用户名: 密码: 验证码:
溶胶—凝胶/离子交换复合强化玻璃研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路技术的快速发展对关键材料及部件的要求越来越高。作为高铁列车的重要组成,车窗玻璃需要具备极高的强度、安全性、稳定性。化学钢化玻璃是车窗玻璃材料是高速列车用玻璃中重要的一类,具有强度高、可裁切、并且几乎不会带来变形以及光学不良影响等优良特性,其研究开发受到国内外的高度重视,并取得许多突破性进展。但其表面压应力层很薄,对微缺陷十分敏感,耐划伤能力较弱。很小的表面损伤,就足以使整体强度降低,这给高铁车窗的安全性和可靠性带来隐忧。
     本文以高铁车窗玻璃为应用背景,采用溶胶-凝胶/离子交换复合强化工艺研究改善化学钢化玻璃的耐磨性。研究表明采用溶胶-凝胶法在普通玻璃表面制备透明硬质薄膜可以有效增强耐磨性。然而,通过溶胶-凝胶法与离子交换工艺复合强化玻璃同时提高强度和耐磨性的研究与报道目前还比较少。本文从优化离子交换的工艺参数、熔盐配方和研究环氧丙烷辅助制备溶胶通用方法及机理两方面着手,并以此为基础,将两者组合,采取离子交换-镀膜和镀膜-离子交换两种复合强化工艺制备出透明耐磨薄膜镀膜化学钢化玻璃,同时研究了其中的主要影响因素和相关机理。
     论文主要研究内容及结论如下:
     (1)基于离子交换的基本原理,优化了钠钙玻璃化学钢化工艺参数和熔盐配方。
     研究表明:经过15min铬酸洗液预处理玻璃原片在450℃的硝酸钾熔盐中进行离子交换10-11小时可以达到最大的抗弯强度。通过正交试验得到优化后的按质量比的熔盐配方为:KN03:K2CO3:KOH氧化铝:硅藻土=100:2:0.5:3.5:1.5。使用该配方在450℃进行离子交换,钢化时间减少到9小时,抗弯强度达到-362MPa。钢化后,玻璃可见光透过率保持不变,纳米硬度在表面深度-650nm前的大于原片,超过这一深度两者相同。
     (2)开发环氧丙烷辅助低成本制备溶胶的通用方法,探讨溶胶稳定化机理。
     以氧氯化锆、氯化锡、正硅酸乙酯为前驱体,以水-乙醇为溶剂(水醇比体积比VW/E=1/3),加入环氧丙烷(摩尔比PO/C1或者PO/-CH2CH3=1.5/1),5wt%稀硝酸(1.5m1/100m1)在室温下搅拌均匀,30h后均能形成稳定均匀,粘度-6.5-7mPa·s、固含量为2wt%的一元或者二元复合溶胶。其主要机理为:环氧丙烷作为凝胶促进剂,通过开环反应促进前驱物水解聚合;同时加入适量稀硝酸稳定体系的pH;适度控制溶剂的水醇比提高分散介质的介电常数,增强胶粒间的静电排斥力。通过这些措施的协同作用既保证了溶胶的形成,又阻止了胶粒过快聚集成凝胶,可以简单快速地获取长时间稳定的溶胶。
     (3)通过离子交换-镀膜复合强化工艺制备透明耐磨薄膜镀膜化学钢化玻璃
     采用溶胶凝胶法在化学钢化玻璃表面制备出ZrO2-SiO2、ZrO2-SnO2系列薄膜,研究了热处理温度和薄膜组成对镀膜玻璃的力学和光学性能的影响。研究表明:所有薄膜均连续均匀;随着热处理温度从300℃升高到500℃,45nm厚度纯Zr02镀膜样品的薄膜逐渐由无定形态转变为四方相为主,纳米硬度增大,折射率随之增大,增加了光反射和散射损失,降低了可见光透过率,高温导致的压力层松弛使得镀膜玻璃的抗弯强度亦出现快速降低。因此,镀膜化学钢化玻璃热处理温度不宜超过400℃。此外薄膜厚度增加到200nm,透过率会大幅下降,但对镀膜玻璃的抗弯强度无明显影响。
     在400℃热处理1h的条件下,ZrO2-Si薄膜中含Si02均为无定形结构。随着薄膜中Si含量增加,可见光透过率增加,但薄膜纳米硬度和杨氏模量随之降低,镀膜玻璃抗弯强度有一定改善;1Zr-1Si薄膜镀膜样品综合性能最佳:表面硬度=14GPa,抗弯强度=342MPa,厚度~45nm时可见光透过率大于88%。ZrO2-SnO2系列薄膜随Sn02含量增加,纳米硬度和镀膜玻璃抗弯强度基本保持不变,但可见光透过率增大;纯Sn02薄膜性能最优,表面硬度=16.4GPa,抗弯强度=322MPa,厚度-45nm时可见光透过率大于90%。
     (4)通过镀膜-离子交换复合强化工艺制备透明耐磨薄膜镀膜化学钢化玻璃
     为克服离子交换-镀膜工艺对薄膜热处理温度的限制,探索采用溶胶-凝胶法在玻璃表面制备出薄膜,经550℃进行热处理2小时后,再通过离子交换形成镀膜增强玻璃的复合强化工艺。研究表明:所有薄膜均连续均匀,纯Zr02薄膜为四方相结构,含Si薄膜为无定形结构;含Sn薄膜为四方相ZrO2、SnO2和正交相ZrSnO4混合多晶薄膜。所有薄膜均具有较高弹性恢复率(>60%)以及H/E比(>0.1)有利于基体强度增强;对于ZrO2-SiO2系列复合薄膜而言随着Si含量增加,薄膜折射率降低,可见光透过率增加,但表面硬度和杨氏模量随之降低;对于Zr02-Sn02系列复合薄膜而言,纳米硬度随薄膜组成变化趋势不明显,纯Sn02薄膜的纳米硬度提高到24GPa,镀膜玻璃的抗弯强度在360MP~380MPa之间。随着薄膜中Sn02含量的增加,薄膜折射率减小,透过率增大,纯Sn02镀膜样品透过率大于91%。表面薄膜对离子交换有阻碍作用,随着薄膜厚度增大,离子交换深度降低,使得抗弯强度也会随之降低,可见光透过率亦随之降低。在-200nm厚度之前,薄膜带来强化作用会弥补部分因交换深度降低引起的抗弯强度损失。
     综上所述,采用新型的溶胶-凝胶/离子交换工艺复合强化钠钙玻璃,具有简单方便、成本低廉、薄膜与玻璃结合力强等优点。透明耐磨薄膜镀膜既可以保护化学钢化玻璃表面容易损伤的压应力层,又能保持原有的优异的抗弯强度和可见光透过率等性能。该工艺非常适宜制备耐磨高强度车窗坡璃材料。
