用户名: 密码: 验证码:
人乳头瘤病毒和EB病毒感染与上消化道肿瘤相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.研究人乳头瘤病毒(human papillomavirus,HPV)感染与食管癌(esophageal carcinoma,EC)发生的相关性:检测我国不同区域EC患者癌组织中HPV感染率及其型别,了解我国不同区域EC组织中HPV型别分布特性;检测HPV16 E2/E6基因比率,分析EC样品中HPV16的整合状态;检测HPV整合在染色体的位置,以及通过对我国已发表的有关HPV与EC相关文献的Meta分析,探讨HPV感染与我国EC发生的病因学关系。
     2.研究EB病毒(Epstein-Barr virus,EBV)感染与胃癌发生的相关性:通过对PubMed数据库中的有关EB病毒(Epstein-Barr virus,EBV)与胃癌相关文献的Meta分析,探讨EBV感染与胃癌发生的相关性;构建携带EBV编码BARF1基因的真核表达载体,为今后建立EBV感染体外模型奠定基础,以便进一步探讨EBV感染与胃癌发生的病因学关系。
     方法:
     1.应用HPV L1基因区通用引物PGMY09/11和GP5+/6+,进行巢式聚合酶链反应(nested polymerase chain reaction,NPCR);应用HPV(包括HPV16、HPV18)E6-E7基因保守区的简并引物,及HPV16 E6、HPV18 E6型特异引物进行巢式多重聚合酶链反应(nested multiplex Polymerase chain reaction,NMPCR),检测EC组织中HPV16和HPV18两型别;分析我国不同区域EC标本中HPV感染状况。
     2.应用HPV16 E2和E6引物进行实时荧光PCR扩增,检测HPV16 E2与E6的含量,通过E2与E6的比率,确定HPV整合状态;用β-actin引物进行荧光PCR扩增,检测每一样品中β-actin含量,通过HPV16E6与β-actin之比,估算HPV16的病毒载量。
     3. Oligo(dT)17-P3引物反转录PCR扩增cDNA的第一链,HPV E7特异P1 forward与P3 reverse引物第一轮扩增,HPV E7特异P2 forward与Oligo(dT)17-P3 reverse引物第二轮扩增,将第二轮产物连接到pMD-18T载体,进行测序分析,分析HPV整合在人染色体的位置。
     4.确定文献选择与剔除标准后,以HPV和食管癌为关键词,在国内万方网和中国知网,检索有关HPV与食管癌相关的研究论文,依据Cochrane系统,按照Mantel–Haenszel方法,对文献数据作出异质性检验,应用随即效应模型,计算各项研究文献中食管癌病例组和正常对照组中HPV的优势比(odds ratio,OR)、权重(weight)、95%可信区间(95%CI)及合并后的权重和95%CI。数据处理采用Review Manager 4.2软件完成,以P<0.05为差异有显著性。进一步验证HPV在我国食管癌发生中的病原学作用。
     5.确定文献选择与剔除标准后,以EBV和胃癌为关键词,在PubMed数据库中,检索有关EBV与胃癌相关的研究论文,依据Cochrane系统,按照Mantel–Haenszel方法,对文献数据作出异质性检验,应用随机效应模型,计算各项研究文献中EBV相关胃癌与临床病理特征的优势比(odds ratio,OR)、权重(weight)、95%可信区间(95%CI)及合并后的权重和95%CI。数据处理采用Review Manager 4.2软件完成,以P<0.05为差异有显著性。进一步验证EBV在胃癌发生中的病原学作用。
     6.根据GenBank提供的cDNA序列,设计特异性引物,构建BARF1基因的真核表达载体。
     结果:
     1.从收集的食管癌患者标本中检测HPV感染的阳性率:河南省林州市为93.2% (109/117);河北保定市为88.1%(37/42);四川省盐亭市为95%(19/20)。它们主要以HPV16型出现,其次是HPV18型:HPV16型阳性率分别占59.6%(65/109)、51.4%(19/37)和57.9%(11/19);HPV18型分别占阳性率的19.3%(21/109)、21.6%(8/37)和21.1%(4/19)。
     2.荧光PCR结果显示:32例HPV16E6阳性标本中,检测到6.3%(2/32)为纯游离型、84.3%(27/32)为游离/整合的混合型、9.4%(3/32)为完全整合型,说明病毒DNA与宿主基因组整合很普遍;这些标本的病毒载量大约在0.066-65.2拷贝/细胞之间。
     3.序列分析结果显示,有两位HPV18阳性的食管癌患者,其HPV18整合于患者5号染色体上。
     4.入选17篇文献食管癌组织标本HPV检出率为44.0%,正常对照组织HPV检出率为16.7%,食管癌组织中HPV感染率与正常对照组织相比具有统计学意义(P<0.05);有12篇文献进行了HPV16型特异性检测,其结果显示,食管癌组织标本中HPV16占38.6%,正常组织标本中HPV16占15.9%,HPV16感染率与正常对照组织相比具有显著性差异(P<0.05)。被检标本分布在河南、广东、新疆、四川、河北、上海、福建和香港八个区域,其HPV感染与地域分布存在显著性差异(P<0.05)。
     5. 22篇入选文献中收集的胃癌病例5475例,检测到EBV阳性病例411例。在EBV阳性胃癌中,男性检出率为11.1%,女性检出率为3.0%;EBV阳性胃癌与阴性胃癌相比具有较少的淋巴结转移;残胃癌中EBV感染率为28.3%;EBV感染与组织学分型及标本类型无显著相关性(p>0.05)。
     6.以两端添加酶切位点的特异性引物,进行PCR扩增,得到与预期目的基因片段大小相符的666bp的片段;克隆至载体后,经双酶切和测序分析,确认BARF1基因已正确连接到pcDNA3.1(+)-his真核表达载体。
     结论:
     1.河南省林州市、河北省保定市及四川省盐亭市食管癌样品中,HPV检出率分别为93.2%、88.1%和95.0%,平均阳性率为92.2%;其中,HPV16和HPV18两型别平均检出率分别为53.1%和18.4%,说明HPV16和HPV18两型别在我国具有较高的分布频率。提示HPV16和HPV18两型别可能在食管癌发生中具有普遍意义。
     2. HPV16阳性食管癌样品中,病毒DNA与宿主基因整合很普遍,提示HPV感染可能是食管癌发生的重要病原因子。
     3.部分HPV18可能整合在人5号染色体,推测HPV基因组在宿主细胞染色体上整合后,形成HPV持续性感染,是细胞转化及癌变的关键。
     4. Meta分析显示,我国食管癌组织中HPV感染与正常组织相比具有显著性差异(p<0.05),并且高危型HPV感染在不同地域普遍存在。这些结果进一步证实高危型HPV感染是食管癌发生的重要病原因子。
     5. EBV感染仅发生在癌组织细胞中,并且与患者性别、淋巴结转移、癌组织发生部位显著相关(p<0.05),与患者癌组织学分型、标本类型无显著相关性(p>0.05);提示,EBV阳性胃癌具有独特的临床病理学特征,EBV感染与部分胃癌的发生密切相关。
     6.成功地构建了真核表达载体pcDNA3.1(+)/BARF1-his,为今后建立EBV相关胃癌研究的体外模型奠定了基础。
Objective
     1. Human papillomavirus ( HPV ) infection rates and typs were examined in tissues of esophageal carcinoma( EC ) patients from different areas of China to understand HPV prevalence in EC tissues; The ratios of E2 / E6 genes were detected to analyze integration status of HPV16 in EC; HPV location in the chromosome were detected; Meta-analysis of relevant literature for the published articles in Chinese related to HPV and EC, and further investigate the relationship between HPV infection and etiology of EC in China.
