用户名: 密码: 验证码:
自密实轻骨料混凝土性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有关普通自密实混凝土和轻骨料混凝土的研究很多,但是关于自密实轻骨料混凝土的研究却很少。自密实轻骨料混凝土兼有自密实混凝土和轻骨料混凝土的特性,它不需要振捣便可自动在模板里通过钢筋密实成型而不发生离析现象,有广阔的应用前景。目前关于自密实轻骨料混凝土的研究主要集中在它的工作性能和基本力学性能方面。作为重要的土木工程材料,自密实轻骨料混凝土除了这些基本性能之外还包括许多其它方面重要的性能,在实际工程应用推广之前还需要对它的性能进行更全面、深入的研究。因此本文在已有的关于自密实轻骨料混凝土性能研究的基础上,开展了进一步的研究工作,为自密实轻骨料混凝土的进一步研究和推广应用奠定基础。本文主要通过试验对自密实轻骨料混凝土的性能开展了以下几方面的研究工作:
     1.自密实轻骨料混凝土配合比设计和工作性能研究
     采用固定砂石体积和全计算相结合的方法,同时考虑轻骨料的吸水率,经过多次反复试验得到了工作性能良好的强度等级为C40和C50的两种自密实轻骨料混凝土SCLC1和SCLC2。针对所配制的自密实轻料混凝土开展了流动扩展度、V型漏斗、L槽、U型槽、湿筛、表面沉降试验,并采用了轻骨料分层试验和切片试验研究了轻骨料在混凝土中的分布状况。结果表明,所设计的自密实轻骨料混凝土具有良好的流动性、变形性、骨料均匀性和良好的抗离析性,采用这种设计方法可以配制出满足实际工程需要的自密实轻骨料混凝土。
     2.自密实轻骨料混凝土收缩徐变性能研究
     对SCLC1、SCLC2及与SCLC1强度等级相同的普通混凝土NC和与SCLC1配合比相似的自密实混凝土SCC四种混凝土开展早龄期收缩徐变试验,其中SCC是将SCLC1中轻骨料用普通骨料等体积代换得到的自密实混凝土。结果表明,由于轻骨料的吸水返水作用,自密实轻骨料混凝土的自生收缩小于普通混凝土和普通自密实混凝土,并且自密实轻骨料混凝土在前10天龄期出现了轻微的膨胀现象,而普通混凝土和普通自密实混凝土则一直表现为收缩现象。徐变试验结果表明,自密实轻骨料混凝土的弹性变形明显大于普通混凝土和普通自密实混凝土,徐变值则略大于普通混凝土和普通自密实混凝土,徐变系数明显小于普通混凝土和普通自密实混凝土。
     3.自密实轻骨料混凝土高温性能研究
     采用电阻式高温炉对SCLC1、SCLC2、SCC和NC四种混凝土进行200℃、400℃、450℃、500℃及600℃高温试验,并对高温后的混凝土试件开展质量损失、超声波检测、抗压及抗折试验。试验结果表明,自密实轻骨料混凝土的高温爆裂温度低于普通自密实混凝土和普通混凝土,质量损失无明显差异。但是通过超声波检测发现自密实轻骨料混凝土内部损伤小于普通混凝土和普通自密实混凝土,同时抗压强度和抗折强度损失也明显小于普通混凝土和普通自密实混凝土。
     4.自密实轻骨料混凝土断裂性能研究
     采用尺寸为100×100×500mm、缝高比为0.1、0.2、0.3、0.4、0.5和0.6的30个试件,对自密实轻骨料混凝土SCLC1小梁开展三点弯曲断裂试验。通过计算得到了自密实轻骨料混凝土的起裂断裂韧度、失稳断裂韧度及断裂能等断裂参数,并根据考虑了边界效应的断裂能确定了适合自密实轻骨料混凝土的软化曲线本构关系模型。
     5.自密实轻骨料混凝土剪力墙结构性能研究
     分别设计了4片自密实轻骨料混凝土剪力墙和2片普通混凝土剪力墙,自密实轻骨料混凝土采用SCLC1,普通混凝土采用NC,并开展了低周反复荷载试验。试验结果表明,自密实轻骨料混凝土剪力墙的延性略好于同强度等级的普通混凝土剪力墙,但二者的耗能能力无明显差异,破坏时均表现出一定的脆性特征。
Numerous investigations have been conducted on normal self-compacting concrete(SCC) and normal lightweight aggregate concrete(LWAC),but there are relatively very few studies on self-compacting lightweight concrete(SCLC).SCLC combines the favorable properties of LWAC and SCC,needs no external vibration,and can spread into place,fill the formwork and encapsulate reinforcement without any bleeding or segregation.So,there is a comprehensive application prospect for SCLC.Currently,the researches on SCLC mainly focus on the workability of fresh SCLC or its basic mechanical performances.As a kind of important construction materials,there are also many other performances for SCLC besides workability and basic mechanical performances.An all-round and deeply study is need to carry out to generalize the practical application of SCLC.Therefore,this paper has made a relatively systemic study on performances of SCLC based on the previous investigations by other scholars to lay a foundation for the research and application for SCLC.These performances of SCLC have studied mainly by experiments or theoretical methods as follows:
     1.Study on the design method and workability of SCLC