High-performance equipments and materials are required with the rapid development of high-speed railway technology. As an important component of high-speed train system, the window glass material demands high strength, security and stability. Chemical strengthening glass demonstrates high strength, cuttale, barely optical defect, hardly any deformation and plays an important role in high-speed train window glass. Therefore, researches in this territory gained much attention and achieved many breakthroughs both at home and abroad. However, because of the relatively low surface hardness, chemical strengthening glass is susceptible to weakness from micro defects. Surface damages penetrated thin compressive stress layer would lead to lowering the overall bending strength remarkably, and hence lowered security and reliability of high-speed train window-shields or cockpit.
     Sol-Gel coating/ion exchange composite strengthening process were adopted to improve wear-resistance of chemical strengthing glass. Recent studies shown that glass surface could be enhanced by coating with transparent hard Sol-Gel films. However, few reports were concerned on jointly enhancing strength and wear-resistance by composite strengthening process. In our research, based on optimization experiments of process parameters, molten salt formula of the ion exchange process and exploring new type of propylene epoxide-assisted Sol-Gel route, wear-resistant chemical strengthening glass were obtained by both ion exchange-Sol-Gel coating and Sol-Gel coating-ion exchange composite strengthening methods. At the same time, Main influencing factors and mechanism of all processes were investigated.
     The main research contents and conclusions are as follows:
     (1) Parameters and fused mixed salts formula were optimized according to ion exchange strengthening theory.
     The results showed that:After pretreatment in chromic acid lotion for15min, raw glass ion exchanged in molten potassium nitrate salt at450℃for10-11hours can achieve maximum bending strength. Optimized molten mixed salt formula obtained by the orthogonal experiment is (in mass):KNO3:K2CO3:KOH:alumina:diatomite=100:2:0.5:3.5:1.5. Ion exchange time would be reduced to9hours by using this molten salt formula instead of pure potassium nitrate, and obtained a bending strength as high as-362MPa. Visible light transmittance was unchanged, while nano hardness was greater than the glass surface in the depth less than~650nm and almost the same in deper thickness after ion exchange.
     (2) Mechanism and main influencing factors were studied in manufacturing coating sols with low cost propylene epoxide-assisted Sol-Gel route.
