用户名: 密码: 验证码:
白桦木材耐腐能力差异和木腐菌腐朽木材基因差异表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活立木腐朽与木材腐朽是各国林业生产和木材使用的大敌,对腐朽前后木材成分差异和腐朽菌丝差异的研究有助于进一步理解腐朽病害发生的机理。本研究以白桦木材和5种木材腐朽菌为材料,系统分析了经5种木材腐朽菌腐朽前后白桦木材主要化学成分的变化,5种主要木材腐朽菌在生长和酶学特性的差异,以及分离了2种木材腐朽菌腐朽前后菌丝差异表达的基因,探讨了5种木材腐朽菌的生物学特性与其腐朽白桦木材能力之间的关系,从腐朽前后木材腐朽菌和白桦木材化学成分两方面的变化规律,研究二者之间的相互作用机理,并在此基础上探索了环境友好的耐腐和易腐白桦育种策略---木腐菌的腐朽能力和白桦木材的天然耐腐性基础上的选择育种。主要研究结果如下:
     (1)用白囊耙齿菌(Irpex lacteus)、黄伞(Pholiota adiposa)、彩绒革盖菌(Coriolus versicolor)、木蹄层孔菌(Fomes fomentarius)和桦剥管菌(Piptoporus betulinus)5种木材腐朽菌,分别对帽儿山林场的300株白桦木材进行木材天然耐腐性检测,结果表明白桦木材重量损失率株间差异极显著,在群体水平上符合正态分布。彩绒革盖菌腐朽白桦木材的能力最强,其次是木蹄层孔菌和桦剥管菌,而白囊耙齿菌和黄伞腐朽白桦木材的能力最弱。黄伞和木蹄层孔菌腐朽后的木材重量损失率呈极显著的正相关,白囊耙齿菌和桦剥管菌腐朽后的木材重量损失率呈极显著的负相关。
     (2)比较了腐朽木材与新鲜木材在主要化学成分上的差异,不同木材腐朽菌对木材中各主要成分的腐朽程度都不相同,说明木材腐朽菌对木材各成分有偏好性。
     根据白桦木材腐朽后的重量损失率,每种木材腐朽菌筛选出10株耐腐和易腐白桦,分别组成五组耐腐和易腐群体,对应群体间的木材重量损失率差异极显著。5种耐腐群体可以用于今后白桦建筑材和单板材的良种选育。发现不同木材腐朽菌筛选出来的耐腐和易腐白桦植株绝大部分都不相同。
     (3)分别5种木材腐朽菌将白桦木材的天然耐腐朽程度分为耐腐、易腐和中等腐朽三个层次,为今后判断白桦木材是否抗这5种木材腐朽菌腐朽提供了便利的比较方法和比较标准。
     (4)对筛选出的白桦耐腐和易腐植株的新鲜木样主要化学成分进行Pearson相关性分析,发现白桦耐腐和易腐群体木材中的1%NaOH抽出物和水分与纤维素含量成显著负相关,易腐群体白桦木材中的水分与纤维素含量、苯醇抽出物和总酚含量、木质素和总酚和总黄酮含量成显著正相关,这些相关关系与对应成分的特性以及在耐腐和易腐群体中的含量相符。
     (5)用分光光度法检测了白桦木材中的酚类和黄酮类物质含量,发现总酚和总黄酮含量显著性高的白桦木材抗木蹄层孔菌,总酚含量显著性高的白桦木材抗桦剥管菌。用GC-MS法进一步检测白桦木材,得到11种化合物。其中4,7-亚甲基-1H-茚-6-酚、N,N'-二亚水杨基-1,2-二氨基乙烷、3,4,5-三甲氧基苯酚属于酚类物质,反式-3-甲基-4-甲硫基-查耳酮属于黄酮类物质。
     (6)系统地比较5种木材腐朽菌在固体、液体培养基中的生长特性、木质素降解酶活性与它们降解白桦木材的能力,发现5种木材腐朽菌对白桦木材的腐朽能力与它们在液体培养基中能达到最快生长速度所需要的时间相符,与其生长速度和木质素降解酶活性都无明显相关性,即生长迅速的木腐菌并不代表其木材降解能力强。
     (7)木蹄层孔菌腐朽后的白桦木材1%NaOH抽出物含量最低,苯醇抽出物含量中等,纤维素含量最高,木质素含量比较低,而且其腐朽白桦木材的能力较强,适宜改造成造纸业原料处理的工程菌。
     彩绒革盖菌的腐朽白桦木材能力最强,但腐朽白桦木材后的纤维素含量远低于其它3种菌,因此不适于生物辅助造纸,但其锰过氧化物酶和漆酶活性最高,可以用于其它污染物治理。
     木蹄层孔菌筛选出的白桦易腐群体新鲜木材的1%NaOH抽出物含量中等,苯醇抽出物含量最低,纤维素含量比较高,木质素含量最低,因此最适用于碱法制浆过程的造纸。
     (8)黄伞同时表达木质素过氧化物酶、锰过氧化物酶和漆酶的活性,腐朽后木材的木质素损失率高于纤维素损失率,腐朽木材近似于白色,不易粉碎。黄伞应该属于白腐菌。
     (9)分别对白囊耙齿菌和桦剥管菌进行木材诱导,找到白囊耙齿菌的漆酶等5个同源片段和桦剥管菌的mRNA前体拼接因子syf2等7个同源片段。这些片段均在木材诱导真菌中有不同程度的表达,并且在木材腐朽菌腐朽木材过程中起了重要作用。
     发现白腐菌和褐腐菌在白桦木材诱导下存在明显差异表达的基因,这些差异表达片段对木材腐朽机理的研究起重要作用。
Live stumpage decaying are disadvantages in international forestry production and wood utilization. The study on change of wood component before and after wood rotted and gene different expression of the rot fungi would help to understand the decay mechanism of the wood. In this study, the wood of white birch and 5 wood rot fungi were used as materials, the changes in main chemical components of the wood before and after the wood decayed by rot fungi was systematically analyzed. Different expressed genes of wood rot fungi induced by wood chip were isolated. The relationship between the biological characteristics of several wood rot fungi and their degradation ability to birch wood were discussed. The interaction mechanism between wood rot fungi and major components of the birch wood before and after decayed were investigated according to their change pattern. A environment friendly breeding strategy of the birch with susceptible and resistant characteristics was investigated, which is a selective breeding on the basis of the degradation ability of the fungi and the natural decay resistance of white birch. The major results are as follows:
     (1) Irpex lacteus, Pholiota adipose, Coriolus versicolor, Fomes fomenta-rius and Piptoporus betulinus were separately used to decay 300 wood samples of white birch from Maoer Shan area for testing natural decay resistance f the white birch. The differences of weight loss of decayed wood between individual trees are statistically significant. They show normal distributions at the population level. The decomposing power of Coriolus versicolor to wood samples is higher than that of Fomesfom entarius and Piptoporus betulinus, while the decomposing power of Irpex lacteus and Pholiota adipose are the weakest ones. The weight loss of decayed wood between Fomes fomentarius and Pholiota adiposa shows significant positive correlation. But the weight loss of decayed wood between Irpex lacteus and Piptoporus betulinus shows highly significant negative correlation.