     2. The present study pooled the data from the papers in PubMed database concerning EBV-related gastric cancers and performed a meta-analysis of 22 research papers to figure out the relationship between Epstein-Barr virus (EBV) infection and clinicopathological features of gastric carcinoma; Construct eukaryotic expression vector pcDNA3.1(+)/BARF1-his with recombinant of BARF1 gene encoded by EBV and pcDNA3.1(+)-his for establishment in vitro model of EBV infection in the future to further explore the relationship between EBV infection and the etiology of gastric cancer.
     Methods
     1. HPV positive rates were determined in EC samples from different areas of China by nested polymerase chain reaction ( NPCR ) with the general primer sets of PGMY09/11 and GP5+/6+ for HPV L1 gene, and type HPV16 and HPV18 were detected with the nested multiplex PCR ( NMPCR ) assay, which composed of degenerate primers of E6-E7 conservative region and type-specific primers, and analysis HPV infection of the EC samples in different regions.
     2. The HPV16 positive specimens were subjected to real-time quantitative PCR for determination of the ratios of E2 to E6, analysis physical status of HPV16;Detection ofβ-actin content using fluorescent PCR in each sample,and calculation viral load of HPV16 in every cell of these specimens by HPV16E6 andβ-actin ratio.
     3. Amplification of first strand cDNA by RT-PCR with Oligo (dT) 17-P3 primer, and amplification the first round with HPV E7-specific P1 forward primer and the P3 reverse primer, and amplification the second round with HPV E7-specific P2 forward primer and Oligo (dT) 17-P3 reverse primer, the second round amplified products were cloned into pMD-18T vector and sequenced to analyze HPV integration in the human chromosome location.
     4. We searched and collected the published articles in Chinese related to HPV and EC, and selected the articles for detection HPV in the esophageal cancer specimens and meta-analysis were performed for the papers concerning HPV-related EC of China. according to Cochrane system, in accordance with the Mantel-Haenszel method, the literature heterogeneity test data to the application immediately effect model to calculate the research literature in esophageal cancer cases and normal control group, the odds ratio (odds ratio, OR), weight (weight), 95% confidence interval (95 % CI) and the combined weight and 95% CI. Statistical analysis was performed by using the Review Manager 4.2 for meta-analysis software version; P value less than 0.05 was considered statistically significant. Further verify the etiology role in occurrence of esophageal cancer in China.
     5. Articles were searched from the PubMed database (http:// www.ncbi.nih.gov/pubmed) using the keywords“Epstein-Barr virus and gastric carcinoma”. Data was summarized from the eligible articles and a meta-analysis was performed to explore the association between EBV and the clinicopathological characteristics of gastric cancer. According to Cochrane system, in accordance with the Mantel-Haenszel method, the literature heterogeneity test data to the application immediately effect model to calculate the research literature in esophageal cancer cases and normal control group, the odds ratio (odds ratio, OR), weight (weight), 95% confidence interval (95 % CI) and the combined weight and 95% CI. Statistical analysis was performed by using the Review Manager 4.2 for meta-analysis software version; P value less than 0.05 was considered statistically significant. Further verify the etiology role in occurrence of gastric carcinoma.
     6. The specific primers were designed according to the BARF1 gene cDNA sequence in Genbank provided and restriction sites added at both ends; BARF1 construct eukaryotic expression vector of BARF1.