     We found that:stable and uniform unitary or binary composite sols (solid content:2wt%, viscosity:6.5-7mPa·s) could be obtained when the reaction solution which consisted of Zirconium Chloride or Tin Chloride or Ethyl Orthosilicate as precursor, mixed water and ethanol as solvent (water/alcohol:VW/E=1/3, in volume), assisted with propylene epoxide (PO/Cl or-CH2CH3=1.5/1, in mole ratio) and dilute nitric acid (5wt%,5ml/100ml), stirred well at room temperature after30h. The brief reaction mechanism is that:propylene epoxide is a gel agent witch promotes precursors's hydrolyzation and polymerization reaction by ring opening reaction; adding suitable amount of dilute nitric acid could stabilize the pH value of the system at the same time; moderate control VW/E of solvent improves dielectric constant of dispersion medium and so does the electrostatic repulsion between colloidal particles. This method not only ensures the formation and stability of the sol, but also avoids fast aggregation of the colloidal particles to become gel.
     (3) Transparent and wear-resistant films coated chemical tempering glass prepared by ion exchange-Sol-Gel coating composite strengthening method.
     Chemical tempered glass coated with ZrO2-SiO2, ZrO2-SnO2series thin films in the surface obtained by Sol-Gel method. Influences of heat treatment temperature and film composition on the mechanical and optical properties of the coated glass were investigated. Results showed that: Homogeneous, continuous and dense films are obtained. With increasing heat treatment temperature from300℃to500℃,~45nm pure ZrO2film gradually transformed from amorphous into tetragonal phase, whose nano hardness were increased. Meanwhile, refractive index of film also increased which resulted in reflection and scattering loss and reduced glass transmittance. During the high temperature heat treatment, obvious compressive layer relaxation caused rapidly bending strength reduction. As a result, films coated chemical tempering glass should not be heat treated exceed400℃. Besides, as coating films thickness increased from45nm to200nm, transmittance will fall sharply too. However, there was no significant influence on bending strength of the coated glass.
     ZrO2-SiO2series thin films containing Si are amorphous structure after heat treating at400℃for1h. When increase of Si content in the films, transmittance would be improved, so did the bending strength of coated glass, but nano hardness and young's modulus decreased. Named1Zr-1Si thin film (thickness~45nm) coated sample exhibited comprehensive better performance:surface hardness=14GPa, bending strength=342MPa, visible light transmittance is greater than88%. ZrO2-SnO2series thin films with more SnO2content could found more significant tetragonal phase SnO2and increased visible light transmittance, while nano hardness and bending strength of coated glass almost remained the same. Pure SnO2film (-45nm thickness) coated sample performs optimal properties:surface hardness=16.4GPa, bending strength=322MPa, visible transmittance>90%.
     (4) Preparation of transparent and wear resistant films coated chemical strengthening glass through the Sol-Gel coating-ion exchange composite strengthening method.
     To avoid high heat treatment temperature limitations in ion exchange-thin film coating process, an alternative path was developed. Raw glass was coated by Sol-Gel method and heat treated at550℃for2hours, then, followed by an ion-exchange strengthening process. Investigation results revealed that:Homogeneous, continuous are obtained. Pure ZrO2film belongs to tetragonal structure, other films with SiO2have an amorphous and with SnO2have tetragonal SnO2, ZrO2and orthorhombic ZrSnO4polycrystalline structure. All obtained films with high H/E≥0.1ratio and elastic recovery (We≥60%) were thought to benefit glass3-point bending strength. Light transmittance increased, while refractive index, hardness and Young's modulus decreased with the increasing SiO2content in films. Nano hardness and bending strength change trend are not obvious when SnO2content increased in ZrO2-SnO2series composite coated films and lowered the refactive index to improve transmittance. Values of bending strength of ZrO2-SnO2coated glass are in the range of360MP-380MPa. Pure SnO2film (-45nm thickness) coated sample performs optimal nano hardness=24GPa and visible transmittance>91%. Surface film was considered as obstacles during ion exchange. Ion exchange depth was reduced and resulted in bending strength reduction while the film thickness increased. However, reinforcement brought by Sol-Gel films could make up the strength loss caused by exchange of depth in less than the film thickness of200nm.
     In conclusion, high film-glass bonding wear-resistant chemical tempering glass could be easily and expediently obtained by Sol-Gel coating/ion exchange composited strengthening process with low cost. Those coated films protect the vulnerable surface compressive stress layer from scratch damage. Meanwhile, the excellent properties of original chemical tempering glass were able to keep. We think composited strengthening process is quite suitable when applied in preparation of high strength wear-resistant high-speed train window materials.
引文
[1]赵永田主编,玻璃工艺学[M].武汉:武汉工业大学出版社,1993.
    [2]A. A. Griffith. Phenomena of Rupture and Flow in Solids [J]. Philosophical Transaction of Royal Society. London,1920, A221:163
    [3]土桥正二,玻璃表面物理化学[M].北京:科学出版社,1986.
