用户名: 密码: 验证码:
基于虚拟聚焦理论的超声导波管道检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道是一种经济、安全、高效的运输方式,在工业中得到广泛应用,被称为工业大动脉。伴随工业的飞速发展,我国的工业管道总长度也日益增长。然而,在长期服役过程中,由于管道的自然老化与环境腐蚀作用导致管道出现腐蚀、穿孔等缺陷,成为管道运输的巨大安全隐患。目前,对于管道中腐蚀、穿孔缺陷的检测与定位问题是管道检测技术发展的重点。因此,研究工业运输管道检测新方法、新技术,实现对腐蚀等型缺陷的先期预警,保证管道安全运行、避免泄漏事故的发生具有重要意义。
     超声导波管道检测技术具有检测范围大,效率高且可以同时检测管道内外壁的优点,已经发展成为重要的管道检测技术。本文利用虚拟合成方法结合方向控制技术,实现了对管道缺陷的定位。同时,提出了适合管道缺陷检测的虚拟时间反转方法和虚拟相控聚焦方法,通过理论分析、数值仿真与实验手段,实现了对管道缺陷的聚焦检测,提高了超声导波对缺陷的检测能力。具体研究内容如下:
     (1)提出了利用单通道系统等效多通道同步系统的虚拟合成方法。用传递函数的思想,分析了管道中超声导波经过阵列式传感器同步激励、缺陷反射、同步接收的过程。通过仿真与实验,证实了将多通道同步激励-接收到的信号,可分解为多个单通道激励-接收信号的线性叠加。
     (2)基于虚拟合成方法,利用以波的干涉叠加原理为核心的方向控制方法实现了对不同检测方向信号的分离,进而实现了对管道中不同检测方向缺陷的定位。并采用2个具有一定间距的环形传感器阵列与单通道激励-接收装置进行实验,验证了该方法的可行性。
     (3)通过大量的实验数据,分析了实际工业管道中部分特有结构(法兰、焊缝等)的信号特点,提取标准信号作为样本信号,利用相关分析与支持向量机相结合的方法实现了管道检测信号中部分信号的智能识别,并通过实验的方法证实了该方法的有效性。
     (4)基于时间反转聚焦方法,提出了虚拟时间反转聚焦方法。利用虚拟合成方法在单通道激励-接收系统基础上实现了原有时间反转聚焦方法中需要多通道同步激励才能够达到的聚焦效果。并通过有限元仿真与实验对管道中的缺陷进行虚拟时间反转聚焦,证实了该方法能够有效提高超声导波对缺陷检测能力。
     (5)结合虚拟合成方法与相控聚焦方法,提出了虚拟相控聚焦方法,在单通道激励-接收设备基础上实现了原本需要多通道同步系统才能够达到的相控聚焦效果,提高了检测能力。同时,通过C扫描成像的方法实现了缺陷轴向与周向的定位,并从一定程度上反映出缺陷的形貌。最终利用仿真与实验,验证了该方法的有效性。
Due to its economic, security, efficiency, the pipeline, which is known as theindustrial main artery, is wildy used in modern industry. As the development of theindustry, the total length of the industrial pipeline in our nation is growing. Defectssuch as corrosion and crack may occur in the in-service pipeline because of thenatural aging and environmental corrosion, and bring a huge security risk for thepipeline transportation. At present, the detection and location of defects becomespriority of the research on pipeline inspection. Therefore, the research on pipelineinspection technology is more and more important, especially the detection of minordefects.
     High efficiency and long range is the main advantage of the ultrasonic guidedwave technology, which makes it the most popular technology in pipeline inspection.In the current research, a pipeline inspection method based on synthetic method anddirection control method has been proposed in order to locate the defects. Synthetictime-reversal method and synthetic phase-control method have been proposed in orderto improve the capability of ultrasonic guided wave inspection as well. The efficacyof these method is proved through FEM simulation and experiments.The mainresearch works are given as follows.
     (1) The process of the sensor array, including synchronized excitation, defectreflection and synchronized receiving, is analyzed using a transfer function method.The final result of the multi-channel synchronous excitation–receiving is replaced bythe sum of a set of single-channel excitation-receiving signals. The effectiveness ofthe method is proved through FEM simulation and experiments.
     (2) Based on the synthetic method, a completely post-acquisition signalprocessing method is proposed to control the inspection direction. Using signalscollected by2transducer rings placed on the pipeline and a single-channel excitation–receiving system, the defect reflections from different direction are separated and the defects are located. This method is proved to be effective by FEM simulation andexperiments.