     By considering the water absorption of lightweight aggregate(LWA),two mix proportions for SCLC are designed by the overall calculation method with fixed fine and coarse aggregate contents after many times revised tests.The strength grades of the two designed SCLCs are C40 and C50,and noted SCLC1 and SCLC2 respectively.The workability of the two types of fresh SCLCs is quantitatively evaluated by the slump flow, V-funnel,L-box,U-box,wet sieve segregation,and surface settlement tests.The uniformity of distribution of LWAs along the specimen is also evaluated by the column segregation test and the cross-section images.It is found that the two types of fresh SCLCs have good fluidity, deformability,filling ability,uniform aggregate distribution and minimum resistance to segregation.It can be concluded that the two mix proportions for SCLC presented in this paper satisfy various requirements for workability and can be used for the design of practical concrete structures.
     2.Investigations on shrinkage and creep behaviors of SCLC
     Early age shrinkage and creep tests have been carried out for SCLC1,SCLC2,SCC and NC,in which SCC is normal self-compacting concrete having the similar mix proportion with SCLC1 replaced the LWA by normal aggregate,and NC is normal concrete having the same strength grade with SCLC1.It is showed by the test results,autogenous shrinkage of SCLC is smaller than those of SCC and NC,because of water absorption and desorption function in LWA.It is also found that a slight expansion phenomenon happening during the first 10 days for SCLC,however,shrinkage for SCC and NC all around the age time.From the creep test, elastic strain of SCLC is obviously larger than those of NC and SCC,and creep strain is a slight larger than those of NC and SCC.Consequently,creep coefficient is smaller than those of NC and SCC.
     3.Investiagation on behavior of SCLC after high temperature
     Box type resistance furnace is used to heat the 4 type specimens of SCLC1,SCLC2,NC and SCC to the temperature of 200℃,400℃,450℃,500℃and 600℃respectively for about 4 hour,then cool to room temperature.Mass loss test,ultrasonic inspection,cube compressive test and flexural test have been done to compare the high temperature behavior of SCLC with those of NC and SCC.It can be known from the test results that there is no obviously difference in mass loss among SCLC,SCC and NC,and the spalling temperature of SCLC is lower than those of SCC and NC.But the internal damnification,compressive strength loss and flexural strength loss is significantly lighter than those of SCC and NC.
     4.Investigation on the fracture performance of SCLC
     With total number of 30 specimens,100×100×500mm in size,six type notch to height ratio of 0.1 to 0.6,fracture tests of three-point bending beams using concrete of SCLC1 are carried out.Based on the test results,initial fracture toughness,unstable fracture toughness and facture energy considering boundary effect are calculated.Finally,a softening constitutive relationship model is chosen for SCLC1 and it is verified by the fracture energy calculated from test results.
     5.Experimental study on behavior of SCLC shear wall
     4 shear walls made of SCLC1 and 2 shear walls made of NC are designed for low reversed cyclic loading test.It is indicated by the test results that the ductility of SCLC shear wall is a little better than that of NC shear wall with the same concrete strength grade,and the energy consumption is similar with NC shear wall.Both of them exhibited some brittleness when they destroyed.