    [4]石新勇,安全玻璃[M].北京:化学工业出版社,2006:18-19
    [5]王承遇,陶瑛.玻璃表面处理技术[M].北京:化学工业出版社,2004:300-322.
    [6]S. S. Kistler. Stresses in Glass Produced by Nonuniform Exchange of Monovalent Ions [J]. Journal of the American Ceramic Society,1962,45(2):59-68.
    [7]R. Gy. Ion Exchange for Glass Strengthening [J]. Material Science and Engineering B.,2008 (149):159-165
    [8]J. T. Burwell. Survey of possible wear mechanisms. Wear,1957,1(2):119-141
    [9]S. Bouzid, Z. Azari. Glass Damage by Impact [J], Journal of Ningbo University (NSEE),2003, 16(4):354-356.
    [10]C. Bousbaa, A. Madjoubi, M. Hamidouche, et al. Effect of annealing and chemical strengthening on soda lime glass erosion wear by sand blasting[J], Journal of the European Ceramic Society,2003, 23(2):331-343.
    [11]M. Kolli, M. Hamidouche, N. Bouaouadja et al. HF etching effect on sandblasted soda-lime glass properties[J], Journal of the European Ceramic Society,2009,29(13):2697-2704.
    [12]包亦望,黎晓瑞,金宗哲.等效冲击方法研究硬质颗粒对玻璃的冲击损伤[J],航空材料学报,1998,18(2):41-46.
    [13]N. Adjouadi, N. Laouar, C. Bousbaa, et al. Study of light scattering on a soda lime glass eroded by sandblasting[J]. Journal of the European Ceramic Society,2007,27(10):3221-3229.
    [14]邱岩,包亦望,李庆阳.钠钙硅玻璃摩擦磨损性能研究[J].国外建材科技,2008,29(6):49-51.
    [15]王海风,贺雅飞,郭明星等.化学钢化工艺对钢化玻璃耐磨性的影响[J].摩擦学学报,2007,27(6):524-528.
    [16]贲静,李宇.化学钢化玻璃强度影响因素控制[J].玻璃,2004,5:53-55.
    [17]Nordberg, M. E. Mochel, E. L. Garfinkel, et al. Strengthening by ion exchange [J]. Journal of American Cramic Society.1964,47:215
    [18]A. K. Varshneya, I. M. Spinelli. High-strength, large-case-depth chemically strengthened lithium aluminoslicate glass [J]. American Ceramic Society Bulletin,2009,88 (5):27-33.
    [19]许杰,张保军,霍永琛等.熔盐添加剂对玻璃离子交换和增强的影响[J].硅酸盐学报,2009,37(5):851-854
    [20]石丽芬,汤李缨,程金树.KOH对离子交换增强硼硅酸盐玻璃性能的影响[J].玻璃与搪瓷,2008, 36(4):1-4.
    [21]X. Zhang, O. He, C. Xu, et al. The effect of impurity ions in molten salt KNO3 on ion-exchange and strengthening of glass. Journal of Non-Crystalline Solids [J].1986, (80):313-318.
    [22]C. Kellman. The how and why of chemically strengthened glass [J]. Glass Industry,1993,6:23-26.
    [23]王晴,李楠楠,李江.Cs 交换法对单层防火玻璃力学性能的研究[J].沈阳建筑大学学报(自然科学版),2008,24(4):620-624.
    [24]刘选军,汤李缨,程金树.Cs+离子对钠钙硅防火玻璃性能的影响fJ].建材发展导向,2005,1:39-41.
    [25]A. K.Varshneya. Kinetics of ion exchange in glasses [J]. Journal of Non-Crystalline Solids,1975,19: 355-365
    [26]W. Rankin, M. P. Brungs. Deactivation of molten salt baths used for the ion exchange strengthening of glasses [J].Glass Technology,1979,20(2):51-52.
    [27]K. Stefan. Modification of Float Glass Surfaces by Ion Exchange [M]. Sweden:Linnaeus University Dissertations.2012,89:91-106.
    [28]王海风,韩文爵,土依民.影响玻璃化学钢化盐浴活性因素的研究[J].玻璃与搪瓷,2004,32(1):19-22.
    [29]王立祥,刘振甫,金文国.影响化学钢化玻璃质量的因素分析[J].玻璃,2012,4:27-31.
    [30]F. Gonella, E. Cattamzza, A. Quaranta. Diffusion behavior of transition metals in field-assisted ion-exchanged glasses [J]. Solid State Ionics,2006,177(35-36):3151-3155.
    [31]苏春辉,端木庆铎,王艳等.A1203透明陶瓷薄膜的制备与结构研究[J].应用化学,1997.12:42-44.