     (3) Based on a large number of experimental results, signals of some pipestructures such as flanges and welds are collected to build the sample database. Basedon this database, the signals of those pipe structures can be automatically identifiedfrom the inspection result using a identification method based on correlation analysisand support vector machine.
     (4) Combined with synthetic method, the time-reversal method is developed intoa completely post-acquisition focusing method named synthetic time-reversal method.FEM simulation and experiment prove that this method is as effective as theconventional time-reversal method but only requires a much easier single-channelsystem.
     (5) Combined with synthetic method, the phase-control method is developed intoa completely post-acquisition focusing method based on single-channel system, whichis named synthetic phase-control method. FEM simulation and experiment prove thatthis method is able to improve the detection capability and locate the defects in bothaxial and circumferential direction.
引文
[1]王疆戈,管道现状[J].中国石化,2004,26(7):18~19
    [2]李晓超,万东华.中国统计年鉴-2008[M].中国统计出版社,北京,2008
    [3] Alleyne DN, Lank AM, Mudge PJ, Lowe MJS, Cawley P. Guided wave inspection ofchemical plant pipework[J]. Nondestructive Evaluation of Utilities and Pipelines.1996:177~188
    [4] J. Rayleigh. The theory of Sound. Vol.I and II[M]. Dover Publications, New York,1945
    [5] H. Lamb. On waves in an elastic plate[J].Proceedings of the Royal Society of London. SeriesA, Mathematical and Physical Sciences.1917,93:114
    [6] C. Chree. Longitudinal vibrations of a circular bar[J]. Quarterly Journal of Mathematics.1886,21:287~298
    [7] D. Gazis. Exact analysis of the plane-strain vibrations of thick-walled hollowcylinders[J]. Journal of the Acoustical Society of America.1958,30:786~794
    [8] D. Gazis. Three-dimensional investigation of the propagation of waves in hollow circularcylinders[J]. I. Analytical foundation. Journal of the Acoustical Society of America.1959,31:568~573
    [9] D. Gazis. Three-dimensional investigation of the propagation of waves in hollow circularcylinders. II. Numerical results[J]. Journal of the Acoustical Society of America.1959,31:573~578
    [10]A. Fitch. Observation of elastic pulse propagation in axially symmetric and nonaxiallysymmetric longitudinal modes of hollow cylinders[J]. Journal of the Acoustical Society ofAmerica.1963,35:706~707
    [11]M. Silk, K.Bainton. The propagation in metal tubing of ultrasonic wave modes equivalent towaves[J].Ultrasonics.1979,17(1):11~19
    [12]M. Brook, T. Ngoc, J. Eder. Ultrasonic inspection of steam generator tubing by cylindricalguided waves[J].Review of Progress in Quantitative Nondestructive Evaluation.1990,9:243~249
    [13]M. Lowe, D. Alleyne, P. Cawley. The mode conversion of a guided wave by apart-circumferential notch in a pipe[J]. Journal of Applied Mechanics.1998,65:649~656
    [14]D. Alleyne, M. Lowe, P. Cawley. The reflection of guided waves from circumferential notchesin pipes[J].Journal of Applied Mechanics.1998,65:635~664
    [15]何存富,吴斌,范晋伟.超声柱面导波技术及其应用研究进展[J].力学进展.2001,3(2):203~214
    [16]焦敬品,何存富,吴斌等.管道超声导波检测技术研究进展[J].实验力学.2002,17(1):1~9
    [17]李衍,强天鹏.管道长距离超声导波检测新技术的特性和应用[J].无损探伤.2002,4:1~5
    [18]何存富,李隆涛,吴斌.周向超声导波在薄壁管道中的传播研究[J].实验力学.2002,7(4):419~424
    [19]吴斌,郑璟瑜,何存富等.采用PZT传感器激励和接收超声导波[J].北京工业大学学报.2003,29(1):1~4
    [20]王秀彦,王智,焦敬品等.超声导波在管中传播的理论分析与试验研究[J].机械工程学报.2004,40(1):11~16
    [21]何存富,刘增华,郑璟瑜等.探头在管道导波检测中频率选取的研究[J].北京工业大学学报.2004,30(4):393~397
    [22]王秀彦.超声导波在管状结构中的传播特性及缺陷检测研究[D].工学博士论文,北京工业大学,2004
    [23]刘镇清.圆管中的超声导波[J].无损检测.1999,21(12):560~562
    [24]李隆涛.基于超声导波技术对典型结构中缺陷检测的理论与实验研究[D].工学博士论文,北京工业大学,2005
    [25]刘增华.带粘弹性包覆层充液管道中超声导波传播特性及其在缺陷检测中的应用[D].工学博士论文,北京工业大学,2005
    [26]范云霄,刘桦.测试技术与信号处理[M].中国计量出版社,北京,2002
    [27]Young H. Kim, Sung-Jin Song, Jun Young Kim. A new technique for the identification ofultrasonic flaw signals using deconvolution[J]. Ultrasonic2004,41:799~804.
    [28]Stephen D. Holland, Ron Roberts, D.E. Chimenti, et al. Two-sensor ultrasonic spacecraft leakdetection using structure-borne noise[J]. The Journal of the Acoustical Society of America.2005,6(2):63~68.
    [29]C. H. Chen and Gwo Giun Lee. Neural network for Ultrasonic NDE signal classificationusing time-frequency analysis[J]. IEEE-ICASSP-1993.1993:I493~I496
    [30]刘镇清.一种改进的人工神经网络学习算法及其在超声检测中的应用[J].声学技术.2000,19(4):179~181
    [31]弓乐,吴淼.基于LabVIEW和神经网络的超声检测缺陷分类的研究[J].中国科技论文在线:www.paper.edu.cn.
    [32]Sylvie Legendre, Daniel Massicotte,et al. Neural Classification of Lamb Wave UltrasonicWeld Testing Signals Using Wavelet Coefficients[J]. IEEE Transactions on Instrumentationand Measurement.2001,50(3):672~678.
    [33]Solis M, Benitiz H. et al. Location of material flaws using wavelet analysis and neuralnetwork[J]. IEEE Ultrasonic Symposium.2002:841~844.
    [34]C. K. Liew and M.Veidt. Optimization of neural network pattern recognition systems forguided waves damage identification in beams[J]. Review of Quantitative NondestructiveEvaluation.2007,26:627~634
    [35]孙宝申,沈建中.合成孔径聚焦超声成像(一)[J].应用声学.1993,12(3):43~48.
    [36]孙宝申,沈建中.合成孔径聚焦超声成像(二)[J].应用声学.1993,12(5):39~44.
    [37]孙宝申,沈建中.合成孔径聚焦超声成像(三)[J].应用声学.1993,13(2):39~44.
    [38]R. Roberts, A. Pardini, A. Diaz. High frequency guided wave virtual array SAFT[J]. Reviewof Quantitative Nondestructive Evaluation.2003,22:205~212.
    [39]Takahiro Hayashi, Morimasa Murase. Defect imaging with guided waves in pipe[J]. TheJournal of the Acoustical Society of America.2005,117(4):2134~2140.
    [40]Rose J. L. Ultrasonic Waves in Solid Media[M]. Cambridge: Cambridge University Press,1999,454.
    [41]Wilcox P. D, Lowe M. J. S, Cawley P. A signal processing technique to remove the effect ofdispersion from guided wave signals[J]. Review of Progress in Quantitative NondestructiveEvaluation,2001,20:555~562.
    [42]J. Davies, F. Simonetti, M. Lowe, P. Cawley. Review of synthetically focused guided waveimaging techniques with application to defect sizing.
    [43]J. Davies and P. Cawley. The application of synthetically focused imaging techniques for highresolution guided wave pipe inspection. Review of Quantitative Nondestructive Evaluation.2007,26:681~688
    [44]Mathias Fink, Time reversal of ultrasonic fields–partⅠ: Basic principles[J], IEEETransaction on Ultrasonics, Ferroelectrivs, and Frequency Control,1992,39(5):555~566
    [45]Francois Wu, Jean-Louis Thomas, and Mathias Fink, Time reversal of ultrasonic fields–part Ⅱ: Experimental results[J], IEEE Transaction on Ultrasonics, Ferroelectrivs, andFrequency Control,1992,39(5):567~578
    [46]Philippe Roux, Benoit Roman, and Mathias Fink, Time-reversal in an ultrasonic waveguide[J],The Journal of the Acoustical Society of America.1997,70(14):1811~1813
    [47]Philippe Roux and Mathias Fink, Time reversal in a waveguide: study of the temporal andspatial focusing[J]. The Journal of the Acoustical Society of America.2000,107(5):2418~2429
    [48]Claude Oestges, Arnold D. Kim, et al., Characterization of space-time focusing intime-reversed random fields[J]. IEEE Transactions on Antennas and Propagation.2005,53(1):283~293
    [49]S. Kim, W. A. Kuperman, et al., Echo-to-reverberation enhancement using a time reversalmirror[J]. The Journal of the Acoustical Society of America.2004,115(4):1525~1531
    [50]Jean-Louis, Thomas and Mathias A. Fink, Ultrasonic beam focusing through tissueinhomogeneities with a time reversal mirror: application to transskull therapy[J], IEEETransaction on Ultrasonics, Ferroelectrivs, and Frequency Control,1996,43(6):1122~1129
    [51]Chun H. Wang, James T. Rose, and Fu-kuo Chang, A computerized time-reversal method forstructural health monitoring[J], Proceedings of the SPIE–The International Society forOptical Engineering,2003,5046:48~58
    [52]Ros K. Ing and Mathias Fink, Time-reversed lamb waves[J], IEEE Transaction on Ultrasonics,Ferroelectrivs, and Frequency Control,1998,45(4):1032~1043
    [53]Ismael N. and Carlos N., Efficiency parameters in time reversal acoustics: Applications todispersive media and multimode wave propagation[J]. The Journal of the Acoustical Societyof America.2005,117(3):1202~1209
    [54]Hak-Joon Kim, Jong-Ho Seo, Sung-Jin Song, Sungkyunkwan. A study on the time reversalmethod for focusing ultrasonic guided waves using array transducers[J]. Review ofQuantitative Nondestructive Evaluation,2007,26:775~782
    [55]C Ennaceur, P Mudge, B Bridge, M Kayous, T. H. Gan. Application of the time reversaltechnique to the focusing of long-range ultrasound in pipelines[J]. Insight,2007,49(4):217~223
    [56]J V Hatfield, N R Scales, An integrated multi-element array transducer for ultrasoundimaging[J]. Sensors and Actuators A,1994, A41:67~73
    [57]张忠华,孙晓昶.光控相控阵雷达[J].电讯技术,2004,2:71~76
    [58]何子述,金林,韩蕴洁.光控相控阵雷达发展动态和实现中的关键技术[J].电子学报,2005,33(12),2191~2196
    [59]单宝华,喻言,欧进萍.超声相控阵检测技术及其应用[J].无损检测,2004,26(5):235~239
    [60]钟志民,梅德松.超声相控阵技术的发展及应用[J].无损检测,2002,24(2):69~72
    [61]O T Von Ramm, S W Smith, Beam steering with linear arrays[J]. IEEE Transactions onBiomedical Engineering,1983,30(8):438~452
    [62]M Uthansakul, M E Bialkowski, An array antenna with wideband beam steering capabilityemploying spatial signal processing[A]. International Conference on Microwaves, Radar&Wireless Communications,2006:293~296
    [63]Shi-Chang Wooh, Yijun Shi. A simulation study of the beam steering characteristics forlinear phased arrays[J]. Journal of Nondestructive Evaluation,1999:18(2),39~57
    [64] J.Fuchs, B Fuchs. Synthesis of optimal narrow beam low sidelobe linear array withconstrained length. Progress In Electromagnetics Research B,2010,25:315~330
    [65] J. Mu, J Hua, J L Rose. Ultrasonic guided wave focus inspection potential of bare and coatedpipes[J]. Insight-Non-Destructive Testing and Condition Monitoring.2010,52(4):195~200
    [66] Fei Yan, J. L. Rose.Phased annular array transducers for ultrasonic guided waveapplications[A]. Proceedings of the SPIE-The International Society for Optical Engineering,2011,7984,79840S(10pp)
    [67]J L Rose, Paul Morrow. Ultrasonic guided wave phased array focusing in pipelines[A].Conference Proceedings of the Society for Experimental Mechanics Series,2005
    [68]Fei Yan, J L Rose.Ultrasonic guided wave imaging techniques in structural healthmonitoring[A].Proceedings of the ASME Conference on Smart Materials, AdaptiveStructures and Intelligent Systems,2010,2:247~253
    [69]J Li, J L Rose. Implementing guided wave mode control by use of a phased transducerarray[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2001,48(3):761~768
    [70]P D Wilcox. Omni-directional guided wave transducer arrays for the rapid inspection of largeareas of plate structures[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and FrequencyControl,2003,50(6),699~709
    [71]J Mu, J L Rose. Long range ultrasonic guided wave focusing in pipe using a phased-arraysystem[A].AIP Conference Proceedings,2007,894(1):158~162
    [72]Fei Yan, J L Rose. Directivity profiles of ultrasonic guided wave phased arrays for multilayercomposite plates[A].Proceedings of the SPIE-The International Society for OpticalEngineering,2009,7295:14~24
    [73]王维斌,冯展军,艾慕阳.储罐底板缺陷的相控阵超声导波的图像重建[J].无损检测,2010,32(11):847~850
    [74]J L Rose. Ultrasonic guided wave NDE for piping[J]. Materials Evaluation,1996,54(11):1310~1313
    [75]J L Rose, Krishna M Rajana. Ultrasonic guided wave inspection concepts for steam generatortubing[J]. Materials Evaluation,1994,52(2):307~311
    [76]W Zhu, J L Rose. Ultrasonic guided wave NDT for hidden corrosion detection[J]. Research inNondestructive Evaluation,1998,10(4):205~225
    [77]J L Rose, W Zhu. Ultrasonic NDT of titanium diffusion bonding with guided waves[J].Materials Evaluation,1998,56(4):535~539
    [78]刘镇清.超声无损检测中的导波技术[J].无损检测,1999,8:367~369
    [79]他得安,刘镇清,田光春.超声导波在管材中的传播特性[J].声学技术,2001,3:131~134
    [80]何存富,孙雅欣,吴斌.超声导波技术在埋地锚杆检测中的应用研究[J].岩土工程学报,2006,9:1144~1147
    [81]王秀彦,王智,焦敬品.超声导波在管中传播的理论分析与试验研究术[J].机械工程学报,2004,40(1):11~16
    [82]何存富,李隆涛,吴斌.超声导波在管道中传播的数值模拟[J].北京工业大学学报,2004,2:129~133
    [83]刘增华,何存富,杨士明等.充水管道中纵向超声导波传播特性的理论分析与试验研究[J].机械工程学报,2006,42(3):171~178
    [84]J L Rose. Guided wave nuances for ultrasonic nondestructive evaluation[J]. IEEETransactions on Ultrasonics, Ferroelectrics, and Frequency Control,2000,47(3):575~583
    [85]Liviu Singher, Bond strength measurement by ultrasonic guided waves[J]. Ultrasonics,1997,35(4):305~315
    [86]M Fink. Time Reversal of Ultrasonic Fields–partⅠ: Basic Principles[J]. IEEE Transactionon Ultrasonics, Ferroelectrivs, and Frequency Control.1992,39(5):555~566
    [87]F Wu, J L Thomas, M. Fink. Time Reversal of Ultrasonic Fields–partⅡ: ExperimentalResults[J]. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control.1992,39(5):567~578
    [88]P Roux, B Roman, M Fink. Time-reversal in an Ultrasonic Waveguide[J]. Applied physicsletters.1997,70(14):1811~1813
    [89]P Roux, M Fink. Time Reversal in a Waveguide: Study of the Temporal and SpatialFocusing[J]. The Journal of the Acoustical Society of America.2000,107(5):2418~2429
    [90]C Oestges, A D Kim. Characterization of Space-time Focusing in Time-reversed RandomFields[J]. IEEE Transactions on Antennas and Propagation.2005,53(1):283~293
    [91]S Kim, W A Kuperman. Echo-to-reverberation Enhancement Using a Time Reversal Mirror[J].The Journal of the Acoustical Society of America.2004,115(4):1525~1531
    [92]E H Saenger, G K Kocur, R Jud. Application of time reverse modeling on ultrasonicnon-destructive testing of concrete[J]. Applied Mathematical Modelling,2011,35(2):807~816
    [93]M Fink, G Montaldo, M Tanter. Ultrasonic time reversal mirrors[J]. AIP ConferenceProceedings,2004,728,514~521
    [94]Haiyan Zhang, Jianbo Yu, Xianhua Chen. Signal Enhancement of Ultrasonic Guided WavesUsing Time Reversal Technique[J]. Advanced Materials Research,2011,282(2):589~592
    [95]生雪莉,惠俊英,梁国龙.时间反转镜用于被动检测技术的研究[J].应用声学,2006,6:351~358
    [96]张碧星,陆铭慧.用时间反转法在水下波导介质中实现自适应聚焦的研究[J].声学学报,2002,6:541~548
    [97]J L Thomas, M Fink. Ultrasonic Beam Focusing through Tissue Inhomogeneities with a TimeReversal Mirror: Application to Transskull Therapy[J]. IEEE Transaction on Ultrasonics,Ferroelectrics, and Frequency Control.1996,43(6):1122~1129
    [98]邓菲.基于时间反转法的管道导波检测技术研究[D].工学博士论文,北京工业大学,2008
    [99]Deng Fei, Wu Bin, He Cunfu. A Time Reversal Defect-Identifying Method for Guided WaveInspection in Pipes[J]. Journal of Pressure Vessels and Piping,2008,130(2):021503-1~021503-8
    [100] Deng Fei, He Cunfu, Wu Bin. Time Reversal Method for Pipe Inspection with GuidedWaves[J]. Review of Progress in Quantitative Nondestructive Evaluation,2007,27,113~118.
    [101] Deng Fei, Wu Bin, He Cunfu. A Time Reversal Method for Guided Wave Inspection inPipe[J]. Frontiers of Mechanical Engineering in China,2008,3(3):251~260
    [102]邓菲,吴斌,何存富.基于时反导波检测的管道缺陷圆周定位研究[J].声学学报,2008,33(1):28~34
    [103]邓菲,吴斌,何存富.基于时间反转的管道导波小缺陷检测数值分析[J].北京工业大学学报,2008,34(7),673~677
    [104] H J Kim, J H Seo, S J Song. A Study on the Time Reversal Method for Focusing UltrasonicGuided Waves Using Array Transducers[J]. Review of Quantitative NondestructiveEvaluation.2007,26:775~782
    [105] R K Ing, M Fink Time-reversed Lamb Waves[J]. IEEE Transaction on Ultrasonics,Ferroelectrics, and Frequency Control.1998,45(4):1032~1043
    [106]张光义,赵玉洁.相控阵雷达技术[M].电子工业出版社,2006
    [107]张光义.相控阵雷达系统[M].国防工业出版社,1994
    [108]李衍.钢焊缝相控阵超声波探伤新技术[J].无损探伤,2002,3:1~5
    [109] E Rai, S Nishimoto, T Katada. Historical overview of phased array antennas for defenseapplication in Japan[A]. IEEE International Symposium on Phased Array Systems andTechnology.1996:217~221
    [110] Wang Chaochi, Wang Chunyang, Zhang Jingwei. Focusing technology of phased arrayantenna[A].2nd International Symposium on Test and Measurement,1997:566~569
    [111] R F Mofrad, R A Sadeghzadeh. Antenna Beam Broadening in Multifunction Phased ArrayRadar[J]. Acta Physica Polonica A,2001,119(4):461~466
    [112] Cammarata M, Rizzo P Application of principal component analysis and wavelet transformto fatigue crack detection in waveguides [J]. Smart Structures and System.2010.6(4):349-362
    [113] Velichko A, Wilcox PD. Post-processing of guided wave array data for high resolution pipeinspection[J]. Journal of The Acoustical Society of America.2009.126(6):2973-2982
    [114]叶世伟,史忠植.神经网络原理[M].北京:机械工业出版社,2004
    [115] Zhu Xiao-dong, Cao Jun. Wood Nondestructive Test Based on Artificial Neural Network[J].Proceedings of the2009International Conference on Computational Intelligence andSoftware Engineering.2009,4pp
    [116]吴蒙,贡璧,何振亚.人工神经网络和机械故障诊断[J].振动工程学报,1993,6(2):153~164
    [117]邓乃扬.支持向量机[M].北京:科学出版社,2009
    [118]张浩然,韩正之,李昌刚.支持向量机[J].计算机科学,2002,29(12):135~142
    [119] Yang Xiao-wei, Yan Li, Partition based support vector machine classifier[J]. ComputerEngineering and Applications,2007,43(28),187~189
    [120]艾娜,吴作伟,任江华.支持向量机与人工神经网络[J].山东理工大学学报.2005,19(5):45-49
    [121]张世强,吕杰能,蒋峥等.关于相关系数的讨论[J].苏州科技学院学报.2009,39(19):103-107
    [122]吴瑞林,王建中,袁克海.多分格相关与皮尔逊相关的蒙特卡罗仿真[J].北京航空航天大学学报.2009,35(12):1507-1510
    [123] A D Sanchez. Advanced support vector machines and kernel methods[J]. NeuroComputing,2003,55(1):15-20
    [124] Vapnik V, ladimir N. The nature of statistical learning theory[M]. NewYork:Springer-Verlag,2000
    [125] Drucker H, Wu D, Vapnik V. Support vector machine for spam categorization[J]. IEEE Trans.on Ncural Networks.1999,10:1048~1054
    [126] Osuna E, Freund R. Training Support Vector Machine: an Application to Face Detection[J].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1997,7pp

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700