引文
[1]Kawai T,Ozawa K,Ohno H,et al.The vibration-free highly superplasticized lightweight concrete with high-early strength for the cable-stayed bridge.In:Innovation in Cable-Stayed Bridge Fukuoka.Japan,1991:227-233.
    [2]Ohno H,Kawai T,Kuroda Y.Development of vibration-free high strength lightweight concrete and its application.Proceeding of FIP Symposium,Kyoto,1993,1:297-304.
    [3]M(u|¨)ller H S,Haist M.Self-compacting lightweight concrete-technology and use.Concrete Plant erecast Technology,2002,71(2):29-37.
    [4]M(u|¨)ller H S,Mechtcherine V.Self-compacting lightweight concrete.Concrete Plant Precast Technology,2002,18(2):36-39.
    [5]M(u|¨)ller H S,Haist M.First general technical approval self-compacting Light-weight concrete.Concrete Plant Precast Technology,2004,70(12):8-17.
    [6]Shi C J,Wu Y Z.Mixture proportioning and properties of self-consolidating lightweight concrete containing glass powder.ACI Materials Journal,2005,102(5):355-363.
    [7]Choi Y W,Kim Y J,Shin H C et al.An experimental research on the fluidity and mechanical proprieties of high-strength lightweight self-compacting concrete.Cement and Concrete Research,2006,36(9):1595-1602.
    [8]Hwang C L,Hung M F.Durability design and performance of self-consolidating lightweight concrete.Construction and Building Materials,2005,19(8):619-626.
    [9]Alan B,Lytang.Developments in lightweight self-compacting and pumpable concrete.Concrete,2005,39(2):24-25.
    [10]王振军.自密实轻骨料高性能混凝土的研究:(硕士学位论文).西安:西安建筑科技大学材料系,2004.
    [11]何廷树,王振军,武永华等.自密实轻骨料混凝土工作性能研究.西安科技学学报,2004,24(4):422-425.
    [12]王振军,张思宇,王笑风.自密实轻骨料混凝土力学性能试验研究.南昌大学学报·工科版,2006,28(1):83-86.
    [13]陈月顺,卫军,曾三海等.自密实轻骨料防水混凝土抗渗性能试验研究.新型建筑材料,2006(3):39-42.
    [14]曹永民,宋宏伟,王立久.免振捣自流平混高性能轻集料混凝土的研究.混凝土,2002,157(11):36-38.
    [15]冯乃谦.流态混凝土.北京:中国铁道出版社,1988.
    [16]Okamura H,Ouchi M.Self-compacting concrete.J Adv Concr Technol,2003,1(1):5-15.
    [17]Ozawa K,Maekawa K,Kunishima M,Okamura H.Development of high performance concrete based on the durability design of concrete structures.Proceeding of the Second East-Asia and Pacific Conference on Structural Engineering and Construction (EASEC-2),1989,1,445-450.
    [18]Okamura H,Ozawa K.Mix-design for self-compacting concrete.Concrete library of JSCE,1993,25:107-120.
    [19]Japanese Ready-Mixed Concrete Association.Manual of producing high fluidity concrete.Japanese Ready-Mixed Concrete Association,Japan,1998.
    [20]Domone P L.Self-compacting concrete:An analysis of ll years of case studies.Cement and Concrete Research,2006,28(2):197-208.
    [21]刘数华,王晓燕.自密实混凝土综述.建筑技术开发,2004,31(7):118-120.
    [22]罗素容,王国杰,王雪芳.自密实混凝土在钢管混凝土拱桥中的应用.铁道科学与工程学报,2004,1(2):30-34.
    [23]李显金,王先文,曲兆东.自密实混凝土在复杂结构中的应用.混凝土,2007,(4):95-97.
    [24]陈睿,刘真.自密实混凝土应用研究.武汉理工大学学报,2001,23(12):24-29.
    [25]纪建林,胡竟贤,王毅.自密实混凝土性能及其在三峡三期工程中的应用.西部水电,2005,(4):33-36.
    [26]罗素蓉,郑建岚,王国杰.自密实高性能混凝土结构的研究与应用.土木工程学报,2005,38(4):46-52.
    [27]赵钧.自密实混凝土的研究和应用.混凝土,2003,(6):9-17.
