用户名: 密码: 验证码:
胰腺癌5-氟尿嘧啶(5-FU)耐药相关蛋白筛查及胰腺癌候选免疫原性膜抗原SLP-2和Prohibitin分子生物学功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     胰腺癌是消化系统中恶性程度较高、预后极差的肿瘤,其发生发展机制尚未阐明。实现早期诊断与增强化疗效果,是胰腺癌诊治过程中的重点与难点。5-氟尿嘧啶(5-fluorouracil,5-FU)是第一个用于胰腺癌化疗的药物,目前仍然广泛应用、具有一定疗效,5-FU耐药性是限制该药应用的主要困扰。国内外多项对5-FU敏感/耐药的胰腺癌或其他肿瘤细胞株的基因芯片与蛋白质组学筛查,获得了一些差异蛋白,但是重合率并不好,可能与基因芯片探针数及二维凝胶电泳所导致的检测通量不足有关。在早期诊断方面,本实验室前期工作发现了9个胰腺癌免疫相关原性膜抗原,同时已对儿茶酚胺氧位甲基转移酶(Catechol-O-Methyltransferase,COMT)、抗增殖蛋白(prohibitin,PHB)、电压依赖离子通道(Voltage-Dependent Anionchannel, VDAC1)进行了一定程度的生物功能研究与标志物有效性验证,Stomatin样蛋白2(stomatin like protein2, SLP-2,Stoml2)等其他候选蛋白的研究还有待继续深入。
     目的
     1.验证人胰腺癌细胞系亲本株PaTu8988/-与5-FU耐药株PaTu8988/FU对5-FU的药物敏感性差异。
     2.筛查亲本株PaTu8988/-与耐药株PaTu8988/FU的差异表达基因及蛋白。
     3.研究SLP-2蛋白在人胰腺癌细胞系中的生物学功能。
     4.完善prohibitin蛋白过表达后所发生的细胞功能改变的研究。
     材料与方法
     1.应用CCK-8法检测人胰腺癌细胞系亲本株PaTu8988/-与5-FU耐药株PaTu8988/FU对5-FU的IC50差异。
     2.应用Annexin V/PI双染法分析亲本株PaTu8988/-与耐药株PaTu8988/FU在5-FU诱导下发生细胞凋亡的差异。
     3.应用Affymetrix人全转录组外显子芯片GeneChip(?) Exon1.0ST Array筛查亲本株PaTu8988/-与耐药株PaTu8988/FU的基因表达差异。
     4.应用同位素标记相对和绝对定量技术(Isobaric tags for relative and absolute quantitation, iTRAQ)结合TripleTOFTM5600高分辨液相色谱质谱联用系统筛查亲本株PaTu8988/-与耐药株PaTu8988/FU的蛋白表达差异。
     5.应用qPCR及Western blotting法检测SLP-2在9株人胰腺癌细胞系(Capan-1、Panc-1、MIAPaCa-2、T3M4、AsPC-1、BxPC-3、PaTu8988、Su86.86、 SW1990)中的表达水平。
     6.构建pIERS2-EGFP(+)-SLP2过表达系统与SLP-2siRNA抑制系统,分别瞬时过表达或抑制SLP-2蛋白在细胞系MIAPaCa-2与BxPC-3中的表达水平。应用CCK-8法、Transwell法观察并对比干预前后胰腺癌细胞在增殖、迁移与侵袭能力的变化。
     7.应用qPCR及Western blotting法检测prohibitin在9株人胰腺癌细胞系(Capan-1、Panc-1、MIAPaCa-2、T3M4、AsPC-1、BxPC-3、PaTu8988、Su86.86、 SW1990)中的表达水平。
     8.构建pIERS2-EGFP(+)-prohibitin过表达系统,瞬时过表达prohibitin蛋白在细胞系MIAPaCa-2中的表达水平。应用CCK-8法、Transwell法观察并对比干预前后胰腺癌细胞在增殖、迁移与侵袭能力的变化。
     结果
     1. CCK-8法耐药敏感性检测测定两株细胞50%抑制浓度IC50, PaTu8988/-IC50=4.49±0.60μg/ml, PaTu8988/Fu IC50=79.19±21.55μg/ml,具有显著性差异(p=0.0002),耐药系数RI=17.64。
     2.细胞凋亡分析(Annexin V/PI双染法)提示,在5-FU作用下,亲本株PaTu8988/-较耐药株PaTu8988/Fu更易出现细胞凋亡现象。2500μg/ml5-FU作用下,亲本株PaTu8988/-凋亡率可达45.47±2.14%,而耐药株PaTu8988/Fu凋亡率只有22.33±2.21%。
     3.转录组外显子芯片筛查,发现亲本株PaTu8988/-与5-FU耐药株PaTu8988/FU差异表达mRNA2052条,其中PaTu8988/FU较PaTu8988/-上调(>2.0)1828条,下调(<0.5)224条。
     4.蛋白质组学筛查,发现亲本株PaTu8988/-与5-FU耐药株PaTu8988/FU差异表达蛋白353个,其中PaTu8988/FU较PaTu8988/-上调(>1.5)259个,下调(<0.7)94个。
     5.基因芯片筛查与差异蛋白质组学筛查共同筛出PaTu8988/FU较PaTu8988/-差异蛋白69个,上调蛋白ABCD3、MTHFD1L、TP53I3、POLA1、SRGAP1、C5等54个,下调蛋白EPCAM、MCAM等15个。
     6. slp-2蛋白在9株人胰腺癌细胞系中均有明确表达,但表达量各有差异。结合qPCR与Western blotting结果在MIAPaCa-2中表达量较低,在BxPC-3中表达量较高,BxPC-3细胞系SLP-2表达量是MIAPaCa-2的3倍(p<0.005)。
     7.在体外水平,PIERS2-EGFP(+)-SLP2过表达质粒转染72小时后,SLP-2蛋白表量可趋近高值,过表达组较对照组SLP-2蛋白表达量调高至近3倍(p<0.05),过表达组增殖、迁移、侵袭能力明显提高(p<0.005, p=0.0001, p <0.0001); SLP-2siRNA转染48小时后,SLP-2蛋白表量可趋近低限,抑制组SLP-2蛋白表达量降至对照组的1/2(p<0.05),抑制组细胞增殖、迁移、侵袭能力明显降低(p<0.05,p<0.0001,p=0.0020)。
     8. Prohibitin蛋白在9株人胰腺癌细胞系中均有明确表达,但表达量各有差异。结合qPCR与Western blotting结果在MIAPaCa-2中表达量较低,在SW1990、AsPC-1、BxPC-3中表达量较高,AsPC-1细胞系prohibitin表达量是MIAPaCa-2的2-3倍(p<0.005)。
     9.在体外水平,pIERS2-EGFP(+)-prohibitin过表达质粒转染72小时后,prohibitin蛋白表量可趋近高值,过表达组较对照组prohibitin蛋白表达量调高至近1.5倍(p<0.005)。过表达组增殖、迁移、侵袭能力明显提高(p<0.001,p<0.0001,p=0.0005)。
     结论
     1.人胰腺癌细胞系亲本株PaTu8988/与5-FU耐药株PaTu8988/FU对5-FU药物敏感性存在差异,后续耐药蛋白筛查实验有意义。
     2. ABCD3、MTHFD1L、TP53I3、POLA1、SRGAP1、C5等功能蛋白以及EPCAM、MCAM等细胞连接蛋白可能是5-FU的耐药相关蛋白。
     3.体外实验结果显示,SLP-2蛋白与胰腺癌细胞的增殖及迁移侵袭能力有关。
     4.体外实验结果显示,prohibitin蛋白与胰腺癌细胞的增殖及迁移侵袭能力有关。
Background
     Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors in gastrointestinal tract, which has the characteristics of rapid progression, low resction rate and poor prognosis. Early diagnosis and chemotherapy efficacy are2key points in PDAC medicine.5-fluorouracil (5-FU) is the first chemotherapy drug used in PDAC with the challenge of drug resistance. Some microarray and proteomic analysis was taken and some chemo-resistance related protein got detected. However, there were still no significant findings, due to lack in screening of the complete genome and proteome. In previous work, we found9immunogenic membrane antigens in PDAC, and profoundly studied the bio-function of Catechol-O-Methyl-transferase (COMT), prohibitin (PHB) and Voltage-Dependent Anionchannel (VDAC1) and their bio-marker validity. Stomatin like protein2(SLP-2, Stoml2) and other proteins are still waiting for study.
     Objective
     1. To identify the chemo-sensitivity difference to5-FU between pancreatic cell lines PaTu8988/-and PaTu8988/FU.
     2. To screen for the differential proteins between PaTu8988/-and PaTu8988/FU.
     3. To explore the bio-function of SLP-2in PDAC.
     4. To complete the prohibitin study.
     Methods
     1. The chemo-sensitivity was detemined by CCK-8assay.
     2. The cell apoptosis rate was revealed by Annexin V/PI assay.
     3. The genomic difference was detected by Affymetrix GeneChip(?) Exon1.0ST Array.
     4. The proteomic difference was identified by iTRAQ-TripleTOFTM5600analysis.
     5. SLP-2expression in9pancreatic cell-lines was tested by qPCR and Western blotting.
     6. SLP-2overexpressing plasmid, plERS2-EGFP(+)-SLP2, and specific SLP-2siRNA was transfected into MIAPaCa-2and BxPC-3separately. And the cellular ability of proliferation, migration and invasion in intro was observed.
     7. Prohibitin expression in9pancreatic cell-lines was tested by qPCR and Western blotting.
     8. Prohibitin overexpressing plasmid, pIERS2-EGFP(+)-prohibitin, was transfected into MIAPaCa-2. And the cellular ability of proliferation, migration and invasion in intro was observed.
     Results
     1. IC50of PaTu8988/FU is higher than PaTu8988/-significantly (p=0.0002), with resistance index (RI) of17.64.
     2. PaTu8988/-holds a greater apoptosis rate under5-FU than PaTu8988/FU.
     3. Genomic chip found2052differential mRNAs, of which1828were up-regulation and224were down-regulated in PaTu8988/FU.
     4. Proteomic analysis found353differential proteins, of which259were up-regulation and94were down-regulated in PaTu8988/FU.
     5. All9cell-lines expressed SLP-2protein. Higher SLP-2expression level was found in BxPC-3, otherwise MIAPaCa-2with a lower expression.
     6. In vitro, pIERS2-EGFP(+)-SLP2enhanced SLP-2level in MIAPaCa-2, and also the proliferation, migration and invasion capability. SLP-2siRNA reduced SLP-2level in MIAPaCa-2, and the proliferation, migration and invasion capability as well.
     7. All9cell-lines expressed prohibitin protein. Higher prohitbitin expression level was found in SW1990, AsPC-1and BxPC-3, otherwise MIAPaCa-2with a lower expression.
     8. In vitro, pIERS2-EGFP(+)-prohibitin increased prohibitin level in MIAPaCa-2, and also the proliferation, migration and invasion capability.
     Conclusions
     1. PaTu8988/-was more sensitive to5-FU than PaTu8988/FU, offering a suitable material.
     2.69differential proteins were corporately identify by both genomic chip and proteomic analysis, including54up-regulated proteins, such as ABCD3, MTHFD1L, TP53I3, POLA1, SRGAP1and C5, as well15down-regulated ones, for example EPCAM, MCAM and other cell adhesion proteins.
     3. In vitro, SLP-2enhanced cell proliferation, migration and invasion.
     4. In vitro, prohibitin facilitated cell proliferation, migration and invasion as well.
引文
1. Siegel R, Naishadham D, Jemal A. Cancer statistics,2013. CA:a Cancer Journal of Clinicians.2013;63(1):11-30.
    2.张思维,陈万青,郑荣寿,et aI.2003-2007年中国癌症死亡分析.中国肿瘤.2012;21(3):171-8.
    3.赵雩卿,王凤丹.胰腺癌内科治疗进展.中国医疗前沿.2007;11:77-83.
    4. Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. The New England Journal of Medicine.2011;364(19):1817-25.
    5. Guo Q, Chen Y, Zhang B, et al. Potentiation of the effect of gemcitabine by emodin in pancreatic cancer is associated with survivin inhibition. Biochemical Pharmacology. 2009;77(11):1674-83.
    6. Maehara S, Tanaka S, Shimada M, et al. Selenoprotein P, as a predictor for evaluating gemcitabine resistance in human pancreatic cancer cells. Int. J. Cancer: 2004;112(2):184-9.
    7.陈革,赵玉沛,郭俊超,et al.胰腺癌细胞株耐药与凋亡相关基因的改变.外科理论与实践.2004;9(4):325-8.
    8.冯宾,赵玉沛,陈革,et al.应用基因芯片技术筛选胰腺癌多药耐药相关基因.中华外科杂志.2007;45(23):1629-33.
    9. Zhao YP, Chen G, Feng B, et al. Microarray analysis of gene expression profile of multidrug resistance in pancreatic cancer. Chinese Medical Journal. 2007;120(20):1743-52.
    10. Yoshida K, Kuramitsu Y, Murakami K, et al. Proteomic differential display analysis for TS-1-resistant and -sensitive pancreatic cancer cells using two-dimensional gel electrophoresis and mass spectrometry. Anticancer Research.2011;31(6):2103-8.
    11. Tan Y, Qin S, Hou X, Qian X, et al. Proteomic-based analysis for identification of proteins involved in 5-fluorouracil resistance in hepatocellular carcinoma. Current Pharmaceutical Design.2013. [Epub ahead of print].
    12. Kimura K, Wada A, Ueta M, et al. Comparative proteomic analysis of the ribosomes in 5-fluorouracil resistance of a human colon cancer cell line using the radical-free and highly reducing method of two-dimensional polyacrylamide gel electrophoresis. Internatinal Journal of Oncology.2010;37(5):1271-8.
    13. Bauer KM, Lambert PA, Hummon AB. et al. Comparative label-free LC-MS/MS analysis of colorectal adenocarcinoma and metastatic cells treated with 5-fluorouracil. Proteomics.2012;12(12):1928-37.
    14.李静.比较蛋白质组学筛查鉴定胰腺癌多药耐药相关蛋白的实验研究[D].北京:中国协和医科大学,2006.
    15. Rong Y, Jin D, Hou C, et al. Proteomics analysis of serum protein profiling in pancreatic cancer patients by DIGE:up-regulation of mannose-binding lectin 2 and myosin light chain kinase 2. BMC Gastroenterology.2010;10:68.
    16. Takayama R, Nakagawa H, Sawaki A, et al. Serum tumor antigen REG4 as a diagnostic biomarker in pancreatic ductal adenocarcinoma. Journal of Gastroenterology. 2010;45(1):52-9.
    17.陈炯,武文,汤厚阔,et al.胰腺癌患者血清的比较蛋白质组学研究及其意义.中华外科杂志.2013;51(1):62-5.
    18. Xue A, Scarlett CJ, Chung L, et al. Discovery of serum biomarkers for pancreatic adenocarcinoma using proteomic analysis. British Journal of Cancer. 2010;103(3):391-400.
    19. Fiedler GM, Leichtle AB, Kase J, et al. Serum peptidome profiling revealed platelet factor 4 as a potential discriminating Peptide associated with pancreatic cancer. Clinical Cancer Research.2009;15(11):3812-9.
    20. Li A, Yu J, Kim H, et al. MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clinical Cancer Research.2013. [Epub ahead of print].
    21.宁力,潘博,赵玉沛,et al.免疫蛋白质组学筛查具有早期诊断价值的人胰腺癌相关膜抗原.中华外科杂志.2007;45(1):34-8.
    22.王维斌,赵玉沛,宁力,et al.胰腺癌相关免疫原性膜抗原的筛查与鉴定.中华外科杂志.2009;47(13):1006-9.
    23.徐徕.胰腺癌候选免疫原性膜抗原-Prohibitin生物学功能研究及预后分析[D].北京:北京协和医学院.2012.
    24.武峤.胞浆溶型儿茶酚胺氧位甲基转移酶(S-COMT)影响胰腺癌生物学行为的机制研究[D].北京:北京协和医学院.2013.
    1. Heidelberger C, Chaudhuri NK, Danneberg P, et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature.1957;179(4561):663-6.
    2. Neoptolemos JP, Stocken DD, Bassi C, et al. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection:a randomized controlled trial. JAMA.2010;304(10):1073-81.
    3. Chen YW, et al. Proteomic analysis of gemcitabine-induced drug resistance in pancreatic cancer cells. Molecular BioSystems.2011;7(11):3065-74.
    4. Zieske LR. A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. Journal of Experimental Botany.2006;57(7):1501-8.
    5. Tong SW, Yang YX, Hu HD, et al. Proteomic investigation of 5-fluorouracil resistance in a human hepatocellular carcinoma cell line. Journal of Cellular Biochemistry. 2012;113(5):1671-80.
    6. Elsasser HP, et al. Establishment and characterisation of two cell lines with different grade of differentiation derived from one primary human pancreatic adenocarcinoma. Virchows Archiv. B, Cell pathology including molecular pathology. 1992;61(5):295-306.
    7.严伟.胰腺癌细胞株Patu8988对培美曲塞产生获得性耐药基因的初步筛选[D1.江苏:东南大学,2009.
    8.张厚斌,时开网,杨士勇.人胰腺癌耐药细胞株Patu8988/5-Fu的建立及其耐药机制的初步探讨.南京医科大学学报.2011;31(4):457-62.
    9. Yoshida R, Numata K, Imoto S, et al. A statistical framework for genome-wide discovery of biomarker splice variations with GeneChip Human Exon 1.0 ST Arrays. Genome Informatics.2006; 17(1):88-99.
    10.陈革,赵玉沛,郭俊超,et al.胰腺癌细胞株耐药与凋亡相关基因的改变.外科理论与实践.2004;9(4):325-8.
    11.冯宾,赵玉沛,陈革,et al.应用基因芯片技术筛选胰腺癌多药耐药相关基因.中华外科杂志.2007;45(23):1629-33.
    12.靳文海,郭立海,谢永明,et al. AB SCIEX TripleTOFTM 5600在蛋白质组学研究中的应用.现代科学仪器.2010;4:135-40.
    13. Tambor V, Hunter CL, Seymour SL, et al. CysTRAQ-A combination of iTRAQ and enrichment of cysteinyl peptides for uncovering and quantifying hidden proteomes. Journal of Proteomics.2012;75(3):857-67.
    14. Longley DB, Harkin DP, Johnston PG.5-fluorouracil:mechanisms of action and clinical strategies. Nature Review. Cancer.2003;3(5):330-8.
    15. Sheikh R, Walsh N, Clynes M, et al. Challenges of drug resistance in the management of pancreatic cancer. Expert Review of Anticancer Therapy 2010;10(10):1647-61.
    16.郭俊超,赵玉沛,廖泉,et al.多药耐药相关基因及其蛋白在介导胰腺癌细胞原发性耐药中的作用及调控.中华外科杂志.2007;45(21):1488-90.
    17. Nambaru PK, Hubner T, Kock K, et al. Drug efflux transporter multidrug resistance-associated protein 5 affects sensitivity of pancreatic cancer cell lines tc the nucleoside anticancer drug 5-fluorouracil. Drug Metabolism and Disposition:the biological fate of chemicals.2011;39(1):132-9.
    18. Oguri T, Bessho Y, Achiwa H, et al. MRP8/ABCC11 directly confers resistance tc 5-fluorouracil. Molecular Cancer Theraputics.2007;6(1):122-7.
    19. Biermanns M, Gartner J. Targeting elements in the amino-terminal part direct the human 70-kDa peroxisomal integral membrane protein (PMP70) to peroxisomes Biochemical and Biophysical Research Communications.2001;285(3):649-55.
    20. Hendig D, Langmann T, Zarbock R, et al. Characterization of the ATP-binding cassette transporter gene expression profile in Y79:a retinoblastoma cell line. Molecular and Cellular Biochemistry.2009;328(1-2):85-92.
    21. Heimerl S, Bosserhoff AK, Langmann T, et al. Mapping ATP-binding cassette transporter gene expression profiles in melanocytes and melanoma cells. Melanoma Research.2007;17(5):265-73.
    22. Scartozzi M, Maccaroni E, Giampieri R, et al.5-fluorouracil pharmacogenomics:still rocking after all these years? Pharmacogenomics.2011;12(2):251-65.
    23. van der Zee JA, van Eijck CH, Hop WC, et al. Expression and prognostic significance of thymidylate synthase (TS) in pancreatic head and periampullary cancer. European Journal of Surgical Oncology.2012;38(11):1058-64.
    24. Sohn KJ, Croxford R, Yates Z, et al. Effect of the methylenetetrahydrofolate reductase C677T polymorphism on chemosensitivity of colon and breast cancer cells to 5-fluorouracil and methotrexate. Journal of the National Cancer Institute. 2004;96(2):134-44.
    25. Etienne MC, llc K, Formento JL, et al. Thymidylate synthase and methylenetetra hydrofolate reductase gene polymorphisms:relationships with 5-fluorouracil sensitivity. British Journal of Cancer.2004;90(2):526-34.
    26. Ide H, Kikuchi E, Hasegawa M, et al. Prognostic significance of 5-fluorouracil metabolism-relating enzymes and enhanced chemosensitivity to 5-fluorouracil by 5-chloro 2,4-dihydroxy-pyridine in urothelial carcinoma. BMC Cancer.2012;12:420.
    27. Ciaparrone M, Quirino M, Schinzari G, et al. Predictive role of thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase expression in colorectal cancer patients receiving adjuvant 5-fluorouracil. Oncology. 2006;70(5):366-77.
    28. Pike ST, Rajendra R, Artzt K, et al. Mitochondrial C1-tetrahydrofolate synthase (MTHFD1L) supports the flow of mitochondrial one-carbon units into the methyl cycle in embryos. The Journal of Biological Chemistry.2010;285(7):4612-20.
    29. Momb J, Lewandowski JP, Bryant JD, et al. Deletion of Mthfdll causes embryonic lethality and neural tube and craniofacial defects in mice. Proceedings of the National Academy of Sciences of U S A.2013;110(2):549-54.
    30. Li B, Shang ZF, Yin JJ, et al. PIG3 functions in DNA damage response through regulating DNA-PKcs homeostasis. International Journal of Biological Science. 2013;9(4):425-34.
    31. Isfort K, Ebert F, Bornhorst J, et al. Real-time imaging reveals that P2Y2 and P2Y12 receptor agonists are not chemoattractants and macrophage chemotaxis to complement C5a is phosphatidylinositol 3-kinase (PI3K)- and p38 mitogen-activated protein kinase (MAPK)-independent. Journal of Biological Chemistry. 2011;286(52):44776-87.
    32. Kim YJ, Wilson DM 3rd. Overview of base excision repair biochemistry. Current Molocular Pharmacology.2012;5(1):3-13.
    33. Wong K, Ren XR, Huang YZ, et al. Signal transduction in neuronal migration:roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell.2001;107(2):209-21.
    34. Bokoch GM. Biology of the p21-activated kinases. Annual Review of Biochemistry. 2003;72:743-81.
    35. Qing H, Gong W, Che Y, PAK1-dependent MAPK pathway activation is required for colorectal cancer cell proliferation. Tumour Biology.2012;33(4):985-94.
    36. Kang WK, Lee I, Ko U, et al. Differential effects of RhoA signaling on anticancer agent-induced cell death. Oncology Reports.2005;13(2):299-304.
    37. Lee JH, Kang Y, Khare V, et al. The p53-inducible gene 3 (PIG3) contributes to early cellular response to DNA damage. Oncogene.2010;29(10):1431-50.
    38. Ischenko I, Camaj P, Seeliger H. Inhibition of Src tyrosine kinase reverts chemoresistance toward 5-fluorouracil in human pancreatic carcinoma cells:an involvement of epidermal growth factor receptor signaling. Oncogene. 2008;27(57):7212-22.
    39. Zhao YP, Shen SJ, Guo JC, et al. Mitogen-Activated Protein Kinases and Chemoresistance in Pancreatic Cancer Cells. Journal of Surgical Research. 2006;136(2):325-35.
    40. Yoon H, Min JK, Lee JW, et al. Acquisition of chemoresistance in intrahepatic cholangiocarcinoma cells by activation of AKT and extracellular signal-regulated kinase (ERK)1/2. Biochemical Biophysical Research Communications. 2011;405(3):333-7.
    41. Gu W, Fang FF, Li B, et al. Characterization and resistance mechanisms of a 5-fluorouracil-resistant hepatocellular carcinoma cell line. Asian Pacific Journal of Cancer Prevention.2012;13(9):4807-14.
    42. Chen X, Wang Y, Xia H, et al. Loss of E-cadherin promotes the growth, invasion and drug resistance of colorectal cancer cells and is associated with liver metastasis. Molecular Biology Reports.2012;39(6):6707-14.
    1. Saif MW, Sviglin H, Carpenter M. Impact of ethnicity on outcome in pancreatic carcinoma. Journal of the Pancreas.2005;6(3):246-54.
    2. Spinelli GP, Zullo A, Romiti A, et al. Long-term survival in metastatic pancreatic cancer. A case report and review of the literature. Journal of the Pancreas.2006;7(5):486-91.
    3.宁力,潘博,赵玉沛,et al.免疫蛋白质组学筛查具有早期诊断价值的人胰腺癌相关膜抗原.中华外科杂志.2007;45(1):34-8.
    4.王维斌,赵玉沛,宁力,et al.胰腺癌相关免疫原性膜抗原的筛查与鉴定.中华外科杂志.2009;47(13):1006-9.
    5.徐徕.胰腺癌候选免疫原性膜抗原-Prohibitin生物学功能研究及预后分析[D].北京:北京协和医学院.2012.
    6.武峤.胞浆溶型儿茶酚胺氧位甲基转移酶(S-COMT)影响胰腺癌生物学行为的机制研究[D].北京:北京协和医学院.2013.
    7. Hajek P, Chomyn A, Attardi G. Identification of a novel mitochondrial complex containing mitofusin 2 and stomatin-like protein 2. the Journal of Biological Chemistry.2007;282(8):5670-81.
    8. Christie DA, Lemke CD, Elias IM, et al. Stomatin-like protein 2 binds cardiolipin and regulates mitochondrial biogenesis and function. Molocular and Cellular Biology. 2011;31(18):3845-56.
    9. Wang Y, Morrow JS. Identification and characterization of human SLP-2, a novel homologue of stomatin (band 7.2b) present in erythrocytes and other tissues, the Journal of Biological Chemistry.2000;275(11):8062-71.
    10. Wang Y, Cao W, Yu Z, et al. Downregulation of a mitochondria associated protein SLP-2 inhibits tumor cell motility, proliferation and enhances cell sensitivity to chemotherapeutic reagents. Cancer Biology & Therapy.2009;8(17):1651-8.
    11. Lapatsina L, Brand J, Poole K, et al. Stomatin-domain proteins. European Journal of Cell Biology.2012;91(4):240-5.
    12. Da Cruz S, Parone PA, Gonzalo P, et al. SLP-2 interacts with prohibitins in the mitochondrial inner membrane and contributes to their stability. Biochimica et Biophysica Acta.2008;1783(5):904-11.
    13. Sprenger RR, Speijer D, Back JW, et al. Comparative proteomics of human endothelial cell caveolae and rafts using two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis.2004,25(1):156-72.
    14. Bini L, Pacini S, Liberatori S, et al. Extensive temporally regulated reorganization of the lipid raft proteome following T-cell antigen receptor triggering. The Biochemical Journal.2003;369(Pt 2):301-9.
    15. Cao W, Zhang B, Li J, et al. SLP-2 overexpression could serve as a prognostic factor in node positive and HER2 negative breast cancer. Pathology.2011;43(7):713-8.
    16. Han CL, Chen JS, Chan EC, et al. An informatics-assisted label-free approach for personalized tissue membrane proteomics:case study on colorectal cancer. Molecular & Cellular Proteomics.2011;10(4):M110.003087.
    17. Chang D, Ma K, Gong M, et al. SLP-2 overexpression is associated with tumour distant metastasis and poor prognosis in pulmonary squamous cell carcinoma. Biomarkers.2010;15(2):104-10.
    18. Cui Z, Zhang L, Hua Z, et al. Stomatin-like protein 2 is overexpressed and related to cell growth in human endometrial adenocarcinoma. Oncology Reports. 2007;17(4):829-33.
    19. Song L, Liu L, Wu Z, et al. Knockdown of stomatin-like protein 2 (STOML2) reduces the invasive ability of glioma cells through inhibition of the NF-kB/MMP-9 pathway. The Journal of Pathology.2012;226(3):534-43.
    20. Cao W, Zhang B, Ding F, et al. Expression of SLP-2 Was Associated with Invasion of Esophageal Squamous Cell Carcinoma. PLoS One.2013;8(5):e63890.
    21. Sato T, Saito H, Swensen J, et al. The human prohibitin gene located on chromosome 17q21 is mutated in sporadic breast cancer. Cancer Research.1992;52(6):1643-6.
    22. Ansari-Lari MA, Shen Y, Muzny DM, et al. Large-scale sequencing in human chromosome 12p13:experimental and computational gene structure determination. Genome Research.1997;7(3):268-80.
    23. Altus MS, Wood CM, Stewart DA, et al. Regions of evolutionary conservation between the rat and human prohibitin-encoding genes. Gene.1995;158(2):291-4.
    24. