用户名: 密码: 验证码:
基于面料力学性能的服装缝纫平整度等级客观评价系统的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界范围内的质量标准体系和规范测试方法的逐步推广和应用,以及服装生产快速反应的需求,有必要建立一套根据可测量面料各项性能指标来预测成衣加工质量的客观评价系统。本文利用世界上目前通用的FAST面料力学性能测试系统对一定范围内常用服装面料进行测定,进行了面料各项FAST力学性能与缝纫平整度关系研究、面料斜向力学性能及斜向缝纫性能的变化研究以及粘衬后面料各项力学性能的变化研究。在此基础上,引入各种统计理论、回归分析及人工神经网络等模式识别方法,建立基于面料各项力学性能值的面料缝纫平整度等级客观评价模型以及基于面料力学性能、粘合衬力学性能值的粘衬组合物缝纫平整度等级客观评价模型。
     本文的主要贡献简述如下:
     (1)第一章首先阐述了建立服装缝纫外观平整性客观评价系统的研究意义,重点概述了国内外有关服装面料性能与缝纫性能的关系研究、服装缝纫性能客观评价系统的研究,同时介绍了面料性能测试仪器及对缝纫性能的客观评价方法。
     (2)第二章首次采用肯德尔τ-b秩相关(Kendall's tau-b)分析法和斯皮尔曼秩相关(Spearman's rho)分析法分别对面料的结构力学性能、拉伸力学性能、弯曲力学性能、剪切力学性能、成型性及尺寸稳定性能与面料的缝纫等级进行了相关性分析研究,得出面料的七个结构力学性能指标均与面料的缝纫性能具有相关性,同时七个指标之间也具有较高的相关性;面料的拉伸伸长性能指标中,除了EB5、G两个指标与面料的缝纫性能相关性较低外,其它指标与缝纫性能具有一定的相关性,同时EB5、G与其它各拉伸伸长性能指标之间也具有一定的相关性;面料弯曲力学性能中的弯曲刚度B较弯曲长度C与面料的缝纫性能相关性大,同时由于弯曲刚度是弯曲长度经由一定的公式计算出来的,故二者之间具有较高的相关关系;面料的成型性指标F与缝纫性能具有较大的相关性;面料尺寸稳定性中的松驰收缩与面料的
    
    缝纫性能具有一定的相关性,吸湿膨胀与面料的缝纫性能相关性较差,松驰收缩与
    吸湿膨胀之间的相关性亦较低。对不同结构类型的服装面料缝纫性能随力学性能的
    变化作出分析。
     (3)在服装缝制过程中,要将二维的平面面料变成三维的曲面服装,沿面料
    不同方向缝纫是不可避免的,由于面料的各向异性,沿不同斜向面料的伸长变形能
    力、弯曲能力及成型性均有所变化,而一般FAST系统测试过程中仅对面料的经纬
    方向进行测定,不可能对任一角度进行测量,故如何根据面料经纬向力学性能值预
    测任一角度力学性能值是对面料缝纫性能客观评价所必须解决的问题。第三章通过
    实验研究考察了面料沿不同角度缝纫时的缝纫性能变化及相对应的面料物理机械性
    能的变化,得出面料沿斜向45“方向具有最大的拉伸伸长率,向经纬方向逐渐递减;
    面料的弯曲刚度随斜裁角度的变化由经向向纬向呈逐渐下降趋势,这是因为大多数
    面料经密大于纬密所致,存在扭抗变形的面料,其最小弯曲刚度将出现在经纬向之
    间,而不是在纬向;面料的成型性随斜裁角度的变化趋势类似于面料的拉伸伸长率
    的变化趋势,均呈以450角附近为最大,向经纬向逐渐递减的趋势。假定面料在低
    应力下的拉伸变形为弹性变形,建立面料斜向拉伸伸长力学性能预测模型,实现由
    经纬两向拉伸伸长值预测任一角度拉伸伸长值,同时在分析验证前人斜向弯曲理论
    基础上,确定最优斜向弯曲刚度预测模型。
     (4)第四章首次采用基于人工神经网络的建模方法,利用前面得出的斜向力学
    性能预测模型计算面料任意角度的各项力学性能值,实现了通过面料的基本力学指
    标对面料沿任意方向缝纫时的外观平整性能进行的非线性预测。为了提高神经网络
    的学习效率、对织物的各项力学指标进行主成分分析,提取了六个主因子作为网络
    的输入参数,经过大量的训练、,得出最佳网络模型,该模型对各类面料的缝纫平整
    性能的预测均达到90%以上。将神经网络模型与传统的多元回归模型进行对比分析
    表明:基于神经网络的预测模型比传统的回归分析方法具有更好的精度。
    (5)粘合衬是制作服装不可缺少的重要辅料。由于织物在粘衬后其力学性能会
With the criterion systems of quality and measurement generalizing in the world and the requirement of Quick Response System in garment manufacturing, it is necessary to set up a series of objective evaluation systems of garment quality in manufacturing based on the fabric properties. In this thesis, we carried out a series of research using FAST (Fabric Assurance by Simple Testing) system to measure the mechanical properties of fabric. The research involves four aspects, which have the strong relations with each other: research on the relationship between fabric mechanical properties and garment seam pucker grade, investigation of the relationship between fabric mechanical properties and seam pucker grade in the bias direction, study on the relationship between mechanical properties of fused composites and those of the face and fusible interlining fabrics, introducing some pattern recognition such as various statistic theories, regression analysis and artificial neural network to establish the objective evaluation systems of the fabric seam-pucker grade and fused composites seam-pucker grade in tailored garment.The brief introductions of each chapter are as follows:Chapter 1 gave the summaries of recent research work in the field of garment seam-pucker grade assessment for both overseas and domestic. The aspects involved included the significances of establishment of objective evaluation system of fabric seam-pucker grade in the garment manufacturing, methods and instruments of measuring the fabric mechanical and seam-pucker of the garments, and the ways to set up the impersonal assessment of garment seam-pucker grade.Chapter 2 firstly used Kendall's tau-b and Spearman's rho analyses to investigate the relativities between the garment seam-pucker grades and the fabric mechanicals properties such as structural properties, extension properties, bending properties, shear
    
