects on function,receptor recognition,and clearance of superoxide dismutase,lactoferrin,and a_2-macroglobulin [J].Anal.Biochem,1983,131(1):25.
    [53]区耀华,吕冬,周昕.超氧化物歧化酶化学修饰的初步研究[J].生物化学和生物物理进展,1989,16(3):203.
    [54]王继华,曹淑桂,程玉华.双链聚乙二醇与超氧化物歧化酶共价结合物的理化和免疫学性质[J].生物化学和生物物理进展,1992,19(6):444.
    [55]杨保珍,张天民.长效低抗原性超氧化物歧化酶的研制及其药物动力学[J].中国医药工业杂志,1991,22(11):526.
    [56]洛训懿,王晶翼.重组人超氧化物歧化酶化学修饰的初步研究[J].生物化学与生物物理进展,1993,20(6):452.
    [57]Ladd DL and Snow RA.Reagents for the preparation of chromophorically labeled polyethylene glycol-protein conjugates[J].Anal.Biochem.,1993,210(2):258.
    [58]Humphries J,Lattimer C,Smith A,et al.High and constant plasma levels of tissue plasminogen activator and PEG-hirudin can be achieved by subcutaneous delivery[J].Thromb.Res.,1997,87(1):123.
    [59]Esslinger HU,Haas S,Maurer R,et al.Pharmacodynamic and safety results of PEG-hirudin in healthy volunteers[J].Thromb.Haemost.,1997,77(5):911.
    [60]Kajihara J,Shibata K,Nakano Y,et al.Physicochemical characterization of PEG-PPG conjugated human urokinase[J].Biochim.Biophys.Acta,1994,1199(2):202.
    [61]叶建新,肖成祖,张正光等.聚乙二醇修饰对尿激酶原性质的影响[J].军事医学科学院院刊,1996,20(2):110.
    [62]Ajisaka K and Iwashita Y.Modification of human hemoglobin with polyethylene glycol:A new candidate for blood substitute[J].Biochem.Biophys.Res.Comm.,1980,97(3):1076.
    [63]洪民,宋文俊等.聚乙二醇大分子化猪血红蛋白对其携氧特性的影响[J]. 生物工程学报,2000,16(1):22.
    [64]Tang W,Chang Y,Xu LF.Studies on the PEGylation of protein at a specific site:Sulfhydryl-PEGylation of 97Cys-IFN-gamma[J].Acta Biochim Biophys Sinica,1996,28(3):312.
    [65]Algranati NE,Sy S,Modi M.A branched methoxy 40 kDa polyethylene glycol (PEG) moiety optimizes the pharmacokinetics(PK) of peginterferon alpha-2A (PEG-IFN) and may explain its enhanced efficacy in chronic hepatitis C(CHC)[J].Hepatology,1999,30(4):120.
    [66]Zeuzem S,Feinman SV,Rasenack J,et al.Peginterferon alfa-2a in patients with chronic hepatitis C[J].N.Engl.J.Med.,2000,343(23):1666.
    [67]Heathcote EJ,Shiffman ML,Cooksley WGE,et al.Peginterferon alfa-2a in patients with chronic hepatitis C and cirrhosis[J].N.Engl.J.Med.,2000,343(23):1673.
    [68]姚文兵,吴梧桐,沈子龙等.聚乙二醇对干扰素-α-2b的初步化学修饰研究[J].中国药科大学学报,2000,31(1):74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700