    [28]李克亮,陈健,祝烨然等.自密实混凝土在润扬长江大桥中的应用.混凝土,2005,(1):69-74.
    [29]中国建筑标准设计研究院.自密实混凝土应用技术规程.北京:中国计划出版社,2006.
    [30]Schlumpf J.Self-coMpacting concrete structures in Switzerland.Tunnelling and Underground Space Technology,2004,19(4-5):480.
    [31]陈家珑,方源兴.我国轻骨料混凝土的现状与问题.建筑技术,2005,36(1):23-25.
    [32]龚洛书.轻集料混凝土技术的发展与展望.混凝土,2000,(2):12-15.
    [33]龚洛书.高强陶粒和高强轻集料混凝土.混凝土,2000,(2):7-11.
    [34]龚洛书,柳春圃.轻集料混凝土.北京:中国铁道出版社,1996
    [35]龚洛书.积极研究开发高性能轻集料混凝土.混凝土,1993,(3):8-12.
    [36]中国建筑科学研究院.轻骨料混凝土技术规程(JGJ 51-2002).北京:中国建筑工业出版社,2002.
    [37]Bouzouba(?) N,Lachemib M.Self-compacting concrete incorporating high volumes of class F fly ash preliminary results.Cement and Concrete Research,2001,31(3):413-420.
    [38]Zhu W Z,Gibbs J C.Use of different limestone and chalk powders in self-compacting concrete.Cement and Concrete Research,2005,35(8):1457-1462
    [39]Bosiljkov V B.SCC mixes with poorly graded aggregate and high volume of limestone filler.Cement and Concrete Research,2003,33(9):1279-1286.
    [40]Ho D W S,Sheinn A M M,Ng C C,et al.The use of quarry dust for SCC applications.Cement and Concrete Research,2002,32(4):505-511.
    [41]Su N,Miao B.A new method for the mix design of medium strength flowing concrete with low cement content.Cement and Concrete Composites,2003,25(2):215-222.
    [42]Okamura H,Maekawa K,Ozawa K.High Performance Concrete.Tokyo:Gihoudou Pub,1993.
    [43]陈建奎,王栋民.高性能混凝土(HPC)配合比设计新法-全计算法.硅酸盐学报,2000,28(2):194-198.
    [44]俞然刚,陈金平,肖光辉.自密实混凝土配合比设计及其正交试验.工业建筑,2005,35(S1):691-694.
    [45]范志宏,苏达根,王胜年.自密实混凝土配合比方法研究.水运工程,2004,361(2):11-15.
    [46]European Project Group.Specification and guidelines for self-compacting concrete.EFNARC,UK,February 2002.
    [47]European Project Group.Specification and guidelines for self-compacting concrete.EFNARC,UK,May,2005.
    [48]Japanese Society of Civil Engineering.Guide toconstruction of high flowing concrete.Tokyo:Gihoudou Pub,1998.
    [49]中国工程建设标准化协会.自密实混凝土应用技术规程.北京:中国计划出版社,2006.
    [50]Khayat K H,Assaad J,Daczko J.Comparison of field-oriented test methods to assess dynamic stability of self-consolidating concrete.ACI Materials Journal,2004,101(2):168-176.
    [51]Bartos P.Testing-SCC toward new European for fresh SCC.In:1st International Symposium on Design,Performance and Use of Self-Consolidating Concrete.Changsha,China,2005:25-44.
    [52]Ding Y N,Liu S G,Zhang Y,et al.The investigation on the workability of fibre cocktail reinforced self-compacting high performance concrete.Construction and Building Materials,2008,22(7):1462-1470.
    [53]Sank A W,Jennings H M,Shah S P.New methodology for designing self-compacting concrete.ACI Materials Journal,2001,98(6):429-439.
    [54]Tattersall G H,Baker P H.The effect of vibration on the rheological properties of fresh concrete.Magzine of Concrete Research,1988,40(13):79-89.
    [55]De Larrard F,Hu C,Sedran T,Szitkar J C,et al.A new rheometer for soft-to-fluid fresh concrete.ACI Materials Journal,1997,94(3):234-243.