    properties, formability and dimension stability. The conclusion is that there are strong relationships between seven structural mechanical properties of the fabric and garment seam-pucker grades, also relationships within themselves. All of the extension mechanical properties have the relations with the garment seam-pucker grades except the properties of EB5 and G those have the relations with other properties. The bending length C has the less relations with garment seam-pucker than bending rigidity B which was calculated from bending length and has strong relationship with bending length. Fabric formability has the obvious relativity with the garment seam-pucker grade, and fabric relaxation shrinkage has the stronger relation with the garment seam-pucker grade than the fabric hygral expansion in the dimension stability, and they have lower relativity with each other. We also investigated the changes of garment seam-pucker grades in different woven fabrics along with the changes of the fabric mechanical properties.When we make the 2-D fabrics into the 3-D garments, cutting and sewing the fabrics along the bias directions is inevitable. Owing to the fabric anisotropy, some mechanical properties such as extension properties, bending properties and formability have different values in the different directions. So it must be solved that we may predict the mechanical property values of any directions of fabric by means of the values of warp and weft of fabric measured with FAST system in garment seam-pucker objective assessment. In Chapter 3, we studied on the changes of fabric mechanical properties and garment seam-pucker grades through experimentation with the fabrics made up in the bias directions. We concluded that the woven fabrics have the largest extension in the 45° direction and gradually descend to warp and weft directions. The largest bending rigidity mostly occurred in warp direction and came down to weft direction because warp density is mostly bigger than weft density in woven fabrics. But if there were twist distortions in woven fabrics, the smallest bending rigidity occurred in one point between warp and weft
    
    direction. The changes of fo
引文
[1]. Alan Hunter, Quick Response in Apparel Manufacturing Survey of the American Scene, North Carolina, U.S.A., 1990
    [2]. R.W.Rennell, FABER research project, China Textile & Apparel 2/3, 1996,pp30-31
    [3].G.Stylios and J.Fan, An expert system for fabric sewability and optimization of sewing and fabric conditions in garment manufacture, in "Proceedings of the 1st International Clothing Conference on Textile objective measurement and Automation in Garment Manufacture, Bradford, U.K.", 1991,PP139-150
    [4].Lindberg.J.Waesterberg, and Svenson.R, Wool fabrics as garment construction materials, Journal of the Textile Institute, 51,1960, ppl415-1492