     (2) The differences between rotten wood and fresh wood in terms of the main chemical components are compared. Different wood rot fungi has different decaying value in main chemical components of the wood, that means that different wood rot fungi have their own preference on each chemical component of wood.
     10 susceptible plants and 10 resistant plants were selected by each wood rot fungi based on weight loss rate of decayed wood, that grouped 5 susceptible populations and tolerance populations separately. The difference of decayed wood weight loss was the most significant between corresponding groups.5 tolerance populations could breed for construction wood and plywood. Susceptible population could breed for pulpwood. Susceptible and tolerance birch plants selected by different wood rot fungi mostly were found to be not the same.
     (3) To divide natural resistance ability of white birch to three levels, such as resistant, susceptible and the moderate by 5 wood rot fungi separately. It provided a convenient comparison method and criterion to judge whether the wood of a birch plant whether or not to resists one of the 5 wood rot fungi in future.
     (4) After the pearson correlation analysis of major wood chemical components between tolerance and susceptible populations, it was found that the 1% NaOH extraction in wood had negative correlations with the water content and cellulose. The water content and cellulose, benzene-alcohol extraction and total phenol, total phenol and total flavonoids as well as lignin have positive correlations in the wood of susceptible populations. These correlations was consistent with the related characteristics of the corresponding components, as well as with their contents in the both populations.
     (5) Phenols and flavonoids content in birch wood were tested by spectrophotometry. The wood with higher total phenols and total flavonoids content was hard to be decayed by Fomes fomentarius, and the wood with higher total phenols content was more inappropriate by Piptoporus betulinus. The birch wood powders were tested by GC-MS.11 compounds were discovered. 4,7-methano-1H-indenol-hexahydro,2,2'-[1,2-ethanediylbis (nitrilomethylidyne)] bis-phenol and 3,4,5-trimethoxy-phenol belong to phenols, and trans-3'-Methyl-4-(methylthio)chalcone belong to flavonoids in birch wood.
     (6) The growth characteristics of 5 wood rot fungi in solid and liquid media were systematically compared with the activities of ligninolytic enzymes and wood-decaying capacities. The wood-decaying capacities of white birch by 5 wood rot fungi were corresponded with the time needed to achieve the fastest growth rate of the fungi in liquid medium; but no obvious correlation with their growth rate or the activities of ligninolytic enzymes. The wood rot fungus with fast growth rate did not really show strong wood-decaying capacity.
     (7) For the wood decayed by Fomes fomentarius,1%NaOH extraction content was the lowest, and benzene-alcohol extraction was in the middle, and cellulose was the highest, and lignin was lower, but, which has stronger wood-decaying capacity. It means that Fomes fomentarius could be transformed into the best engineering strain for processing raw materials in paper industry.
     The wood-decaying capacity of Coriolus versicolor was the strongest among all 5 fungi, but the cellulose content in wood decayed by it was lower. It means that Coriolus versicolor was not suitable for bio-assisted paper-making. Meanwhile, Coriolus versicolor could be used for pollutant control since the activities of its MnP and Lac were the highest.
     The fresh wood of susceptible populations selected by Fomes fomentarius, which 1% NaOH extraction content was in the middle, benzene-alcohol extraction was the lowest, cellulose was highest, and lignin was also the lowest, could be the best raw materials in alkaline pulping process by using alkaline method.
     (8) The activities of Lip, MnP, Lac could be tested in Pholiota adiposa, which lignin loss rate was higher than the cellulose loss rate in wood decayed by it. At the same time, color of the wood decayed by Pholiota adipose looks white and the decayed wood was difficult to be crushed. Pholiota adiposa should belong to white rot fungus.
     (9) White rot fungus—Irpex lacteus and brown rot fungus—Piptoporus betulinus were induced by wood powder separately.5 homologous fragments, such as Laccase, etc. were found in Irpex lacteus cDNA fragments,7 homologous fragments, such as pre-mRNA splicing factor syf2, etc. were found in Piptoporus betulinus cDNA fragments. Those fragments all expressed in fungus in different level and devoted for wood decaying.
     The gene expressed obviously different between white rot fungi and brown rot fungi induced by wood powder of white birch. These differential expression gene fragments would play important roles in the research of wood decay mechanism.