    [56]Buui V K,Akkaya Y,Shah S P.Rheological model for self-consolidating concrete.ACI Materials Journal,2002,99(6):549-558.
    [57]吴中伟,廉慧珍.高性能混凝土.北京:中国铁道出版社,1999.
    [58]中国建筑科学研究院.普通混凝土配合比设计规程(JGJ55-2000).北京:中国建筑工业出版社,2000.
    [59]Khayat KH,Assaad J,Daczko J.Comparison of field-oriented test methods to assess dynamic stability of self-consolidating concrete.ACI Materials Journal,2004,101(2):168-176.
    [60]Assaad J,Khayat K H,Daczko J.Evaluation of static stability of self-consolidating concrete.ACI Materials Journal,2004,101(3):207-215.
    [61]Hwang S D,Khayat K H,Bonneau O.Performance-based specifications of self-consolidating concrete used in structural applications.ACI Materials Journal,2006,103(2):121-129.
    [62]宋培晶.高强轻骨料混凝土收缩、徐变与工作性能:(硕士学位论文).北京:清华大学,2003.
    [63]李渝军,丁建彤.泵送高强轻骨料混凝土的抗离析性能.混凝土,2005,185(3):42-45.
    [64]中国建筑科学研究院.普通混凝土力学试验方法标准(GB/T 50081-2002).北京:中国建筑工业出版社,2002.
    [65]Davis H E.Autogenous volumn change of concrete.Proceedings of ASTM 1940,40:1103-1110.
    [66]Tazawa E,Miyazawa S.Autogenous shrinkage of concrete and its importance in concrete.Creep and Shrinkage in Concrete.Bazant Z P,Carol L,eds.,E&FN Spon,London,1993,159-168.
    [67]孙海林,叶列平,丁建彤等.高强轻骨料混凝土收缩和徐变试验.清华大学学报,2007,47(6):765-767,780.
    [68]刘巽伯.粉煤灰陶粒混凝土的收缩和徐变.科学研究,1999,47(6):765-767,780.
    [69]Zhang M H,Li L.Paramasivam P.Shrinkage of high-strength lightweight aggregate concrete exposed to dry environment.ACI Materials Journal,2005,102(2):86-92.
    [70]Nilsen U,A(i|¨)tcin P C.Properties of high-strength concrete containing light-,normal-,and heavyweight aggregate.ASTM Journal of cement,concrete and aggregates,1992,14(1):8-12.
    [71]Best C H,Polivka M.Creep of lightweight concrete.Magzine of Concrete Research,1959,11(33):129-134.
    [72]Lopze M,Kahn L F,Kurtis K E.Creep and shrinkage of high-performance lightweight concrete.ACI Materials Journal,2004,101(5):391-399.
    [73]Gesolgu M,(O|¨)zturan T,G(u|¨)neyisi E.Shrinkage cracking of lightweight concrete made withcold-bonded fly ash aggregates.Cement and Concrete Research,2004,34(7):1121-1130.
    [74]Cusson D,Hoogeveen T.Internal curing of high-performance concrete with pre-soaked fine lightweight aggregate for prevention of autogenous shrinkage cracking.Cement and Concrete Research,2008,38(6):757-765.
    [75]Cusson D,Hoogeveen T,Mitchell L.Restrained shrinkage testing of high-performance concrete modified with structural lightweight aggregate.7th Int.Symposium on Utilization of High-Strength/High-Performance Concrete,Washington D.C.,2005:1353-1372.
    [76]Shi C,Wu Y,Riefler M.Comparison of self-compacting with conventional concretes.Proceedings of the 5th international symposium on cement and concrete,Shanghai,China,2002,1013-1019.
    [77]Shi C J,Wu Y,Shao Y,et al.Comparison of two approaches for design of self-consolidating concrete,1st Nroth American conference on the design and use of self-consolidating concrete.Northwestern university,Evanston,2002,349-354.
    [78]Heirman G,Vandevalle L,Van Gemert D,et al.Time-dependent deformations of limestone powder type self-compacting concrete.Engineering Structure,2008,30(lO):2945-2956.
    [79]周履.收缩与徐变.北京:中国铁道出版社,1994.