    [5].Masasko.S.Kawabata and Kimiko Ishizuka, Recent developments in research correlating basic fabric mechanical properties and the appearance of men's suits, in "Proc.Japan-Australia Symposium on Objective Evaluation of Appear Fabrics, Parkville, Australia", 1983,pp67
    [6].R.C.Dhingra and R.Postle, Fabric mechanical and physical properties relevant to clothing manufacture. Clothing Res.J., 1980,Vol.8,pp59
    [7].J.Amirbayat, Seams of different ply properties, Part l:Seam Appearance, Part 2: Seam Strength, J.Text.Inst.,1992, 82, No.2.pp211
    [8].J.Amirbayat, The buckling of flexible sheets under tension, Part 1:Theoretical analysis, Part2: Experiment studies, J.Text. Inst., 1991,82,No.l,pp61-77
    [9].M.Y.Kwong, Engineering principles in man's jacket pattern construction, in "Proc.of l~(st) China International Wool Textile Conference, Xi'an",1994,pp214
    [10].R.L.Shishoo and M.Choroszy, Analysis of mechanical and dimensional properties of wool fabrics relevant to garment making, in "proc.Japan-Australia Symposium on Objective Evaluation of Appear Fabrics, Parkville, Australia," Textile Machinery Society of Japan, Osaka, 1990,pp316
    [11].P.G.Cookson, Relationships between hygral expansion, Relaxation shrinkage, and Extensibility in Woven wool fabrics, Text.Res.J.1992,Vol.62,No.l,pp44-51
    [ 12].K.P.S.Cheng, and K.P.W.Poon, Seam properties of woven fabrics, Textile Asia, 2002, No.3,pp30-34
    [13].A.M.Manich, J.P.Domingues and A.Barella, Relationships between fabric sewability and structural, physical, and FAST properties of woven wool and wool-blend fabrics, J.Text.Inst, 1998,89.No.3,pp579-591
    
    [14]. G. Stylios and Sotomio. J., A neural network approach for the optimization of the sewing process of wool and wool mixture fabrics., in "Proc. of 1st China International Wool Textile Conference, Xi'an", 1994, pp689-693
    [15]. G. Stylios and D. W. Lloyd, The mechanism of seam pucker due to structural jamming in woven textiles, Int. J. Cloth. Sci. Tech., 1989, No. 1,pp286-297
    [16]. P. Schwartz, Effect of jamming on seam pucker in plain woven fabrics, Text. Res. Inst., 1984,pp32-34
    [17].王章明,硕士论文,浙江丝绸工学院
    [18]. M. Niwa, T.Yamada and S. Kawabata, J. Text. Mach. Soc.Japan, 1981,34,p25-26
    [19]. Chang K. Park and TaeJinKang, Objective rating of seam pucker using neural networks, Text.Res.J. 1997,67,No.7,pp494-502
    [20]. T. J. Kang, Y. Lee, Objective evaluation of fabric wrinkles and seam puckers using fractal geometry, Text.Res.J.2000,70,No.6,pp469-475
    [21]. J. Fan and F. Liu Objective evaluation of garment seams using 3Dlaser scanning Technology, Text.Res.J.2000,70,No. 11,pp1025-1030
    [22]. F. T. Pierce, The 'handle' of cloth as a measurable quantity, J.Text.Inst., 1930,21,pp377-417
    [23].李汝勤、宋钧才,纤维和纺织品测试原理与仪器,中国纺织大学出版社,1995
    [24]. Fabrics: Sensory and Mechanical Properties, Textile Progress, 1996,26(3),pp36-38
    [25].川端季雄,KES-F应用,纤维工业(日),1991,Vol.47,No.11,pp624-628
    [26].KES-F 仪器说明书
    [27]. R. L. Shishoo,虞洋(译),织物的评定,江苏丝绸,1992,No.5,pp39-43
    [28]. Pier Giorgio Minazio. FAST-fabric Assurance by Simple Testing. International Journal of Clothing Science and Technology, 07:2/3 1995,pp.43-48
    [29]. A. G.De Boos, A. F.Rocznicok. Communications: "engineering" the extensibility and formability of wool fabrics to improve garment appearance. International Journal of Clothing Science and Technology,08:5 1996, pp51-59
    [30]. AATCC Test Method 88B-2001, "Smoothness of Seam in Fabrics after Repeated Home Laundering".