引文
[1]池玉杰.木材腐朽与木材腐朽菌.北京:科学出版社,2003:21~130
    [2]王志娟.东北主要非褶菌和木生伞菌培养特性及分类研究.东北林业大学博士论文,2001:46
    [3]刘一星.中国东北地区木材性质与用途手册.北京:化学工业出版社,2004:85~88
    [4]杨德浩,杨敏生,王进茂.白桦种源及繁殖的研究现状.河北农业大学学报,2003,26(5):101~104
    [5]关文彬.中国东北地区白桦林植被生态学的研究.北京林业大学学报,1998,20(4):104~109
    [6]李坚.木材科学.北京:高等教育出版社,2002:434~442
    [7]周慧明.木材防腐.中国林业出版社,1993:109~111
    [8]Andre F, Jaime R etc. Biodegradation of Pinus radiata softwood by white and brown-rot fungi. World J. of Microbiology and Biotechnology.2001,17(1):31~34
    [9]V. Bucur, S. Garros, A. Navarrete, M. T. de Troya, R. Guyonnet. Kinetics of wood degradation by fungi with x-ray microdensitometric technique. Wood Science and Technology,1997,31:383~389
    [10]Adya P. Singh, Uwe Schmitt, Ralf Moller, Bernard S.W. Dawson, Gerald Koch. Ray tracheids in Pinus radiata are more highly resistant to soft rot as compared to axial tracheids:relationship to lignin concentration. Wood Sci Technol,2006,40:16~25
    [11]杨忠,江泽慧,费本华.木材初期腐朽研究综述.林业科学,2006,42(3):99~103
    [12]Hiroyuki Fuchino, Tetsuya Satoh, Mika Yokochi, et al. Chemical evaluation of Betula species in Japan.V. Constituents of Betula ovalifolia. Chem Pharm Bull,1998,46(1): 169~170
    [13]Hilpisch U, Hartmann R, Glombitza K W. New dammaranes, esterified with malonic acid, from leaves of Betula pendula. Planta Medica,1997,63:347~351
    [14]Hiroyuki Fuchino, Sou Konishi, Hisamitsu Imai, et al. A biodegradation product of betulin. Chem Pharm Bull,1994,42(2):379~381
    [15]Yu, Q.B., Yang, D.Q., Zhang, S. Y, Beaulieu,J.& Duchesne, I.. Genetic variation in decay resistance and its correlation to wood density and growth in white spruce. Canadian Journal of Forest Research,2003,33(11):2177~2184
    [16]于文喜,朱洪坤,彭晓伟,杜晓明.几种天然耐腐材在腐朽过程中化学成分的变化.林业科技,1994,19(3):19~22
    [17]池玉杰,于钢.6种木材白腐菌对山杨材木质素分解能力的研究.林业科学,2002,38(5):115~120.
    [18]Liu Yi-xing, Zhao Guang-jie. Wood-based Resources Material. Beijing:China Forestry Publishing House,2004:134
    [19]U. Muller, R.Bammer, E. Halmschlager, R. Stollberger, R. Wimmer. Detection of fungal wood decay using Magnetic Resonance Imaging. Holz als Roh-und Werkstoff,2001,59: 190~194
    [20]Higuchit. Lignin biochemistry:biosynthesis and biodegradation.Wood Sci Technol,1990, 24:23~63
    [21]Buswellja, Odiere. Lignin biodegradation. CRC.Crit Rev Biotechnol,1987,6:1~60
    [22]Kirk T K,Farrell R L.Enzymatic 'combustion':The microbial degradation of lignin.Ann Rev Microbiol,1987,41:465~505
    [23]张平平,刘宪华.纤维素生物降解的研究现状与进展.天津农学院学报,2004,11(3):48~54
    [24]Yan B X.Domain structure and conformation of a cellohiohvdrolase from Trichaderma pseudokonjingiis-38. Journal of Protain Chemistry,1997,16:59
    [25]高培基,曲音波,汪天虹,阎伯旭.微生物降解纤维素机制的分子生物学研究进展纤维素科学与技术,1995,3(2):1~19
    [26]唐传核.植物生物活性物质.北京:化学工业出版社,2005:29~344
    [27]王明庥.林木遗传育种学.北京:中国林业出版社,2001:121~124
    [28]严善春,胡隐月,孙江华,孙凡.落叶松挥发性物质与球果花蝇危害的关系.林业科学,1999,35(3):58
    [29]高汉忠,杨雪彦,魏佳宁.树木对两种天牛抗性的调查.西北林学院学报,1997,12(增):42
    [30]王琛柱,张青文,杨奇华,周明群.植物抗虫性的化学基础.植物保护,1993,19(6):39
    [31]顾静文,刘立鼎,肖忆良,谭晦茹,张伊莎.苦楝果实植物杀虫剂的开发研究.江西科学,1995,13(3):142
    [32]赵善欢.几种楝科植物种核油对稻褐虱的拒食作用试验.昆虫学报,1983,26(11):1
    [33]娄永根,程家安.植物的诱导抗虫性.昆虫学报,1997,40(3):320
    [34]J.Dorado, T.A. van Beek, F.W.Claassen, R.Sierra-alvarez. Degradation of lipophilic wood extractive constituents in Pinus sylvestris by the white-rot fungi Bjerkandera sp. And Trametes versicolor. Wood Science and Technology,2001,35:117~125
    [35]Hiroyuki Fuchino, Tetsuya Satoh, Jun Hida, et al. Chemical evaluation of Betula species in Japan. Ⅵ. Constituents of Betula schmidtii. Chem Pharm Bull,1998,46(6):1051~1053
    [36]Hiroyuki Fuchino,'Tetsuya Satoh, Mika Yokochi, et al. Chemical evaluation of Betula species in Japan.Ⅴ. Constituents of Betula ovalifolia. Chem Pharm Bull,1998,46(1): 169~170
    [37]Hilpisch U, Hartmann R, Glombitza K W. New dammaranes, esterified with malonic acid, from leaves of Betula pendula. Planta Medica,1997,63:347~351
    [38]Hiroyuki Fuchino, Sou Konishi, Hisamitsu Imai, et al. A biodegradation product of betulin. Chem Pharm Bull,1994,42(2):379~381
    [39]Hiroyuki Fuchino, Tetsuya Satoh, Nobutoshi Tanaka. Chemical evaluation of Betula species in Japan.Ⅲ. Constituents of Betula maximowicziana. Chem Pharm Bull,1996, 44(9):1748~1753
    [40]Hiroyuki Fuchino, Tetsuya Satoh, Nobutoshi Tariaka. Chemical evaluation of Betula species in Japan. Ⅰ. Constituents of Betula errmanii. Chem Pharm Bull,1995,43(11): 1937~1942