     Results
     1. HPV was detected from collected specimens of esophageal cancer patients, and HPV-positive rates were: 93.2% (109/117) in Llinzhou city of Henan province; 88.1% (37/42) in Baoding city of Hebei province; 95% (19 / 20) in Yanting city of Sichuan province. HPV16 type was main type, second was HPV18 type. Among them, HPV16-positive rates was 59.6% (65/109), 51.4% (19/37) and 57.9% (11/19); HPV18-positive rate was 19.3% (21/109), 21.6% (8/37) and 21.1% (4/19).
     2. The real-time quantitative PCR results showed that only 6.3 % ( 2/32 ) of the HPV16 positive specimens harbored exclusively episomal form, with E2/E6 ratio > 1, the mixture of episomal and integrated forms 84.3 % ( 27/32 ), with 0< E2/E6 ratios<1, and exclusively integrated form 9.4 % ( 3/32 ) , with E2/E6 ratio =0, indicating a predominance of integration of viral DNA in the host genome; Viral load of HPV16 were 0.066-65.2 copyies/cell in 32 HPV16 E6 positive samples.
     3. Sequence analysis revealed that HPV18 integration in chromosome 5 from two HPV18-positive cancer patients.
     4. For 17 articles, HPV positive rates were 44.0% in EC specimens, and 16.7% in normal controls. HPV infection in esophageal carcinoma tissues compared with normal controls was statistically significant ( P<0.05 ); HPV16 type-specific were tested with 12 articles, the results showed the positivity of HPV16 were 38.6% in EC, and 15.9% in normal tissues, HPV16 positive rates were significantly difference for EC specimens contrast to normal esophageal tissues by statistical analysis ( P<0.05 ). HPV infection and geographical distribution of significant differences ( P <0.05 ) were found in Henan, Guangdong, Xinjiang, Sichuan, Hebei, Shanghai, Fujian and Hong Kong eight regions.
     5. A total 5475 cases from 22 papers with gastric cancer were enrolled, of whom 411 cases were found EBV-positive. Among the EBV-positive gastric cancer cases, the detection rate was 11.1% in males and 3.0% in females. Compared with EBV-negative gastric cancer, EBV-positive gastric cancer had less lymph node metastasis. EBV infection rate was 28.3% in residual gastric cancers; EBV infection rates were no statistically significant difference ( P <0.05 ) for histological type and the specimen type.
     6. 666 bp products of BARF1 were obtained by RT-PCRwith RNA of B95-8 cells. right referred to plasmid identified. BARF1 gene fragment was inserted pUM-T vector by identification of double-digestion. BARF1 gene has been properly connected to the pcDNA3.1 (+)-his eukaryotic expression vector through sequencing analysis.
     Conclusions
     1. Our study showed that HPV positive rates were 93.2 %, 88.1 %, 95.0 %, respectively, and average positive rate was 92.2 % in EC samples from Linzhou, Baoding, and Yanting City; Among them the average HPV16 E6 positive rate was 53.1 %, and HPV18 E6 positive rate was 18.4 %. it suggested that HPV plays an etiologic role in the development of esophageal cancer in China.
     2. Integration of viral DNA in the host genome of HPV16 positive EC samples suggests that integration HPV DNA is common, and implies that HPV16 infection may play an etiologic role in EC development.
     3. HPV18 may be integrated in one part of chromosome 5. Integration of HPV genome in the host cell chromosome suggests that persistent HPV infection is a key for malignant cell transformation and canceration.
     4. HPV infection in Chinese esophageal cancer compared with normal tissue was significant difference ( p<0.05 ), and high risk HPV infection prevalence in different geographical locations. Meta-analysis results suggested the HPV prevalence in the esophageal cancer samples of China and clued the possible etiological relationships between HPV infection and the esophageal cancer development.
     5. Meta-analysis showed that EBV infection occurred only in gastric cancer tissue cells and was significantly associated with the patients’gender, lymph node metastases, and the location where tumor tissue generated and geographical distribution( P<0.05 ), but was not significantly associated with the patients’histological types of tumor and the type of specimen ( P>0.05 ), and indicated the possible etiological relationships between EBV infection and gastric cancer development.
     6. The eukaryotic expression vector pcDNA3.1(+)/BARF1-his was constructed successfully, and for establishment in vitro model of EBV infection in the future to further explore the relationship between EBV infection and the etiology of gastric cancer.
引文
[1] Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics. CA Cancer J Clin. 2005, 55(2): 74-108.
    [2]陈伟三,杨合麟.广东省南澳县1987-1992年食管癌流行病学特点.癌症. 1996, 15(4): 274-276.
    [3]邹小农,陈万青,张思维,等.中国部分市县1998-2002年食管癌发病与死亡.中国肿瘤. 2007, 16(3): 142-146.
    [4] Syrjanen K J. Histological changes identical to those of condylomatous lesions found in esophageal squamous cell carcinomas. Arch Geschwustforsch. 1982, 52(4): 283–292.
    [5] Schelhaas M, Ewers H, Rajam?ki M L, et al. Human Papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions. PLoS Pathog. 2008, 4(9) e1000148:1-14.
    [6] Narechania A, Chen ZG, DeSalle R, et al. Phylogenetic incongruence among oncogenic genital alpha human papillomaviruses. J.Virol. 2005, 79(24): 15503–15510.
    [7] Zur Haussen H. Papillomavirus infection a major cause of human cancers. Biochim Biophys Acta. 1996, 1288(2): 55- 78.