    [31].陈德钊,多元数据处理,北京:化学工业出版社,1998,4
    [32].王学民,应用多元分析,上海:上海财经大学出版社,1999,9
    
    [33].潘维栋,纺织工程数理统计,上海:华东纺织工学院教材科,1962
    [34].梅长林,实用统计方法,北京:科学出版社,2002
    [35].袁志发,周静芊主编,多元统计分析,北京:科学出版社,2002
    [36].张立明,人工神经网络的模型及其应用,上海:复旦大学出版社,1993
    [37].李学桥,马莉,神经网络-工程应用,重庆:重庆大学出版社,1996
    [38].司昕,预测方法中的神经网络模型,预测,1998,17(2),pp32-35
    [39].尹红风等,人工神经网络原理,模式识别与人工智能,1990,3(3),pp1-12
    [40]. Thiemer R. Fiber recognition by neurochip. Chemical Fibers International, 2000, 50 (2), pp40-42;
    [41]. Lou Cheng, Hossein Ghorashi, Kermit Duckett,et al. Color Grading of Cotton part two:color grading with an xpert system and neural networks., Text. Res. J., 1999.69(12) pp893-903;
    [42]. S.Settle, L.Boullart, Van-langenhove-L. Kiekens-P, Optimizing to Fiber-to-yarn production process with a combined neural network/Genetic algorithm approach, Text. Res. J.,1997, 67(2), pp84-92;
    [43]. M.C.Ramesh,R. Rajamanickam, and S. Jayaraman. The Prediction of Yarn Tensile Properties by Using Artificial Neural Networks. J.Text, Inst. 1996, 87(3),pp 596
    [44]. Van Langenhove L and Sette. The Use of Neural Nets to Predict Yarn Tensile Properties. J.Text.inst. 1996, 87(2), pp400-402
    [45]. Luo Cheng, Adams and D. L. Yarns Strength Prediction Using Neural Networks. Text. Res. J. 1995, 65(9), pp495-500
    [46]. Postle R. A Global Approach to Wool Technoloty from Fibre to FABRIC: wool in Dynalnic Nonlinear Interactive World. preceeding s of the 9th International Wool Textile Researc Conference. Vloume I: Plenary Lectures-Ecology. 1995, pp17-41,
    [47].程文红,陆凯 利用人工神经网络进行纺纱技术预报.上海毛麻科技,2000(1),pp19-21
    [48].蔡煜东,姚林生 亚麻纤维品质与成纱质量的人工神经网络分析方法.纺织基础科学学报.1993,(4),pp307-309,319
    [49]. F. Pynckels, P. Kiekens, S.Sette, and etc. Use of Neural Nets for Determing the Spinnability of Fibers. J.Text. hast. 1995, 86(3), pp425-437
    [50]. Zhu R. and Ethridge M. D. Prediction Hairness for Ring and Rotor Spun Yarns and Analyzing the Impact of Fiber Porperties. Text. Res.J. 1997, 67(9), pp694-698
    [51]. Veil D., Bauer-Kurz I. and Wulfhorst B. Prediction of Yarn Characteristics in the False-Twist Texturing Procss with Neural Networks. Chemical Fibers International. 1997,47(1), pp82
    
    [52]. Chen Pei-Wen and Liang Tsair-Chun. Classifying Textile Faults with a Back-Propagation Neural Network Using Power Spectra. Text. Res. J., 1998,68(2), pp121-126