    [32]赵利军,韩柏,李博等.光学级透明金刚石膜的性质[J].吉林大学学报(理学版).2008,146(1):112-115.
    [33]K. J. Clay, S. P. Speakman, N. Tomozeiu, et al. Material properties and tribological performance of rf-PECVD deposited DLC coatings [J]. Diamond and Related Materials,1998,7(8):1100-1107.
    [34]何涛,詹学贵,邵月刚等.有机硅耐磨透明涂料的制备条件优化[J].中国科技论文在线.2007,12(5):363-367.
    [35]苏春辉,端木庆铎,王艳等.金属醇盐水解法制备莫来石透明陶瓷薄膜的研究[J].化学物理学报.1997,10(1):73-77.
    [36]L. L. Beecroft, C. K. Ober. Nanocomposite Materials for Optical Applications [J]. Chemistry of Material. 1997,9:1302-1317.
    [37]张文杰,王建成,马磊等.物理气相沉积对化学钢化玻璃抗冲击强度的影响[J].硅酸盐通报,2011,30(1):79-82.
    [38]G. Carturan, N. Khandelwal, V. M. Sglavo, et al. Strengthening of soda-lime-silica glass by surface treatment with sol-gel silica [J]. Journal of Non-Crystalline Solids,2007,353(16-17):1540-1544.
    [39]M. Watanabe. Chemical method of strengthening glass articles subjected to abrasion resistance treatment [P]. US Patent, US4021218,65/30 E,1977.05.03
    [40]苗向阳,江农基,张保军等.导电膜玻璃在化学钢化过程中的性能变化[J],玻璃,2003,5:3-4.
    [41]M. Minosou, M. Tonoike, H. Kawahara. Method of manufacturing a conductive glass with high strength and wear resistance [P]. US Patent, US005279851A,427/126.2,1994.01.18.
    [42]黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社.2005:2-15.
    [43]丁子上,翁文剑.溶胶-凝胶技术制备材料的进展.硅酸盐学报,1993,20(5):443-450.
    [44]黄仲涛,曾昭槐,钟邦克等.无机膜技术及其应用[M].北京:中国石化出版社,1999.
    [45]许杰,赵芳红,张保军等.高温处理对离子交换玻璃力学性能的影响[J].武汉理工大学学报,2009,31(22):110-112.
    [46]姚允斌,裘祖楠.胶体与表面化学导论[M].南开大学出版社,1988.
    [47]C. J. Brinker, A. J. Hurd, P. R. Schunk, et al. Review of sol-gel thin film formation [J]. Journal of Non-Crystalline Solids,1992, (147-148):424-436
    [48]M. Popovicia, J. de Graafb, M. A. Verschuuren et al. Zirconia thin film preparation by wet chemical methods at low temperature [J]. Thin Solid Films,2010,519(2):630-634.
    [49]A. V. Shevchenko, E. V. Dudnik, A. K. Ruban, et al. Hydrothermal synthesis of ultrafine zirconia powders [J]. Powder Metallurgy and Metal Ceramics,1997,36(7-8):420-424.
    [50]C. R. Aita. In Advances in Coatings Technologies for Corrosion and Wear Resistant Coatings [J]. TMS Annual Meeting, Warrendale, PA,1995:235.
    [51]A. Dyaz-Parralejo, R. Caruso, A.L. Ortiz, et al. Densification and porosity evaluation of ZrO2-3 mol% Y2O3 sol-gel thin films, Thin Solid Films 2004(458):92-97.
    [52]Y. F. Gao, Y. Masuda, H. Ohta. Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex solution [J]. Chemistry of Materials,2004,16 (13):2615-2622.
    [53]崔巍巍,溶胶凝胶法制备均匀无裂纹的氧化锆薄膜[D].长春:吉林大学,工学硕士学位论文.2005:1-26.
    [54]D. Chen. Anti-reflection (AR) coatings made by sol-gel Processes:A review [J]. Solar Energy Materials&Solar Cells,2001, (68):313-336.
    [55]袁文辉.氧化铝无机膜的制备及其分离特性的研究[D].广州:华南理工大学,1998.
    [56]W. M. Liu, Y. X. Chen, C. F. Ye, et al. Preparation and characterization of doped sol-gel zirconia films [J], Ceramics International,2002,28(4):349-354.
    [57]曹化强,王弘,杨萍华等.醇盐受控水解法制备YSZ超细粉及其表征[J].中国科学技术大学学报,1997,27(4):436-439.
    [58]M. T. Soo, N. Prastomo, A. Matsud, et al. Elaboration and characterization of sol-gel derived ZrO2 thin films treated with hot water [J]. Applied Surface Science,2012,258(13):5250-5258.