    [8] Sabol I, Salakova M, Smahelova J,et al.Evaluation of different techniques for identification of human papillomavirus types of low prevalence.J.Clin. Microbiol.2008,46(5): 1606–1613.
    [9] de Villiers EM, Gissmann L, zur Hausen H. Molecular cloning of viral DNA from human genital warts. J.Viro1. 1981, 40(3): 932-935.
    [10] Douglas JM, Werness BA. Genital human papillomavirusinfections. Clin Lab Med. 1989, 9(3): 421- 444.
    [11] Burd EM. Human Papillomavirus and Cervical Cancer. Clin Microbiol Rev. 2003, 16(1): 1–17.
    [12] Munger K. Disruption of oncogene/tumor suppressor networks during human carcinogenesis. Cancer Invest . 2002, 20(1):71-81.
    [13] Duensing S, Munger K. Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability. Oncogene. 2002, 21(40): 6241-6248.
    [14] Thomas JT, Laimins LA. Human Papillomavirus Oncoproteins E6 and E7 Independently Abrogatethe Mitotic Spindle Checkpoint. J. Virol. 1998, 72(2): 1131一1137.
    [15]岑山,张月,许锦阶,等.佛波酯和人乳头状瘤病毒在细胞恶性转化作用中的协同效应.中华实验和临床病毒学杂志. 2006, 20(3): 260-262.
    [16]沈忠英,滕智平,沈健,等.亚硝基吡啶对人乳头状瘤病毒诱导的食管上皮永生化细胞的促癌作用.中华实验和临床病毒学杂志. 2006, 20(2): 81-83.
    [17]沈忠英,岑山,滕智平,等.人乳头状瘤病毒协同60钴照射促进食管上皮细胞恶性转化.病毒学报. 2004, 20(3): 225-229.
    [18]沈忠英,沈健,蔡唯佳,等.丁酸钠对人乳头状瘤病毒诱导的永生化食管上皮恶性转化的促进作用.中华病理学杂志. 2002, 31(4): 327-330.
    [19]沈忠英,陈铭华,蔡唯佳,等.丁酸对食管永生化上皮细胞的增殖,分化和凋亡的作用.中华病理学杂志. 2001, 30(2): 121-124
    [20] Lechner MS, Laimins LA. Inhibition of p53 DNA binding by human papillomavirus E6 proteins. J Virol. 1994, 68(7): 4262-4273.
    [21] Middleton K, Peh W, Southern S, et al. Organization of human papillomavirus productive cycle during neoplastic progression provides a basis for selection of diagnostic markers.J.Virol. 2003, 77 (19): 10186–10201.
    [22] Munger K. The role of human papillomaviruses in human cancers. Front Biosci. 2002, 7: d641-649.
    [23] Fontaine V, Mascaux C, Weyn C,et al.Evaluation of Combined General Primer-Mediated PCR Sequencing and Type-Specific PCR Strategies for Determination of Human Papillomavirus Genotypes in Cervical Cell Specimens. J.Clin. Microbiol. 2007,45(3): 928-934.
    [24] Hamont DV, Ham MAPC, Bakkers JMJE, et al. Evaluation of the SPF10-INNO LiPA human papillomavirus(HPV) genotyping test and the roche linear array HPV genotyping test. J. Clin.Microbiol. 2006, 44(9): 3122-3129.
    [25] Bernhard K, van Doorn L J, Schrauwen L, et al.Development and Clinical Evaluation of a Highly Sensitive PCR-Reverse Hybridization Line Probe Assay for Detection and Identification of Anogenital Human Papillomavirus.J. Clin. Microbiol. 1999, 37(8): 2508–2517.
    [26] Hillemanns P, Wang XL. Integration of HPV16 and HPV18 DNA in vulvar intraepithelial neoplasia. Gynecologic Oncology. 2006, 100(2): 276-282.
    [27] Klimov E, Vinokourova S, Moisjak E, et al. Human papilloma viruses and cervical tumours: mapping of integration sites and analysis of adjacent cellular sequences. BMC Cancer. 2002, 2(24): 1471-2407.
    [28] Ruediger K, Stefan MW, Ruediger R, et al. Dectection of High-Risk cervical intraepithelial neoplasia and cervical cancer by amplification of transcripts derived from integrated papillomavirus oncogenes. Cancer Research. 1999, 59(24): 6132-6136.
    [29] akahashi A, Ogoshi S, Ono H, et al. High-risk human papillomavirus infection and overexpression of p53 protein in squamous cell carcinoma of the esophagus from Japan. Dis Esophagus. 1998, 11(3): 162–167.
    [30] Syrjanen KJ. HPV infections and oesophageal cancer. J. Clin. Pathol. 2002, 55(10): 721–728.
    [31] Winkler B, Capo V, Reumann W, et al. Human papillomavirus infection of the esophagus. A clinicopathologic study with demonstration of papillomavirus antigen by the immunoperoxidase technique. Cancer. 1985, 55(1): 149-155.
    [32] Campo MS. Papillomas and cancer in cattle. Cancer Surv. 1987, 6(1): 39-54.
    [33] Dillner J, Knekt P, Schiller JT. Prospective seroepidemiological evidence that human papillomavirus type 16 infection is a risk factor for oesophageal squamous cell carcinoma. BMJ. 1995, 311(7016): 1346.
    [34] Si H X, Tsao S W, Poon C S, et al.Viral load of HPV in esophageal squamous cell carcinoma. Int.J.Cancer. 2003, 103(4): 496–500.
    [35] Li T, Lu Z M, Chen K N, et al. Human papillomavirus type 16 is an important infectious factor in the high incidence of esophageal cancer in Anyang area of China. Carcinogenesis. 2001, 22(6): 929-934.