    [53]. Alec Sirikasemlert, and etc. International Techmical Symposium "100 Years Of modern Fiber Scieuce" July 1998 Asbeville, NC, USA
    [54].成玲,万振凯,张毅.BP神经网络在织物风格评价中的应用,天津工业大学学报.2001,20(3),pp41-43
    [55].张瑞林.人工神经网络评价丝织物风格研究[J].纺织学报,2001,22(1),pp 41-43
    [56]. J.Fan, E.Newton, and R. Au, Predicting garment drape with a fuzzy-neural network, Text. Res. J. 2001,71 (7), pp605-608
    [57]. Warren J.Jasper and etc. Using Neural Networks and NIR pectrophotometry to Identify Fibers. Text. Res. J. 1994, 64(8),pp 444-448
    [58]. Kevin Invernizzi, Bernadette Philips, Reynald Convert, Laurence Schacher, An Application of the Neural Network Technical for the Dyes Recipes Calculation International Technical symposium "100 Years Of modern Fiber Science" July 1998 Asbeville, NC, USA
    [59]. Development of an online quality control system for textile manufacturing. Textile Asia.1999, pp 1024-1027
    [60]. Barrett GR, Clapp TG, Trrus KJ. An on-line fabric classification technique using a wavelet-based neural network approach. Text. Res. J., 1996, 66(8), pp521-528
    [61]. R.H.Gong, Y. Chen, Predicting the Performance of Fabrics in Garment Manufacturing with artificial Neural Networks, Text. Res. J., 1999, 69(7), pp477-482
    [62]. Suug.H. Jeong, and Jung H. Kim, Selecting optimal interlinings with a neural network, Text. Res.J. 2000, 70(11), pp1005-1009
    [63]. Sang.S. Lai, Optimal combinations of face and fusible interlining fabrics, International Journal of Clothing Science and Technology,13:5 2001, pp322-338
    [64]. A.S.W.Wong, Y. Li and P.K.W.Yeung, Neural network predictions of human psychological perceptions of clothing sensory comfort, Text. Res. J. 2003, 73(1), pp31-37
    [65].严灏景,赵书经,杨思让,潘宁.织物基本风格特征的因子分析方法,纺织学报,1985,Vol, 6, No.9, pp18-21
    [66].陶澍,应用数理统计方法,北京:中国环境科学出版社,1985
    [67]. Wang.Y.P The application of FAST system in wool garment modeling and manufacturiug. Proceedings of the 3rd China International Wool Textile Conference.
    
    [68]. W. F, Kllay, Plauar stresss-strain relationships in woven fabrics, J. Text, Inst., 1963, vol 54, pp9-27
    [69]. Ly, N.G., Tester, D.H Buckenham, P., Roczniok, A. E Adriaansen A. L., Scaysbrook, F. and de Joug, s., Simple Instruments for Quality control by finishers and tailors, Text. Res. J., 1991, 61(8), pp402.