    [41]Hiroyuki Fuchino, Soh Konishi, Tetsuya Satoh, et al. Chemical evaluation of Betula species in Japan. Ⅱ. Constituents of Betula platyphylla var. japonica. Chem Pharm Bull, 1996,44(5):1033~1038
    [42]Tschesche Rudolf, Ciper Felicitas, Breitmaier Eberhard. Monoterpenoid glucosides from the leaves of Betula alba and the fruits of Chaenomeles japonica. Chem Ber,1977,110(9): 3111~3117
    [43]王素娟,裴月湖.桦木属植物化学成分的研究进展.沈阳药科大学学报,2000,17(5):378~382
    [44]Pokhilo N D, Uvarova N I. Isoprenoids of various spe-cies of the genus Betula.Khim Prir Soedin,1988,3:325~341
    [45]David E Willams, Sinclair A R E, Raymond J Andersen. Triterpene constituents of the dwarf birch, Betula glandulosa. Phytochemistry,1992,31(7):2321~2324
    [46]Vainiotalo P, Julkunen-Thtto R, Juntheikki M-R, et al. Chemical characteristics of herbivore defenses in Betula pendula winter-dormant young stems. Journal of Chromatography,1991,547:367~376
    [47]Hannu T Taipale, Jouko Vepsalainen, Reino Laa-tikainen, et al. Isolation and structure determination of three triterpenes from bark resin of juvenile European white birch. Phytochemistry,1993,34(3):755~758
    [48]Loman A Bioassays of fungi isolated from Pinus contorta var. latifolia with pinosylvin, pinosylvinmonomethyl ether, pinobanksin, and pinocembrin. Can J Botany 1970,48: 1303~1308
    [49]Hart JH. Role of phytostilbenes in decay and disease resistance. Ann Rev Phytopathol, 1981,19:437~458
    [50]Schultz T.P., Nicholas D.D. Naturally durable heartwood:evidence for a proposed dual defensive function of the extractives. Phytochemistry,2000,54:47~52
    [51]Harju A. M., Venalainen M, Beuker E, Velling P, Viitanen H. Genetic variation in the decay resistance of Scots pine wood against brown rot fungus. Can J Forest Res,2001,31: 1244~1249
    [52]Martti Venalainen, Anni M. Harju,Pekka Saranpaa, Pirjo Kainulainen, Markku Tiitta, Pirkko Velling. The concentration of phenolics in brown-rot decay resistant and suscepti-ble Scots pine heartwood.Wood Sci Technol,2004,38:109~118
    [53]F. Aloui, N. Ayadi etc. Durability of European oak (Quercus Petraaea and Quercus robur) against white rot fungi(Coriolus versicolor):relations with phenol extractives. Holz als Roh-und Werkstoff,2004,62(4):286~290
    [54]Marja-Leena Laitinen,Riitta Julkunen-Tiitto,Matti rousi. Variation in phenolic compounds within a birch (Betula Pendula) population. Journal of Chemical Ecology,2000,26(7): 1609~1622
    [55]杨辉,沈火林,朱鑫,程杰山,韩清霞.防御酶活性、木质素和总酚含量与辣椒抗黄瓜花叶病毒的关系.中国农学通报,2006,22(5):134~136
    [56]Entry J A, Martin N E, Kelsey R G, et al. Chemical constituents in root bark of five species of western conifer saplings and infection by Armillaria ostoyae. Phytopathology, 1992,82(4):393~397
    [57]Diehl S V, Graves C H, Hedin P A. Cytochemical responses of pecan to Cladosporium caryigenu:in situ localization and quantification of fungitoxic phenols. Phytopathology, 1992,82(10):1037~1041
    [58]Forrest G I. Preliminary work on the relation between resistance to Fomes annosus and the monoterpene of sitka spruce resin. In:Heybroek H M, Stephan B R, Weissenberg K(eds.). Resistance to diseases and pests in forest trees. Wageningen:Centre for Agri. Publishing and Documentation,1982:194~197
    [59]Ennos R A, Swales K W. Genetic variation in tolerance of host monoterpenes in a popula-tion of the ascomycete canker pathogen Crumenulopsis sororia. Plant Pathology,1988,37 (3):407~416
    [60]F.W.M.R. Schwarze, S. Finkl, G. Deflorio. Resistance of parenchyma cells in wood to degradation by brown rot fungi. Mycological Progress,2003,2(4):267~274
    [61]U. Muller, R.Bammer, E. Halmschlager, R. Stollberger, R. Wimmer. Detection of fungal wood decay using Magnetic Resonance Imaging. Holz als Roh-und Werkstoff,2001,59: 190~194
    [62]Elita Smite, Hefeng Pan, Lennart N Lundgren. Ligycosides from inner bark of Betula pendula. Phytochemistry,1995,40(1):341~343
    [63]Hiroyuki Fuchino, Tetsuya Satoh, Mika Yokochi, et al. Chemical evaluation of Betula species in Japan.Ⅳ. Constituents of Betula davurica. Chem Pharm Bull,1998,46(1): 167~168
    [64]Elita Smite, Lennart N Lundgren, Rolf Andersson. Arylbutanoid and diarylheptanoid glucosides from inner bark of Betula pendula. Phytochemistry,1993,32(2):365~369
    [64]Hefeng Pan, Lennart N Lundgren, Rolf Andersson. Triterpene caffeates from bark of Betula Pubescens. Phytochemistry,1994,37(3):795~799