    [59]A. Diaz-Parralejo, A. Macias-Garcia, J. Sanchez-Gonzalez, et al. Influence of the experimental parameters on the synthesis process of yttria-doped zirconia sol-gel films [J]. Surface & Coatings Technology,2010,204:2257-2261
    [60]李懋强.一种从无机锆盐水溶胶制备球形氧化锆颗粒的方法及其原理[J].中国粉体技术,2000,6(5):13-18.
    [61]徐宪云,李翰祥,周迎春.凝胶-溶胶法制备纳米二氧化锆fJ].辽宁化工,2007,36(10):663-665.
    [62]王金清,刘晓红,单小东.ZrO2薄膜的力学性能和摩擦学性能研究[J].材料科学与工程学报,2004,22(5):669-673.
    [63]周彩华,何超,胡行方.氧氯化锆前驱体氧化锆溶胶的制备与研究[J].玻璃与搪瓷,2001,29(4):41-44.
    [64]奚红霞,黄仲涛.氧化锆膜的制备和表征[J].无机材料学报,1996,11(3):547
    [65]A. E. Gash, T. M. Tillotson, J. H. Satcher, et al. Use of Epoxides in the Sol-Gel Synthesis of Porous Iron(Ⅲ) Oxide Monoliths from Fe(Ⅲ) Salts[J]. Chemistry of Materials,2001,13(3):999-1007.
    [66]张宝泉,张宝凤,徐黎明等.硅锆复合膜的制备与表征[J].高校化学工程学报,2006,20(3):443-448.
    [67]I. Uhlmann, D. Hawelka, E. Hildebrandt, et al. Structure and mechanical properties of silica doped zirconia thin films[J]. Thin Solid Films,2013,527(1):200-204.
    [68]S. B. Qadri, U, H. Kim, H.R. Khan, et al. Transparent conducting films of In203-ZrO2, SnO2-ZrO2 and ZnO-ZrO2 [J]. Thin Solid Films.2000,377(78):750-754.
    [69]付静,张保军,马眷荣.离子交换增强玻璃的表面酸处理[J].航空材料学报.2003,23:179-181.
    [70]耿宝龄.浅谈化学钢化玻璃基础理论[J],玻璃,1979.3:26-30.
    [71]贲静,李宇.化学钢化玻璃强度影响因素控制[J],玻璃,2004.5,176:53-55
    [72]张峙琪,李伟捷,杨修春等.超薄玻璃化学钢化的研究进展[J],玻璃与搪瓷,2009,37(4):40-49.
    [73]石丽芬.离子交换对硼硅酸盐平板玻璃结构和性能的影响[D].武汉:武汉理工大学,硕士论文,2008.
    [74]付静.玻璃表面微缺陷与离子交换表面改性的研究[D].北京:中国建筑材料科学研究院,硕士论文,2001.
    [75]E. M. Rabinovich. Some aspects of the fracture of chemically strengthened glass. Glass Technology, 1980,21(4):206-208.
    [76]M. J. C. Hill, L. W. Donal. Stress profile characteristics and mechanical behavior of chemically strengthened lithium magnesium alumina silicate glasses [J]. Glass technology,1989, (30):123-127.
    [77]K. O. Kese, Z. C. Li, B. Bergman. Influence of residual stress on elastic modulus and hardness of soda-lime glass measured by nanoindentation [J]. Journal of Materials Research,2004,19(31):09-19.
    [78]O. K. Botvinkin, O. N. Denisenko Application of ion exchange method to increase the hardness of polished glass [J]. Glass Ceramics,1968,25:78-80.
    [79]M. A. Klecka, G. Subhash, N. K. Arakere. Determination of subsurface hardness gradients in plastically graded materials via surface indentation [J]. Journal of Tribology,2011,133:1-5.
    [80]赵宏伟,赵宏健,姚金玖等.一种钠钙硅酸盐玻璃的纳米压痕测试分析[J],纳米技术与精密工程,2009,7(3):205-210
    [81]谢存毅.纳米压痕技术在材料科学中的应用[J],物理,2001,30(7):432-435
    [82]P. Jannotti, G. Subhash, P. Ifju, et al. Influence of ultra-high residual compressive stress on the static and dynamic indentation response of a chemically strengthened glass [J]. Journal of the European Ceramic Society,2012,32(8):1551-1559.
    [83]石丽芬,汤李缨,程金树.KOH对离子交换增强硼硅酸盐玻璃性能的影响,玻璃与搪瓷,2008, 36(4):1-5.