    [36] Benamouzig R, Pigot F, Quiroga G, et al. Human papillomavirus infection in esophageal squamous cell carcinoma in westen countries. 1nt J Cancer. 1992, 50(4): 549-552.
    [37] Toh Y, Kuwano H, Tanaka S, et a1. Detection of human papillomavirus DNA in esophageal carcinoma in Japan by ploymerase chain reaction. Cancer. 1992, 70(9): 2234-2238.
    [38] Chang F, Shen Q, Zhou J, et al. Detection of human pa pillomavirus DNA in cytologic specimens derived from esophageal precancer lesions and cancer. Scand J Gastroenterol. 1990, 25(4): 383-388.
    [39] Chang FJ, Syrjanen S, Shen Q, et al, Human papillomavirus (HPV) DNA in esophageal precancer lesions and squamous cell carcinomas from china. Int J Lancer. 1990, 45(1): 21-25.
    [40] Chang F, Syrjanen S, Shen Q, e1 al. Human papillomavirus involvement in esophageal carcinogenesis in the high incidence area of China. A study of 700 cases by screening and type specific insitu hybrdyzation. Scand J Gastroenterol. 2000, 35(2): 123–130.
    [41] Peixoto G D, Lu SH, Peter S, et al. Absence of association between HPV DNA, TP53 codon 72 polymorphism, and risk of esophageal cancer in a high-risk area of China. Cancer Letters. 2001,162(2): 231–235.
    [42] Li T, Lu ZM, Chen KS, et al. Human papillomavirus type 16 is an important infectious factor in the high incidence of esophageal cancer in Anyang area of China. Carcinogenesis. 2001, 22(6): 929–934.
    [43]陆士新,罗风岐,李华川,等.食管癌和癌旁上皮中乳头状瘤病毒的检测.中华肿瘤杂志. 1995, 17(5): 321–324.
    [44] Gao G F, Roth M J, Wei W Q, et al. No association between HPV infection and the neoplastic progression of esophageal squamous cell carcinoma: Result from a cross-sectional study in a high-risk region of China. Int.J.Cancer. 2006, 119(6): 1354–1359。
    [45]陈少湖,刘祖宏,张稳定,等.揭阳地区食管癌和责门癌与人乳头状瘤病毒的关系.中华实验和临床病理学杂. 1998, 12(4): 382-383.
    [46] Shen, ZY, Hu SP, Shen J, et al. Detection of Human Papillomavirus in Esophageal Carcinoma. J. Med. Virol. 2002, 68(3): 412-416.
    [47]齐宗利,霍霞,张宝,等.食管癌EC 109细胞属人类乳头状瘤病毒18型阳性细胞株.汕头大学医学院学报. 2006, 19(3): 136-139.
    [1] Lee DC, Cheung CY, Law AH, et al. p38 mitogen- activated protein kinase-dependent hyperinduction of tumor necrosis factor alpha expression in response to avian influenza virus H5N1. J.Virol. 2005, 79(16): 10147-10154.
    [2] Depuydt C E,Boulet G A V,Horvath C A J,et al. Comparison of MY09/11 consensus PCR and type-specific PCRs in the detection of oncogenic HPV types. J.Cell.Mol.Med. 2007, 11(4): 881-891.
    [3] Sabol I, Salakova M, Smahelova J, et al. Evaluation of Different Techniques for Identification of Human Papillomavirus Types of Low Prevalence. J.Clin. Microbiol. 2008, 46(5): 1606–1613
    [4] Gravitt P E, Peyton C L, T. Q. Alessi T Q, et al. Improved amplification of genital human papillomaviruses. J.Clin.Microbiol. 2000, 38(1): 357-361.
    [5] Coutlee F, Gravitt P,Kornegay,et al. Use of PGMY primers in L1 consensus PCR improves detection of human papillomavirus DNA in genital samples. J. Clin. Microbiol. 2002, 40(3): 902-907.
    [6] Fontaine V, Mascaux C, Weyn C, et al. Evaluation of Combined General Primer-Mediated PCR Sequencing and Type-Specific PCR Strategies for Determination of Human Papillomavirus Genotypes in Cervical Cell Specimens. J.Clin. Microbiol. 2007, 45(3): 928-934.
    [7] Karlsen F M, Kalantari A, Jenkins E, et al. Use of Multiple PCR Sets for Optimal Detection of Human papillomavirus. J.Clin.Microbiol. 1996, 34(9): 2095-2100.
    [8] Shuyama K, Castillo A, Aguayo F, et al. Human papillomavirus in high and low risk areas of oesophageal squamous cell carcinoma in China, British Journal of Cancer. 2007, 96(10): 1554–1559.
    [9] Safaeian M,Herrero R,Hildesheim A,et al. Comparison of the SPF10-LiPA system to thehybrid capture 2 assay for detection of carcinogenic human papillomavirus genotypes among 5683 young women in guanacaste costa rica. J.Clin.Microbiol. 2007, 45(5): 1447-1454.
    [10] Hamont DV, Ham MAPC, Bakkers JMJE,et al. Evaluation of the SPF10-INNO LiPA human papillomavirus(HPV) genotyping test and the roche linear array HPV genotyping test. J.Clin.Microbiol. 2006, 44(9): 3122-3129.
    [11] Sotlar K, Diemer A, Dethleffs Y, et al. Detection and Typing of Human Papillomavirus by E6 Nested Multiplex PCR. J.Clin.Microbiol. 2004, 42(7): 3176-3184.