    [70]. F. T. Pierce, The 'handle' of cloth as a measurable quantity, J. Text. Inst., 1930,21, pp377-417
    [71]. F.T. Pierce, The geometry of cloth structure, J.Text.Inst.,1937,28,pp45-96
    [72]. Shinohara. A., Shinohara, F., and Sakaebara, K., Theoretical study on anisotropy of bending rigidity of woven fabric, Journal of Textile Machinery Society of Japan, 1980,28, pp75-79
    [73]. Go. Y, and Shinohara, A., Viscoelastic studies of textile fabrics, part5, On the relationship between the bending behaviors of fabrics and fabric structures, Sen-i Gakkaishi,1958, 14, pp300-303
    [74]. Go.Y, and Shinohara, A., Viscoelastic studies of textile fabrics, part7&8, Relations between the stiffness and drape, Sen-I Gakkaishi, 1958, 14, pp855-864
    [75]. Cooper, D. N. E., The effect of twist upon bending properties, J. Text. Inst., 1960,51, pp 150-151
    [76]. Cooper, D. N. E., The stiffness of woven textile, J. Text. Inst., 1960,51, pp317-335
    [77].韩力群,人工神经网络理论、设计及应用,北京:化学工业出版社,2002
    [78].楼顺天,施阳编,基于MATLAB的系统分析与设计——神经网络,西安:西安电子科技大学出版社,1998
    [79].闻新,周露,王丹力等,Matlab神经网络应用设计,北京:科学出版社,2001
    [80].胡永良,贺思辉,综合评价方法,北京:科学出版社,2000
    [81].陈小前,罗世彬,王振国等,BP神经网络应用中的前后处理过程研究,系统工程理论与实践,2002,22(1),pp65-69
    [82].何瑶,王哲,主成分分析法在优化纺纱工艺中的应用,棉纺织技术,2001,29(1),pp34—36
    [83].吴新生,谢益民,刘焕彬,主成分分析法用于人工神经网络建模,计算机与应用化学,1999,16(3),pp219-223
    [84].戚德虎,康继吕,BP神经网络设计,计算机工程与设计,1998,19(2),pp48-50
    [85].王秀坤,张晓峰,用一组单输出的子网络代替多输出的BP网络,计算机科学,2001,28(10),pp61-63
    [86].高大启,有教师的线性基本函数前向三层神经网络结构研究,计算机学报, 1998,21(1),pp80-86
    
    [87].张志涌等编,精通MATLAB6.5版,北京:北京航空航天大学出版社,2003
    [88].陈桂明等编,Matlab数理统计(6.x),北京:科学出版社,2002
    [89].黄梅,罗友丰等编,SPSS 10.0 for Windows,北京:人民邮电出版社,2000
    [90]. Kanayama, M., and Niwa, M., Mechanical Behaviour of the Composite Fabrics Reinforced by Fusible Interlinling, in "Proc. Japan.-Australia Joint Symposium on Objective Specification of Fabric Quality, Mechanical Properties and Performance," S. Kawabata et al Eds., 1982,pp347-370
    [91]. Kanayama, M., and Niwa, M., The Bending Properties of Fused Fabric Composites, in "Proc.Second Australia-Japan Bilateral Science and Technology Symposium on Objective Evaluation of Apparel Fabrics," R. Postle et al. Eds., 1983,PP443-451
    [92]. J. Fan, W. Leeuwner, and L, Hunter, Compatibility of outer and fusible interlinling fabrics in tailored garments, Partl:Desirable range of mechanical propertyes of fused composites, Text. Res. J., 1997, 67(2), pp137-142.
    [93]. J. Fan, W. Leeuwner, and L, Hunter, Compatibility of outer and fusible interlinling fabrics in tailored garments, Part2: Relationship between mechanical Properties of Fused composite and Those of outer and fusible interlinling fabrics, Text. Res. J., 1997, 67(3), pp 194-197.
    [94]. J. Fan, W. Leeuwner, and L, Hunter, Compatibility of outer and fusible interlinings fabrics in tailored garments, Part3: Selecting fusible interlinings, Text. Res. J., 1997, 67(4), pp258-262
    [95].濮微,服装面料与辅料,北京:中国纺织出版社,1997
    [96].孔繁薏等编,粘合衬布的生产和应用,北京:纺织工业出版社,1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700