    [66]Hefeng Pan, Kebbart N Lundgren. Rhododendrol glycosides and phenyl glucoside esters from inner bark of Betula pubescens. Phytochemistry,1994,36(1):79~83
    [67]Burkhars Rickling, Karl-Werner Glombitza. Saponins in the leaves of birch? Hemolytic dammarane triterpenois esters of Betula pendula. Planta Med,1993,59:76~79
    [68]夏杏洲,张辉,魏传晚.榕树叶中黄酮类化合物的提取条件研究.食品研究与开发,2002,23(5):35
    [69]王玮,王琳.黄酮类化合物的研究进展.沈阳医学院学报,2002,4(2):115~119
    [70]曹纬国,刘志勤,邵云,陶燕铎.黄酮类化合物药理作用研究进展.西北植物学报,2003,23(12):2241
    [71]姜国芳,谢宗波,乐长.银杏叶黄酮类化合物的研究进展.时珍国医国药,2004,15(5):306
    [72]黄锁义,蒋丽芳,刘海花,李容.大叶榕榕树须总黄酮提取及对羟自由基清除作用.化学世界,2006,11:689~691
    [73]Kari Kuokkanen, Riitta Julkunen-Tiitto, Markku Keinanen, Pekka Niemela, Jorma Tahvanainen. The effect of elevated CO2 and temperature on the secondary chemistry of Betula pendula seedlings. Trees,2001,15:378~384
    [74]惠楠.欧洲赤松木材的腐朽抗性选择以及与心材酚类物质含量的相关性研究.东北林业大学硕士论文,2005:4~5
    [75]陶静,闫淑兰,刘丹,丰华丽,吴静.国内外桦树育种和遗传转化研究的现状及前景展望.吉林林业科技,2008,6(3):33~37
    [76]Isao Kinoshita, Akira Saito. Propagation of Japanese White Birch by Encapsulated Axillary Buds. J. Jpn. For. Soc.1990,72(2):166~170
    [77]Leege, A. D., R. R. Tripepi. Rapid adventitious shoot regeneration from leaf explants of European birch. Plant Cell Tissue Organ Cult,1993,32:123~129
    [78]孙迅.粗毛栓菌的木质纤维素降解酶及其基因克隆.四川大学博士论文,2004:46~59
    [79]Elena Kostina, Anu Wulff, Riitta Julkunen-Tiitto. Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula pendula) under elevated UV-B radiation in the field. Trees,2001,15:483~491
    [80]Marja-Leena Laitinen, Riitta Julkunen-Tiitto, Jorma Tahvanainen, Jaakko Heinonen, Matti Rousi..Variation in Birch (Betula pendula) Shoot Secondary Chemistry due to Genotype, Environment, and Ontogeny. Journal of Chemical Ecology,2005,31(4): 697~717
    [81]杨贺道,宋杨.白桦种群和个体间生长特性的遗传差异.林业科技情报,1996,3:35~37
    [82]鲍甫成,江泽慧.中国主要人工林树种木材性质.北京:中国林业出版社,1998:316~324
    [83]刘欣欣,惠楠.白桦种源与子代生长性状的遗传变异与早期初步选择.林业科技,2004,29(6):6~7
    [84]姜静,杨传平.应用RAPD技术对东北地区白桦种源遗传变异的分析.东北林业大学学报,2001,29(2):30~34
    [85]Hamrick J L. Godt M J W. Allozyme diversity in plant species. In. Brown A H D. Clegg M T. Kahler A L. et sl(eds):Plant population genetics. Breeding. And genetic Resources. Sunderland. Mass Sinauer.1990:43~63
    [86]李绍臣,高福玲,姜廷波.基于RAPD标记的白桦遗传连锁群分析.林业科学,2008,44(5):155~159
    [87]高福玲,姜廷波.白桦AFLP遗传连锁图谱的构建.遗传,2009,31(2):213~218
    [88]李开隆,姜静,姜莹,夏德安,杨传平,刘桂丰.白桦5×5完全双列杂交种苗性状的遗传效应分析.北京林业大学学报,2006,28(4):82~87
    [89]陆爱君.白桦×欧洲白桦杂种优势遗传稳定性苗期试验.辽宁林业科技,2009,2:21~23
    [90]于洪芝,张胜.白桦杂交良种的早期测定.防护林科技,2009,1:30~31
    [91]王志英,薛珍,范海娟,詹亚光.转基因白桦对舞毒蛾的抗性研究.林业科学,2007,43(1):116~120
    [92]张莆安,蒋小仙,王镛涛.食用菌制种指南.上海:上海科学技术出版社,1992:24~46
    [93]中华人民共和国国家标准.未材天然耐久性试验方法,木材天然耐腐蚀性实验室试验方法.GB/T13942.1-92
    [94]中华人民共和国国家标准.造纸原料1%氢氧化钠抽出物含量的测定.GB/T 2677.5-1993
    [95]中华人民共和国国家标准.造纸原料有机溶剂抽出物含量的测定.GB/T 2677.6-1994
    [96]中华人民共和国国家标准.造纸原料酸不溶木素含量的测定.GB/T 2677.8-1994
    [97]中华人民共和国国家标准.造纸原料和纸浆中酸溶木素的测定法.GB/T 10337-1989
    [98]中华人民共和国国家标准.造纸原料水分的测定.GB/T2677.2-1993
    [99]李正香,李安良.查耳酮的合成及体外抗真菌活性.中国药学(英文版),2004,13(4):48~52
    [100]郑洪伟,牛新文,朱君,王绍杰.查尔酮类化合物生物活性研究进展.中国新药杂志,2007,16(18):84~86
    [101]廖永红,郭剑,徐丽珍,杨世林.黑风藤的化学成分.药学学报,1999,3:32~34
    [102]姜贵全,牛佳牧,方桂珍.吉林地区山葡萄籽中活性成分及脂肪酸组成的比较研究,安徽农业科学,2006,34(23):6096~6097
    [103]康杰芳,王喆之.小丛红景天挥发油化学成分的分析.第四军医大学学报,2006,11(26):13~15
    [104]毕毅,徐进宜,吴晓明.白桦酸类化合物的研究进展.中国新药杂志,2005,14(1):23~26
    [105]张钟宪,鲁晓明,刘顺诚H2Mo8O26 [(n-Bu)4N] 2 [(CH3)2COHCH2COCH3] 2的合成与晶体结构.化学通报,2000,63(3):37~38
    [106]Bhat KM, Thulasidas P K, Maria Florence E J, et al. Wood durability of home-garden teak against brown-rot and white-rot fungi. Trees,2005,19:654~660
    [107]杜甫佑,张晓昱,王宏勋,尹艳丽.白腐菌降解木质纤维素顺序规律的研究.纤维素科学与技术,2005,13(1):17~25
    [108]于文喜,康迎昆,靳春波,曾庆军,魏秀芝.暴马丁香心材提取物中有效抗菌成分的研究.林业科技,1996,6(3):23~24
    [109]金重为,邰瓞生,尤纪雪.天然耐腐木材的耐腐力及其在腐朽过程中化学成分的变化.林业科学,1989,25(5):447~452
    [120]姜卸宏,常建民,李小青.白桦木材的变色类型及变色前后化学成分分析.林业科技开发,2006,20(5):36~40
    [121]常德龙,宋湛谦,黄文豪,胡伟华,李福海,张全来.真菌对泡桐木材化学成分
    及其结构的影响.北京林业大学学报,2006,28(3):145~149
    [122]Yu, Q.B., Yang, D.Q., Zhang, S. Y, Beaulieu,J.& Duchesne, I.. Genetic variation in decay resistance and its correlation to wood density and growth in white spruce. Canadian Journal of Forest Research,2003,33(11):2177~2184
    [123]彭万喜,朱同林,郑真真,范智才,李凯夫,李年存.木材抽提物的研究现状与趋势.林业科技开发,2004,18(5):6~91
    [124]骆介禹,郑焕能,宋雪华.柞木段生长木耳后化学组成变化.东北林业大学学报,1996,24(5):102~105
    [125]徐晓峰,何北海,石海强,徐丽丽,林鹿.降解木片树脂的白腐菌菌种选育与脱除树脂过程.中国造纸学报,2006,21(1):29~34
    [126]王蔚,高培基,褐腐真菌木质纤维素降解机制的研究进展.微生物学通报,2002,29(3):90~93
    [127]赵敏,刘欣,王秋玉.漆酶在生物造纸中的应用.森林工程,2009,2:28~30
    [128]李光仪,杨东爱.醇提法与超声波法提取水罗伞中总黄酮类化合物的研究.时珍国医国药,2006,17(12):2537~2538
    [129]马彦芳.沙枣叶中总黄酮的含量测定.西南民族大学学报·自然科学版,2006,32(6):1179~1180
    [130]富玉.天然产物中有效成分分离及测试方法概述.中国检测技术,2007,33(2):22~25
    [131]Karuppiah Pillai Manoharan, Tan Kwong Huat Benny, Daiwen Yang. Cycloartane Type Triterpenoids from the Rhizomes of Polygonum Bistorta. Phytochemistry,2005,66(19): 2304~2308
    [132]范桂枝,詹亚光,王博,邱磊,刘桂丰,王会仁.白桦不同部位及种源间白桦酯醇含量的差异分析.林产化学与工业,2007,27(4):4
    [133]Jie Liu, Kuniyoshi Shimizu, Fumiko Konishi,et al.Anti-Androgenic Activities of the Triterpenoids Fraction of Ganoderma Lucidum. Food Chemistry,2007,100(4):1691~1696
    [134]徐萍,周金培,徐进宜,吴晓明.白桦酸类化合物抗肿瘤活性的研究进展.中国药师,2006,9(2):172~174
    [135]安钰,沈应柏,吴丽娟,张志翔.茉莉酸甲酯和水杨酸甲酯诱导杨树叶片内酚酸含量的变化.Journal of Forestry Research.2006,17(2):107~110
    [136]王永安,许国彬.吉林林区主要树种木材缺陷(腐朽)规律.吉林林学院学报,1999,15(2):82~84
    [137]邵立平,何秉章,潘学仁.落叶松人工林心材变色与腐朽.东北林学院学报,1978,6(1):107~113
    [138]涂育合.杉木立木干基腐朽病发生规律的初步研究.福建林业科技,1999,26(增刊):133~136
    [139]韦继光,潘秀湖.杉木立木腐朽病的初步调查.西北农林科技大学学报(自然科学版),2005,33(增刊):115~117
    [140]Lee H L, Chen G C,Rowell R M.1 Fungal decay resistance of wood reacted with phosphorus pentoxide-amine system. Holzforschung,2004,58:311~315
    [141]丁佐龙,费本华.木材白腐机理研究进展.木材工业,1997,11(5):18~21
    [142]谢君,任路,李维,孙迅,张义正.白腐菌液体培养产生木质纤维素降解酶的研究,四川大学学报,2000,37(10):161~166
    [143]叶汉玲,尤纪雪,房桂干.选择性降解木质素白腐菌筛选的研究,纤维素科学与技术,2004,1:12~14
    [144]Perez V, Troya M. T etc. In vitro decay of Aextoxicon punctatun and Fagus sylvatic woods by white and brown-rot fungi. Wood Science and Technology.1993,27(4): 295~307
    [145]Andre F, Jaime R etc. Biodegradation of Pinus radiata softwood by white and brown-rot fungi.World J. of Microbiology and Biotechnology.2001,17(1):31~34
    [146]刘尚旭,赖寒.木质素降解酶的分子生物学研究进展.重庆教育学院学报,2001,14(3):64~67
    [147]Messer K, Srebotnik E, and Ranua M et al. Biopulping:An overview of deveopment in an environmentally safe paper making technology. FEMS Microbiol Rev,1994,13: 351~364
    [148]Niole M, Chamberland H, Geigeret al. Immunocy tochemical locaization of laccase L1 in wood decayed by Rigidoponus lignosus. Appl Environ Microbiol,1992,58:1727~1739
    [149]张建军,罗勤慧.木质素酶及其化学模拟的研究进展.化学通报,2001,8:470~477
    [150]尹峻峰,土涛.真菌降解木质素的研究现状.云南林业科技,2003,1:75~78
    [151]Tunde Mester, Ming Tien. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants, International Biodeterioration & Biodegradation, 2000,46:51~59
    [152]Perez V, Troya M. T etc. In vitro decay of Aextoxicon punctatun and Fagus sylvatic woods by white and brown-rot fungi. Wood Science and Technology.1993,27(4): 295~307
    [153]N. Moredo, M. Lorenzo, A. Domi'nguez, D. Moldes, C. Cameselle, A. Sanroman. Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World Journal of Microbiology & Biotechnology, 2003,19:665~669
    [154]席冬梅,邓卫东,毛华明.白腐真菌降解木质的机理及培养的营养调控.中国饲料,2002,9:32~35
    [155]李慧蓉.白腐真菌生物学和生物技术.北京:化学工业出版社,2005,6:25~73
    [156]Glenn JK, MA Morgan, MB Mayfield, M Kuwahara, MH. Gold. An extracellular H2O2 requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem. Biophys. Res. Common,1983, 114:1077~1083
    [157]Glenn JK., M Gold. Purification and characterization of an extracellular Mn(Ⅱ)-dependent peroxidase from the lignin degrading basidiomycete Phanerochaete chrysosporium. Arch. Biochem. Biophys.1985,242:329~341
    [158]Gold MH, M kuwahara, AA Chiu and JK Glenn. Purification and characterization of an extracellular H2O2-requiring diaryl propane oxigenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch. Biochem. Biophs.1984,234:353~362
    [159]Tien M, TK Kirk. Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol.1987,161:238~249
    [160]Gold M, M Alic. Molecular biology of the lignin degrading basidiomycete, Phaneroch-aete chrysosporium. Rev. Microbiol.1993,57:605~622
    [161]Pease EA, M Tien. Heterogeneity and regulation of manganese peroxidase from orium. J. Bacteriol,1992,174:3532~3540
    [162]Ruiz JC, T de la Rubia, J Perez and J Martinez Lopez. Effect of olive oil mill wastewater on extracellular ligninolytic enzymes produced by Phanerochaete flavido-alba. FEMS Microbiol Lett,2002,212(1):41~45
    [163]Ha HC, Y Honda, T Watanabe, M Kuwahara. Production of manganese peroxidase by pellet culture of the lignin-degrading basidiomycete, Pleurotus ostreatus. Appl Microbiol Biotechnol,2001,5S(6):704~711