    [80]Bazant Z P,Xi Y.Drying creep of concrete:constitutive model and new experiments separating its mechanisms.Materials and Structures,1994,27(1):3-14.
    [81]Tamtsia B T,Beaudoin J J,Marchand J.The early age short-term creep of hardening cement paste:load-induced hydration effects.Cement and Concrete Composites,2004,26(5):481-489.
    [82]Lee Y,Yi S T,Kim M S,et al.Evaluation of a basic creep model with respect to autogenous shrinkage.Cement and Concrete Research,2006,36(7):1268-1278.
    [83]中国建筑科学研究院.普通混凝土长期性能和耐久性能试验方法(GBJ82-85).北京:中国标准出版社,1985.
    [84]刘涛,谭克锋.不同水胶比混凝土的收缩性能研究.西安科技大学学报,2006,21(2):11-14.
    [85]Ding Y N,Kusterle W.Eigenschaften yon jungem Faserbeton.Beton-und Stahlbetonbau,1999,94(9):362-368.
    [86]龚洛书,惠满印,杨蓓.砼的收缩与徐变的实用数学表达式.建筑结构学报,1988,(5):37-42.
    [87]Comite Euro Internacional du Beton and Federation Internationale de la Precontrainte (CEB-FIP),1991,Model Code 1990,Bulletin d' information,No.199,Thomas Telford,London,575.
    [88]ACI committee 209.Prediction of creep,shrinkage,and temperature effects in concrete.American Concrete Institute,Farmington Hills,1992.
    [89]AASHTO-LRFD.AASHTO.LRFD Bridge design specifications,AASHTO,Washington,2007.
    [90]杨小兵.混凝土收缩徐变预测模型研究:(硕士学位论文).武汉:武汉大学,2000.
    [91]交通部公路规划设计院.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ 023-85).北京:人民交通出版社,1985.
    [92]Lindgard J,Hammer T A.Fire resistance of st ructural lightweight aggregate concrete:a literature survey wit h focus on spalling.Norway:Nordic Concrete Research Publication (SINTEF),1998.
    [93]张德育.轻质骨材混凝土耐火与隔热性能研究:(硕士学位论文).台湾:台湾中兴大学,2004.
    [94]王晴,刘永军,刘磊.轻质混凝土耐火性能研究进展.混凝土,2005,194(12):29-31.
    [95]Bilodeau A,Kodur V K R,Hoff G C.Optimization of the type and amount of polypropylene fibres for preventing the spalling of lightweight concrete subjected to hydrocarbon fire.Cement and Concrete Composites,2004,26(2):163-174.
    [96]Noumowe A,Carre H,Daoud A,et al.High-strength self-compacting concrete exposed to fire test.Journal of Materials in Civil Engineering,ASCE,2006,18(6):754-758.
    [97]Sideris K Z.Mechanical characteristics of self-consolidating concrete exposed to elevated temperatures.Journal of Materials in Civil Engineering,ASCE,2007,19(8):648-654.
    [98]Reinhardt H W,Stegmaier M.Self-Consolidating Concrete in Fire.ACI Materials Journal,2006,103(2):130-135.
    [99]Kodur V K R,Spalling in high strength concrete exposed to fire-concerns,causes,critical parameters and cures.Procedings,ASCE Structures Congress,Philadelphia,PA,2000.
    [100]Persson B.Fire resistance of self-compacting concrete,SCC.Materials and Structures,RILEM,2004,37(9):575-584.
    [101]Mirza F A,Soroushian P.Effects of alkali-resistant glass fiber reinforcement on crack and temperature resistance of lightweight concrete.Cement and Concrete Composites,2002,24(2):163-174.
    [102]Tanyildizi H,Ahmet C.Performance of lightweight concrete with silica fume after high temperature.Construction and Building Materials,2008,22(10):2124-2129.
    [I03]Design of Concrete Structures,Eurocode.No.2,Part10:Structural Fire Design,commission of the European Communities,April,1990.
    [104]董毓利.混凝土结构的火安全设计.北京:科学出版社,2001.
    [105]Lie T T.A procedure to calculate fire resistance of structural members.International Seminar on Three Decades of Structural Fire Safety,1983(2):139-153.
    [106]Harmathy T Z.Fire Safety Design and Concrete.UK:Longman Group UK Limited,1993.