    [12] Si, H X, Tsao S W, Poon C S, et al. Viral load of HPV in esophageal squamous cell carcinoma. Int. J. Cancer. 2003, 103(4): 496–500.
    [13] Swan DC, Tucker RA, Tortolero-Luna G, et al. Human papillomavirus (HPV) DNA copy number is dependent on grade of cervical disease and HPV type. J. Clin. Microbiol. 1999, 37: 1030-1034.
    [14] Campo M S, Moar M H, Sartirana M L, et al. The presence of bovine papillomavirus type 4 DNA is not required for the progression to, or the maintenance of, the malignant state in cancers of the alimentary canal in cattle. EMBO J. 1985, 4(7): 1819–25.
    [15] Gao G F, Roth M J, Wei W Q, et al. No association between HPV infection and the neoplastic progression of esophageal squamous cell carcinoma: Result from a cross-sectional study in a high-risk region of China. Int. J. Cancer. 2006, 119(6): 1354–1359.
    [16] Wei, W Q, Koshiol J, Chen W, et al. Human Papillomavirus infection is not a major risk factor for esophageal squamous cell carcinoma in ahigh risk area in China.The 4th APOCP General Assembly Conference. 2008, p58.
    [17] Lopez-Borges S, Gallego MI, Lazo PA. Recurrent integration of papillomavirus DNA within the human12q14-15 uterine breakpoint region in genital carcinomas. Genes Chromosomes Cancer. 1998, 23(1): 55-60.
    [18] Wang L, Darling J, Zhang JS, et al. Frequent homozygous deletions in the FRA3B region in tumor cell lines still leave the FHIT exons intact.Oncogene 1998, 16(5): 635-642.
    [19] Wilke CM, Hall BK, Hoge A, et al. FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet. 1996, 5(2): 187-195.
    [20] Badaracco G, Venuti A, Sedati A. et al. HPV-16 and HPV-18 in genital tumors: significantly different levels of viral integration and correlation to tumor invasiveness. J Med Virol. 2002, 67(4): 574–582.
    [21] Peitsaro P, Johansson B, Syrjanen S. Integrated human papillomavirus type 16 is frequently found in cervical cancer precursors as demonstrated by a novel quantitative real-time PCR technique. J Clin Microbio. 2002, 40(3): 886–891.
    [22] Hugo AP, Peyton CL, Joste NE, et al. human papillomavirus type 16 integration incervical cancer. JCM. 2006, 44(5): 1755-1762.
    [23] Si HX, Tsao SW, Poon CSP, et al. Physical status of HPV -16 in esophageal squamous cell carcinoma, J. Clin Virol. 2005, 32(1): 19-23.
    [24] Hillemanns P, Wang XL. Integration of HPV16 and HPV18 DNA in vulvar intraepithelial neoplasia. Gynecologic Oncology. 2006, 100(2): 276-282.
    [25] Klimov E, Vinokourova S, Moisjak E, et al. Human papilloma viruses and cervical tumours: mapping of integration sites and analysis of adjacent cellular sequences. BMC Cancer. 2002, 2(24): 1471-2407.
    [26] Ruediger K, Stefan MW, Ruediger R, et al. Dectection of High-Risk cervical intraepithelial neoplasia and cervical cancer by amplification of transcripts derived from integrated papillomavirus oncogenes. Cancer Research. 1999, 59(24): 6132-6136.
    [27] Herrington CS. Human papillomaviruses and cervical neoplasia. I. Classification, virology, pathology, and epidemiology. J Clin Pathol. 1994, 47(12): 1066-1072.
    [28] Toh Y, Kuwano H, Tanaka S, et al. Detection of Human papillomavirus DNA in esophageal carcinoma in Japan by polymerase chain reaction. Cancer. 1992, 70(9): 2234-2238.
    [29] Cannizzaro LA, Durst M, Mendez MJ, et al. Regional chromosome localization of human papillomavirus integration sites near fragile sites, oncogens and cancer chromosome breakpoints. Cancer Genet Cytogenet. 1988, 33(1): 93-98.
    [30]彭新,王红伟.某市食管癌组织中人类乳头状瘤病毒感染情况的研究.河南职工医学院学报. 2006, 18(5): 343-344.
    [31]徐芸,郭建成,张连峰.食管癌组织中人乳头瘤病毒的检测.河南医科大学学报. 1996, 31(3): 53-55.
    [32]何保昌,段广才,蔡琳.高危型HPV感染和p53基因多态性与食管癌关系的研究.海峡预防医学杂志. 2007, 13(3): 8-10.
    [33]陈捷,周宇,李杰,等. HPV 16感染对食管癌及P16, P53基因表达的影响.中国实验诊断学. 2004, 8(2): 182-185.
    [34]匡忠生,唐纯志,沈忠英.食管癌患者中HPV 16, 18的检测.广东医学. 2000, 21(4): 305-306.
    [35]庄坚,余秀葵,董箐,等.食管癌组织中人乳头瘤病毒的PCR检测.汕头大学医学院学报. 1996, 2: 15-17.
    [36]林俊杰,张锦霞,宗永生.食管鳞状细胞癌中人乳头状瘤病毒感染的意义.广东医学院学报.1998, 16(3): 186-188.
    [37]王瑞,李琰,张金文.食管癌组织中人乳头状瘤病毒感染状况分析.山东医药. 2002, 42(7): 19-20.
    [38]陈碧芬,殷虹.食管癌标本中人乳头瘤病毒DNA的研究.中华医学杂志. 1993, 73(11): 667-701.
    [39]任国平,刘宗石,云锦平.散发食管癌人群人乳头状病毒感染与G1期细胞周期素的研究.中华消化杂志. 2003, 23(11): 694-695.
    [40]金磊,曹勤.人乳头状瘤病毒在食管癌中的表达及其作用.胃肠病学. 2007, 12(1): 36-39.
    [41]王修杰,王旭华,王朝俊,等.人乳头状瘤病毒与食管癌的病因学关系.中国肿瘤临床. 1998, 25(4): 270-273.
    [42]刘铭,张晓莉,府伟灵,等.人乳头瘤病毒与食管鳞癌及不典型增生相关性的研究.中国现代医学杂志. 2008, 18(14): 2084-2086.
    [43]周素明,伊力亚尔夏合丁,杨婷,等. HPV16与新疆维吾尔族食管癌的相关性.世界华人消化杂志. 2009, 17(31): 3214-3217.
    [44]姚恩生,杨兰,淳采璞,等. PCR和原位杂交技术检测新疆哈萨克族食管癌中HPV感染情况.农垦医学. 2008, 30(3): 161-163.
    [45]陈云昭,姚恩生,杨兰,等.人乳头状瘤病毒感染与新疆哈萨克族食管癌发生关系的探讨.现代预防医学. 2008, 35(13): 2407-2409.
    [46]陈玲,杨兰,孙振柱,等.人乳头瘤状病毒16型与新疆哈萨克族食管鳞癌的相关性研究.农垦医学. 2008, 30(1): 1-3.
    [47] Shen ZY, Hu SP, Lu LC, et al. Detection of human papillomavirus in esophageal carcinoma. J Med Virol. 2002, 68(3): 412-416.
    [48] Lyronis ID, Baritaki S, Bizakis I, et al. Evaluation of the prevalence of human papillomavirus and Epstein-Barr virus in esophageal squamous cell carcinomas. Int J Biol Markers. 2005, 20(1): 5-10.
    [49] White RE, Mungatana C, Mutuma G, et al. Absence of human papillomavirus in esophageal carcinomas from southwestern Kenya. Dis Esophagus. 2005, 18(1): 28-30.
    [50]陆哲明,陈克能,郭梅,等.食管癌高发区HPV检测及与p53的关系.中华肿瘤杂志. 2001, 23(3): 220-223.
    [51] Li T, Lu ZM, Chen KN, et al. Human papillomavirus type16 is an important infectious factor in high incidence of esophageal cancer in Anyang area of China. Carcinogenesis. 2001, 22(6): 929-934.
    [52]徐卫国,张力建,陆哲明,等.上消化道癌组织中人乳头瘤病毒16及E6 mRNA检测的临床研究意义.中华医学杂志. 2003, 83(21): 1910-1914.
    [1] Ryan JL, Morgan DR, Dominguez RL, et al. High levels of Epstein–Barr virus DNA in latently infected gastric adenocarcinoma. Lab Invest, 2009, 89(1): 80–90.
    [2] Shibata D,Weiss LM. Epstein-Barr virus-associated gastric Adenocarcinoma. Am J Pathol, 1992, 140(4):769–774.
    [3] Vo QN, Geradts J, Gulley ML, et al. Epstein-Barr virus in gastric adenocarcinoma: associated with ethnicity and CDKN2A promoter methylation. J Clin Pathol, 2002, 55(9): 669–675.
    [4] Shibata D,Hawes D,Stemmermann GN, et al. Epstein-Barr Virus-associated Gastric Adenocarcinoma among Japanese Americans in Hawaii. Cancer Epidemiology Biomarkers & Prevention, 1993, 2(3):213-217.
    [5] Truong CD, Feng W, Li w, et al. Characteristics of Epstein-Barr virus-associated gastric cancer: A study of 235 cases at a comprehensive cancer center in U.S.A. J Exp Clin Cancer Res, 2009, 28(14):1–9.
    [6] Lima VP, de Lima MAP, AndréAR, et al. H pylori (Cag A) and Epstein-Barr virus infection in gastric carcinomas: Correlation with p53 mutation and c-Myc, Bcl-2 and Bax expression. World J Gastroenterol, 2008, 14(6): 884–891.
    [7] Lopes LF, Bacchi MM, Elgui-de-Oliveira D, et al. Epstein-Barr virus infection and gastric carcinoma in Sao Paulo State, Brazil. Braz J Med Biol Res, 2004, 37(11): 1707–1712.
    [8] Begnami MD, Montagnini AL, Vettore AL, et al. Differential expression of apoptosis related proteins and nitric oxide synthases in Epstein Barr associated gastric carcinomas. World J Gastroenterol, 2006, 12(31): 4959–4965.
    [9] Luo B, Wang Y, Wang XF, et al. Correlation of Epstein-Barr virus and its encoded proteins with Helicobacter pylori end expression of c-met and c-myc in gastric carcinomas. World J Gastroenterol, 2006, 12(12):1842-1848.
    [10] Abdirad A, Ghaderi-Sohi S, Shuyama K, et al. Epstein-Barr virus associated gastric carcinoma: a report from Iran in the last four decades. Diagn Pathol, 2007, 2( 25):1–9.
    [11] Oda K , Koda K, Takiguchi N , et al. Detection of Epstein-Barr virus in gastric carcinoma cells andsurrounding lymphocytes. Gastric Cancer, 2003, 6(3):173–178.
    [12] Alipov G, Nakayama T, Nakashima M, et al. Epstein-Barr virus associated gastric carcinoma in Kazakhstan. World J Gastroenterol, 2005, 11(1):27–30.
    [13] Jung IM, Chung JK, Kim YA, et al. Epstein-Barr virus, Beta-catenin, and E-cadherin in gastric carcinomas. J Korean Med Sci, 2007; 22(5): 855–861.
    [14] Chang MS, Lee HS, JUNG EJ, et al. Role and prognostic significance of proapoptotic proteins in Epstein-Barr Virus-infected gastric carcinomas. Anticancer Res, 2007, 27(2): 785–792.
    [15] Lee HS, Chang MS, Yang HK, et al. Epstein-Barr virus-positive gastric carcinoma has a distinct protein expression profile in comparison with Epstein-Barr virus-negative carcinoma. Clin Cancer Res, 2004, 10(5):1698–1705.
    [16] Kang GH, Lee S, Kim WH, et al. Epstein-Barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am J Pathol, 2002, 160(3):787–794.
    [17] Karim N, Pallesen G. Epstein-Barr virus(EBV) and gastric carcinoma in Malaysian Patients. Malaysian J Pathol, 2003,25(1):45-47.
    [18] Herrera-Goepfert R, Akiba S, Koriyama C, et al. Epstein-Barr virus-associated gastric carcinoma: Evidence of age-dependence among a Mexican population. World J Gastroenterol, 2005, 11(39):6096–6103.
    [19] van Rees BP, Caspers E, zur Hausen A, et al. Different pattern of allelic loss in Epstein-Barr virus-positive gastric cancer with emphasis on the p53 tumor suppressor pathway. Am J Pathol, 2002, 161(4):1207–1213.
    [20] van Beek J, zur Hausen A, Kranenbarg EK, et al. A rapid and reliable enzyme immunoassay PCR-based screening method to identify EBV-carrying gastric carcinomas. Mod Pathol, 2002, 15(8):870–877.
    [21] zur Hausen A, Brink AA, Craanen ME, et al. Unique transcription pattern of Epstein-Barr virus (EBV) in EBV-carrying gastric adenocarcinomas: expression of the transforming BARF1 gene. Cancer Res, 2000, 60(10):2745–2748.
    [22] van Beek J, zur Hausen A, Klein Kranenbarg E, et al. EBV-positive gastric adenocarcinomas: a distinctclinicopathologic entity with a low frequency of lymph node involvement. J Clin Oncol, 2004, 22(4):664–670.
    [23] Thompson MP, Kurzrock R. Epstein-Barr virus and cancer. Clin Cancer Res. 2004, 10(3): 803–821.
    [24] Burke AP, Yen TS, Shekitka KM, et al. Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod Pathol. 1990, 3(3): 377–380.
    [25]李淑英,侯灵彤,周天戟.胃癌患者EB病毒感染对bcl-2基因表达影响的研究.临床荟萃. 2006, 21(5): 319-321.
    [26]李淑英,朱丽华,周天戟.胃癌患者EB病毒感染与c-erbB-2基因表达的研究.中国人兽共患病学报. 2006, 22(7): 606–608.
    [27]李淑英,张科,周天戟.胃癌患者EB病毒感染与cyclin D1基因表达的相关性.第四军医大学学报. 2006, 27(21): 1932-1933.
    [28]李淑英,胡金华,周天戟. EB病毒感染与胃癌相关性分析.中国老年学杂志. 2007, 27(23): 2323-2325.
    [29] Nicholls JM, Agathanggelou A, Fung K, et al. The association of squamous cell carcinomas of the nasopharynx with Epstein-Barr virus shows geographical variation reminiscent of Burkitt’s lymphoma. J Pathol, 1997, 183(2):164–168.
    [30]宋立兵,曾木圣,张玲,等. EB病毒的BARF1基因在人上皮细胞恶性转化和肿瘤形成中的作用.肿瘤. 2006, 26(1): 10-13.
    [31]王云,罗兵,王笑峰,等.胃癌组织中EB病毒的检测及其增殖期基因的表达.中国癌症杂志. 2004, 14(3): 217-221.
    [32] Fries KL, Sculley TB, Webster-Cyriaque J, et al. Identification of a novel protein encoded by the Bam H I A region of the Epstein-Barr virus. J Virol. 1997, 71(4): 2765-2771.
    [33] Wei MX, Moulin JC, Decaussin G, et al. Expression and tumorigenicity of the Epstein-Barr virus BARF1 gene in human Louckes B-lymphocyte cell line. Cancer Res. 1994, 54(7): 1843-1848.
    [34] Christopher J, Ring A. The B cell-immortalizing function of Epstein-Barr virus. J Gen Virol. 1994, 75(1): 1-13.
    [35] Wei MX, de Turenne-Tessier M, Decaussin G, et al. Establishment of a monkey kidney epithelial cell line with the BARF1 open reading frame from Epstein-Barr virus, Oncogene. 1997, 14(25):3073-3081.
    [36]郭秀婵,盛望,张永利,等. Epstein-Barr病毒BARF1基因协同TPA诱发猴肾上皮细胞恶性转化的研究.中华试验和临床病毒学杂志. 2001, 15(4): 321-323.
    [37]李友琼,张雪怡,曾健,等. EB病毒BARF1基因表达对胃癌细胞株SGC7910生物学行为的影响.江苏大学学报(医学版). 2009, 19(3): 214-219.
    [38] Sheng W, Decaussin G, Sumner S, et al. N-terminal domain of BARF1 gene encoded by Epstein-Barr virus is essential for malignant transformation of rodent fibroblasts and activation of BCL-2. Oncogene. 2001, 20(10): 1176-1185. ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700