    [164]Sarkar S, AT Martinez and MJ Martinez. Biochemical and molecular characterization of a manganese peroxidase isoenzyme from Pleurotus ostreatus. Biochim Biophys Acta, 1997,1339(1):23~30
    [165]Kuwahara M, et al. Purification and characterization of two lignin peroxidase isozymes produced Bjerkandera sp. strain Bos.FEBS Lett,1984,3:168~247.
    [166]Michel JRFC,Dass SB,Grulke EA,Reddy CA.Role of MnP and LiP of Phanetochaete chrysosporium. Appl.Environ. Microbiol.1991,57:2368~2375.
    [167]浦跃武,甄浩铭,冯书庭等.白腐菌产锰过氧化物酶条件的研究.菌物系统,1998,17(3):251~255.
    [168]L.A.Andersson, V.Renganathan, A.A.Chiu et al. Spectral Characterization of Diarylpro-pane oxygenase, a Novel peroxidase-dependent, lignin-degrading heme enzyme, J. Biol. Chem.,1985,266(10):6080~6087.
    [169]Glenn, J.K., M., Gold, M.H. Purification and characterization of an extrcellular Mn(Ⅱ)-depedent peroxidase from the lignin-degrading Basidiomyceie Phanerochaete chrysospor-ium. Arch. Biochem Biophys.1985,242:329~341.
    [170]H. P. Call, I. Mucke, NCB-Conference, Proceedings,1994:7~12
    [171]David P. Barr, Steven D. Aust. Pollutant degradation white rot fungi. 1n:Reviews of Environmental Contamination and Texicology. Springer-Verlag, New York, Inc.1994: 49~72
    [172]David P.Barr, Steven D. Aust, Mechanism white rot fungi use to degrade pollutants. Environ.Sci.Technol.,1994,28(2):78A~87A
    [173]Petr Baldrian. Fungal laccases-occurrence and properties. FEMS Microbiology Reviews, 2006,30(2):215~242
    [174]Kwang Ho Lee, Seung Gon Wi, Adya P. Singh, Yoon Soo Kim. Micromorphological characteristics of decayed wood and laccase produced by the brown-rot fungus Conioph-ora puteana. J Wood Sci,2004,50:281~284
    [175]A. Iakovlev, J. Stenlid. Spatiotemporal Patterns of Laccase Activity in Interacting Mycelia of Wood-Decaying Basidiomycete Fungi. Microb Ecol,2000,39:236~245
    [176]Bumpus, J.A., Tien, M., Wright, D., Aust, S.D. Oxidation of persistent environmental pollutants by a white rot fungus. Science,1985,228:1434~1436
    [177]Elisa Varela, Tunde Mester. Ming Tien. Culture conditions affecting biodegradation components of the brown-rot fungus Gloeophyllum trabeum. Arch Microbiol,2003, 180:251~256
    [178]李玉京,李子银,李振声.真核生物mRNA差显技术(Differential Display)的研究进展.生物技术通报,1998,5:23~30
    [179]Bauer D et al. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Research,1993,21(18):4272~4280
    [180]Zegzouti H, et al. Improved screening of cDNAs generated by mRNA differential disply enables the selection of true positives and the isolation of weakly expressed messages. Plant Molecular Biology Reporter,1997,15:236~245
    [181]Liu C., Raghothama KG. Practical methods for cloning cDNAs generated in an mRNA differential display. Biotechniques,1996,20:576~580
    [182]Callard D, Lescure B, Mazzolini L. A mothod for the elimination of false positives generated by mRNA differential display technique. Biotechniques,1994,16:1096~1103
    [183]Li F, Barnathan ES, Kariko K. Rapid method for screening and cloning cDNA generated in differential mRNA display:application of Northern blot for affinity capturing of cDNAs. Nucleic Acids Res,1994,22:1764~1765
    [184]Sager RA, et al. Identification by differential display of alpha 6 integrin as a candidate tumor suppressor gene. FASEB J,1993,7:964~970
    [185]Shoham NG, et al. Differential display assay and analysis. Biotechniques,1996,20 (2):182~184
    [186]冯志勇,米朔甫,陈明杰,赵明文,李军辉,潘迎捷.低温胁迫下香菇基因表达差异研究.应用与环境生物学报,2006,12(5):614~617
    [187]米朔甫,冯志勇,陈明杰,黄丹枫mRNA差异显示法分析冷刺激对香菇菌丝的影响.中国食用菌,2003,22(2):13~15
    [188]杨红,李颖,关国华,李秀玉.棉枯萎病菌异核体及其不同表型分离子在基因转录水平上的差异.遗传学报,2004,31(2):166~170
    [189]Yosuke Iimura, Kenji Tatsumi. Isolation of mRNAs induced by a hazardous chemical in white-rot fungus, Coriolus versicolor, by diierential display. FEBS Letters,1997, 412:370~374
    [190]钱程.白囊耙齿菌Irpex lacteus漆酶基因的克隆及相关序列的分析.东北林业大学硕士论文,2005:41~53
    [191]Kristiina S. Hilden, Miia R. Makela, Terhi K. Hakala, Annele Hatakka, Taina Lundell. Expression on wood, molecular cloning and characterization of three lignin peroxidase (LiP) encoding genes of the white rot fungus Phlebia radiate. Curr Genet,2005,2:97~105
    [192]Park JY, Kim DH, Shin WS, et al. Search for genes potentially related to germ tube formation in Candida albicans by differential-diaplay reverse transcription polymerase chain reaction. Yonsei Med J,2003,44:110~118.