    [84]王承遇,陶瑛.玻璃材料手册,化学工业出版社,2007.10:100-102
    [85]A. E. Gash, J. H. Satcher, R. L. Simpson. Strong akaganeite aerogel monoliths using epoxides:synthesis and characterization [J]. Chemistry of Materials,2003,15 (17):3268-3275.
    [86]M. A. Russak, C. V. Jahnes, E. P. Katz, et al. Reactive magnetron sputtered zirconium oxide and zirconium silicon oxide thin films [J]. Journal of Vacuum Science and Technology,1989, A7 (3):1248-1254.
    [87]G. Fang, Z. Liu, Z. Zhang et al. Preparation of Zr02-SnO2 thin films by the sol-gel technique and their gas sensitivity [J]. Physica status solidi (a),1996,156(1):81-85.
    [88]B. J. Clapsaddle, D.W. Sprehn, A. E. Gash, et al. A versatile sol-gel synthesis route to metal-silicon mixed oxide nanocomposites that contain metal oxides as the major phase [J]. Journal of Non-Crystalline Solids,2004,350(15):173-181.
    [89]A. E Gash, T. M Tillotson, J. H. Satcher, et al. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors [J]. Journal of Non-Crystalline Solids,2001.6, 285(1-3):22-28.
    [90]周斌,杜艾,沈军等.过渡金属基气凝胶、过渡金属氧化物气凝胶、复合过渡金属氧化物气凝胶的制备方法[P].专利号:CN 101219360A,中国,2008.7.16.
    [91]C. N. Chervin, B. J. Clapsaddle, H. W. Chiu, et al. Aerogel Synthesis of Yttria-Stabilized Zirconia by a Non-AIkoxide Sol-Gel Route [J]. Chemistry of Materials 2005,17(13):3345-3351.
    [92]M. Q. Li. Making spherical zirconia particles from inorganic zirconium aqueous sols [J]. Powder Technology,2003,137(l-2):95-98.
    [93]E. J. W. Verwey, J. Th. G. Overbeek, K. Van Ness. Theory of the stability of lyophobic colloids-the interaction of soil particles having an electrical double layer [M]. Elsevier,1948.
    [94]R. J. Hunter. Foundations of Colloid Science [M]. New York:Oxford University press,1987.440-447.
    [95]C. N. Chervin, B. J. Clapsaddle, H. W. Chiu, et al. Role of cyclic ether and solvent in a non-alkoxide sol-gel synthesis of yttria-stabilized zirconia nanoparticles [J]. Chem. Mater.2006,18(20):4865-4874.
    [96]J. Livage, C. Sanchez, M. Henry, et al. The chemistry of the sol-gel process [J]. Solid State Ionics,1989, 32-33(2):633-638.
    [97]B. J. Clapsaddle, A. E. Gash, J. H. Satcher Jr. et al. Silicon oxide in an iron (Ⅲ) oxide matrix:the sol-gel synthesis and characterization of Fe-Si mixed oxide nanocomposites that contain iron oxide as the major phase [J]. Journal of Non-Crystalline Solids,2003,331 (1-3):190-201.
    [98]H. Cui, M.Zayat, D. Levy. A sol-gel route using propylene oxide as a gelation agent to synthesize spherical NiAl2O4 nanoparticles [J]. Journal of Non-Crystalline Solids,2005,351(24-26):2102-2106.
    [99]M. Pakala, H. Walls, R.Y. Lin. Micro hardness of Sputter-Deposited Zirconia Films on Silicon Wafers [J]. Journal of American Ceramic Society,1997,80(6):1477-1484.
    [100]C. A. Charitidis. Probing mechanical properties of thin film and ceramic materials in micro-and nano-scale using indentation techniques [J]. Applied Surface Science,2010,256(24):7583-7590
    [101]V. L. Houerou, J. C. Sangleboeuf, S. Deriano et al. Surface damage of soda-lime-silica glasses: indentation scratches behavior [J]. Journal of Non-Crystalline Solids,2003,316(1):54-63.
    [102]A. K. Varshneya. Kinetics of ion exchange in glasses [J]. Journal of Non-Crystal Solids,1975, 19:355-365.
    [103]J. Shen, D. J. Green, R. E. Tressler, et al. Stress relaxation of a soda lime silicate glass below the glass transition temperature [J]. Journal Non-Crystal Solids,2003,234(3):277-288.
    [104]K. Endres, M. Mennig, M. Amlung, et al. Enhancement of fracture strength of cutted plate glass by the application of SiO2 sol-gel coatings [J], Thin Solid Films,1999,351(1-2):132-136.
    [105]B. D. Fabes, D. R. Uhlmann. Strengthening of glass by sol-gel coatings [J], Journal of American Ceramic Society,1990,73(4):978-988.