    [107]傅宇方,黄玉龙,潘智生,等.高温条件下混凝土高温爆裂机理研究进展.建筑材料学报,2006,(3):323-329.
    [108]谢伟峰,李丽娟,陈智泽,等.高强混凝土高温下爆裂机理探讨.新型建筑材料,2007,(1):70-72.
    [109]胡海涛.高温时高强混凝土压弯构件的试验研究及理论分析:(博士学位论文).西安:西安建筑科技大学,2002.
    [110]吴波.火灾后钢筋混凝土结构的力学性能.北京:科学出版社,2003.
    [111]Cox H L.A general introduction to fracture mechanics.London:Mechanical Engineering Publications,1978.
    [112]Griffith A A.The phenomena of rupture and flow in solids.Philosophical Transactions Royal Society of London.Series A221,1921:163-168.
    [113]Tang W C,Lo T Y,Chan W K.T.Fracture properties of normal and lightweight high-strength concrete.Magzine of Concrete Research,2008,60(4):237-244.
    [114]Chanq T P,Shieh M M.Fracture properties of lightweight concrete.Cement and Concrete Research,1996,26(2):181-188.
    [115]Daisuke M,Yuko L,Katsuro K.Fracture energy behavior of high performance lightweight concrete.Proc.of the Internat.Conf.on Mater.Eng.for Resources,Akita,Japan,2001,167-172.
    [116]吴科如.轻集料混凝土的断裂能.三峡大学学报(自然科学版),2002,24(1):9-11.
    [117]Roziere E,Granger S,Turcry P,et al.Influence of paste volume on shrinkage cracking and fracture properties of self-compacting concrete.Cement and Concrete Composites,2007,29(8):167-172.
    [118]于骁中,居襄,曹建国等.试件厚度对砂浆、混凝土断裂韧度KIC的影响和裂缝微裂纹区的形状和大小.水利学报,1983,(9):20-28.
    [119]Kesler C E,Naus D J,Lott L L.Fracture mechanics-its applicability to concrete.Soc Mater Sci,1972,4:113-124.
    [120]Strange P C,Bryant A H.Experimental tests on concrete fracture.Journal of the Engineering Mechanics Division,ASCE,1979,105(2):337-342.
    [121]Swartz S E,Huang C M,Hu K K.Crack growth and fracture in plain concrete-static versus fatigue loading.In:Fatigue of Concrete Structures,Sp-75.ACI,Detroit,Michigan,1982:47-69.
    [122]Wechharatana M,Shah S P.A model for predicting fracture resistance of fiber reinforcement concrete.Cement and Concrete Research,1983,13:819-829.
    [123]Barr B I G,Hsso E B D,Sabir B B.The effect of test specimen size on fracture toughness of concrete.Cement and Concrete Research,1985,15(5):833-841.
    [124]赵艳华.混凝土断裂过程中的能量分析研究:(博士学位论文).大连:大连理工大学,2002.
    [125]Xu S L,Reinhardt H W.Determination of double-K criterion for crack propagation in quasi-brittle fracture,Part Ⅰ,Part Ⅱ,Part Ⅲ.International Journal of Fracture,1999,98(2):111-193.
    [126]徐世烺,吴智敏,丁生根.混凝土双K断裂参数的实用解析方法.工程力学,2003,20(3):54-60.
    [127]董伟.混凝土Ⅰ-Ⅱ复合型裂缝起裂准则的试验研究与裂缝扩展过程的数值模拟:(博士学位论文).大连:大连理工大学,2008.
    [128]徐世烺,张秀芳,郑爽.小骨料混凝土双K断裂参数的试验测定.水利学报,2006,37(5):543-553.
    [129]Guinea G V,Pastor J Y,Planas J et al.Stress intensity factor,compliance and CMOD for a general three-point beam.International Journal of Fracture,1998,89:103-116.
    [130]Rajendra K N,then T H,Kim S K et al.True Fracture Energy of Concrete,ACI Materials Journal,1999,96(2):213-225.
    [131]Qian J S,Luo H.Size effect on fracture energy of concrete determined by three-point bending.Cement and Concrete Research,1997,27(7):1031-1036.
    [132]赵艳华,徐世烺,聂玉强.混凝土断裂能的边界效应.水利学报,2005,36(11):1320-1325.
    [133]Maturana P,Planas J,Elices M.Evolution of fracture behavior of saturated concrete in the low temperature range.Engineering Fracture Mechanics,1990,35(4/5):827-834.
    [134]Bazant Z P,Kazemi M T.Determination of fracture energy from size effect and brittleness number.ACI Materinals Journal,1987,84:463-480.
    [135]唐春安,朱万成.混凝土损伤与断裂-数值试验.北京:科学出版社,2003.
    [136]Kaplan M F.Crack propagation and the fracture of concrete.Journal of the American Concrete Institute,1961,58(5):591-610.
    [137]徐世烺,赵国藩.混凝土裂缝的稳定扩展过程与临界裂缝尖端张开位移.水利学报,1989,(4):33-44.
    [138]Mindess S.Fracture process zone detection.In:Fracture Mechanics Test Methods for Concrete.ed.Shah P,Carpinteri A.London:Chapman & Hall.1991:231-255.
    [139]吴智敏,徐世烺,刘佳毅.光弹贴片法研究混凝土裂缝扩展过程及双K断裂参数的尺寸效应.水利学报,2001,(4):34-39.
    [140]Hillerborg A.The theoretical basis of method to determine the fracture energy G_F of concrete.Materials and Structures,1985,18(106):291-296.
    [141]Bazant Z P.Crack band theory for fracture of concrete.RILEM,Materials and Structures,1983,16(93):155-177.
    [142]Zhao Y H,Xu S L,Wu Z M.Variation of Fracture Energy Dissipation along Evolving Fracture Process Zones in Concrete.ASCE,Journal of Materials in Civil Engineering,2007,19(8):625-633.
    [143]Duan K,Hu X Z,Wittmann F H.Boundary effect on concrete fracture and non-constant fracture energy distribution.Engineering Fracture Mechanics,2003,70(16):2257-2268.
    [144]赵艳华,徐世烺,聂玉强.混凝土断裂能的边界效应.水利学报,2006,(11):1320-1325.
    [145]Reinhardt H W,Cornelissen H A W,Hordijk D A.Tensile tests and failure analysis of concrete.Journal of Structural Engineering,ASCE,1986,112(11):2462-2477.
    [146]钱稼茹,吕文,方鄂华.基于位移延性的剪力墙的抗震设计.建筑结构学报,1996,20(3):42-49.
    [147]李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究.建筑结构学报,2004,25(5):35-42.
    [148]蒋欢军,吕西林.新型耗能剪力墙模型低周反复荷载试验研究.世界地震工程,2000,16(3):63-67.
    [149]康胜,曾勇,叶列平.双功能带缝剪力墙的刚度和承载力研究.工程力学,2001,18(2):27-34.
    [150]曹万林,张建伟.钢筋混凝土有边框带双层暗支撑剪力墙抗震性能试验研究.世界地震工程,2000,16(4):82-86.
    [151]乔彦明,钱家茹,方鄂华.钢骨混凝土剪力墙抗剪性能的试验研究.建筑结构,1995,25(8):3-7.
    [152]庄一舟.低周反复荷载作用下钢筋煤矸石混凝土剪力墙的力学性能.浙江大学学报,2000,34(2):325-330.
    [153]史亚新,于庆荣,陶鹤进.钢筋轻骨料混凝土剪力墙的试验研究.河北工学院学报,1994,23(4):33-47.
    [154]陶鹤进,于庆荣,史亚新.钢筋粉煤灰陶粒砼剪力墙受力性能的试验研究.建筑结构学报,1994,15(4):20-30.
    [155]谭学民,郭明华,王福明.钢筋煤矸石混凝土低剪力墙的抗震性能.华南理工大学学报(自然科学版).1999,27(12):67-73.
    [156]任洪涛,祖亚丽,任泽民,刘平.轻骨料混凝土剪力墙抗震性能的试验研究.河北工业大学学报,2007,36(3):94-98.
    [157]戎贤,渠运国,李雨润,景萌.不同配筋形式轻骨料混凝土剪力墙抗震性能-试验研究.自然灾害学报,2007,16(3):118-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700