    [193]Zhao XJ, Newsome JT, Cihlar RL. Up-regulation of two Candida albicans genes in the rat model of oral candidiasis detected by differential display. Microb Pathog,1998, 25:121~129.
    [194]Hong YM, Park SW, Choi SY. Expression of the CIPI gene induced under cadmium stress in Candida sp. Mol Cells,1998,8:84~89.
    [195]Rhodes JC, Oliver BG, Askew DS, et al. Identification of genes of Aspergillus fumigatus up-regulated during growth on endothelial cells. Med Mycol,2001,39:253~260.
    [196]Melin P, Schnurer J, Wagner EG. Changes in Aspergillus nidulans gene expression induced by bafilomycin, a Streptomyces-produced antibiotic. Microbiology,1999, 145:1115~1122
    [197]Woyke T, Berens ME, Hoelzinger DB, et al. Differential gene expression in auristatin PHE-treated Cryptococcus neoformans. Antimicrob Agents Chemother,2004,48:561~567
    [198]Colonna-Romano S, Porta A, Franco A, et al. Identification and isolation by DDRT-PCR of genes differentially expressed by Histoplasma capsulatim during macrophages infec-tion. Microb Pathog,1998,25:55~66
    [199]Venancio EJ, Kyaw CM, Mello CV, et al. Identification of differentially expressed transcripts in the human pathogenic fungus Paracoccidioides brasiliensis by differential display. Med Mycol,2002,40:45~51
    [200]邵力平.真菌分类学.中国林业出版社.1984:23~98
    [201]潘学仁.小兴安岭大型经济真菌志.东北林业大学出版社.1995:13~87
    [202]裘维蕃.菌物学大全.科学出版社.1998:32~120
    [203]潘学仁,池玉杰,吴庆禹.药用多孔菌新记录种——桦癌褐孔菌培养特性研究初报.中国食用菌,1998,17(4):23~24
    [204]王宜磊,毕红卫.多孔菌漆酶性质研究.淄博学院学报(自然科学与工程版),2002,4(12):12~14
    [205]王宜磊,周长路.多孔菌Polyporus W38漆酶的纯化及性质研究.微生物学杂志,2002,11,22(6):28~29
    [206]Kwang-Soo Shin, Hong-Duk Youn, Young-Hoon Han, Sa-Ouk Kang, Yung Chil Hah. Purification and characterisation of D-glucose oxidase from white-rot fungus Pleurotus ostreatus. European Journal of Biochemistry,2003,81(6):678~679
    [207]邵强,郭伟云.碳源氮源对白腐真菌漆酶合成的影响.河南师范大学学报(自然科学版),2005,5,33(2):94~96
    [208]付时雨,周攀登.真菌漆酶及其催化对苯基苯酚聚合条件的研究.化学通报,2005,3:225~228
    [209]Jean-Jacques Bono, Philippe Goulas. Effect of Mn(Ⅱ) on reactions catalyzed by lignin peroxidase from Phanerochaete chrysosporium. European Journal of Biochemistry, 1990,192(1):189~193
    [210]尹艳丽,张晓昱,王宏勋,杜甫佑.不同缓冲培养体系下三株白腐菌的生物学特性.华中科技大学学报(自然科学版),2005,33(3):115~118
    [211]胡道伟,朱雄伟,梅运军,刘凌.白腐菌产漆酶培养条件的研究.华中科技大学学报(自然科学版),2003,31(4):111~113
    [212]李翠珍,文湘华.白腐真菌F2的生长及产木质素降解酶特性的研究.环境科学学报,2005,25(2):226~231
    [213]Ross W. Davidson, F. Lombard, E. Lombard. Large-Brown-Spored House-Rot Fungi in the United States. Mycological Society of America,1953,45:579~586
    [214]Wang W, Gao P J. Function and mechanism of a low-molecular-weight peptide produced by Gloeophyllum trabeum in biode-gradation of cellulose. J Biotechnol,2003,10: 119~130
    [215]Halliwell G. Catalytic decomposition of cellulose under biological conditions. Biochem. J.,1965,95:35~40
    [216]Enoki A, Itakura S, Tanaka H. The involvement of extracellular substances for reducing molecular oxygen to hydroxyl radical and ferric iron to ferrous iron in wood degradation by wood decay fungi. J Biotechnol.1997; 53:265~272
    [217]Jody Jellison, Vikas Chandhoke, Barry Goodell, Frank A. Fekete. The isolation and immunolocalization of iron-binding compounds produced by Gloeophyllum trabeum.Appl. Microbiol. Biotechnol.,1991,35:805~809
    [218]Zohar K, Kenneth A J, Kenneth E H. Biodegradative mechanism of the brown-rot basidiomycete Gloeophyllum trabeum:evidence for an extracellular hydroquinone-drive Fenton reaction. FEBS Lett,1999,446:49~54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700