    [106]D. R. Uhlmann, T. Suratwal, K. Davidson, et al. Sol-gel derived coatings on glass [J]. Journal of Non-Crystalline Solids,1997,218(9):113-122.
    [107]冀国俊,史志铭,赵鸽.氧化钛纳米薄膜对玻璃表面的强化机制研究[J].稀有金属材料与工程,2009,38(增刊2):552-555..
    [108]R. H. Brzesowsky, G. de With, S. van den Cruijsem, et al. Glass strengthening by silica particle reinforced organic-inorganic coatings[J], Journal of Non-Crystalline Solids,1998,241,1(1):27-37
    [109]杨帆,沈军,吴广明,等.ZrO2/SiO2多层膜的化学法制备研究[J].强激光与粒子束,2003,15(4):326-330.
    [110]梁丽萍,张磊,徐耀,等.PVP掺杂-ZrO2溶胶-凝胶工艺制备多层激光高反射膜的研究[J]物理学报,2006,55(11):6175-6184.
    [111]H. A.Mclnnes, J. E.Andrew, N. J. Bazin, et al. Alternative coating material s and treatment s f or the manufacture of ultra-violet sol-gel mirrors[C], Proc of SPIE.2000,3902:215-223.
    [112]苏小平,余怀之,褚乃林等.半导体材料的红外光学特性及应用[J],稀有金属,1997,21(6):468-474.
    [113]G. Balakrishnan, T. N. Sairam, P. Kuppusamia, et al. Influence of oxygen partial pressure on the properties of pulsed laser deposited nanocrystalline zirconia thin films [J]. Applied Surface Science,2011, 257(20):8506-8510.
    [114]D. H. Kuo, C. H. Chien. Growth and properties of sputtered zirconia and zirconia-silica thin films [J]. Thin Solid Films,2003,429(1-2):40-45.
    [115]M. A. Russak, C. V. Jahnes, E. P. Katz, et al. Reactive magnetron sputtered zirconium oxide and zirconium silicon oxide thin films[J], Journal of Vacuum Science and Technology,1989, A7(3):1248-1254.
    [116]S. Zhao, F. Ma, Z. Song, et al. Thickness-dependent structural and optical properties of sputter deposited ZrO2 films [J]. Optical Materials,2008,30(9):10-915.
    [117]J. C. Ray, C. R. Saha, P. Pramanik. Chemical synthesis of nanocrystalline tin-doped cubic ZrO2 powders [J]. Materials Letters,2003,57(13-14):2140-2144.
    [118]Q. Zhang, J. Shen, J. Wang, et al. Sol-gel derived ZrO2-SiO2 highly reflective coatings [J]. International Journal of Inorganic Materials,2000,2(4):319-323.
    [119]H. Cui, M. Zayat, D. Levy. A sol-gel route using propylene oxide as a gelation agent to synthesize spherical NiAl2O4 nanoparticles [J]. Journal of Non-Crystalline Solids,2005,351(24-26):2102-2106.
    [120]G. Stefanic, S. Music, M. Ivanda. Thermal behavior of the amorphous precursors of the ZrO2-SnO2 system [J]. Materials Research Bulletin,2008,43(11):2855-2871.
    [121]K. Joy, S. S. Lakshmy, P. B. Nair et al. Band gap and superior refractive index tailoring properties in nanocomposite thin film achieved through sol-gel co-deposition method [J]. Journal of Alloys and Compounds 2012,512(1):149-155.
    [122]N. K. Sahoo, S. Thakur, R. B. Tokas. Superior refractive index tailoring properties in composite ZrO2/SiO2 thin film systems achieved through reactive electron beam co-deposition process [J]. Applied Surface Science,2006,253(2):618-626.
    [123]S. B. Qadri, H. Kim, H. R. Khan, et al. Transparent conducting films of In2O3-ZrO2, SnO2-ZrO2 and ZnO-ZrO2 [J]. Thin Solid Films,2000,377(78):750-754.
    [124]S. Sakka, T. Yoko. Sol-gel derived coating films and applications [J]. Chemistry, Spectroscopy and Applications of Sol-Gel Glasses Structure and Bonding.1992,77:89-118.
    [125]J. Musil. Hard nanocomposite coatings:thermal stability, oxidation resistance and toughness [J]. Surface & Coatings Technology,2012,207(25):50-65.
    [126]J. Musil, F. Kunc, H. Zeman, et al. Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings [J]. Surface and Coatings Technology,2002,154(2-3):304-313.
    [127]M. L. Zheludkevich, M. Salvadob, M. G. S. Ferreira. Sol-gel coatings for corrosion protection of metals [J], Journal of Materials Chemistry,2005,15:5099-5111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700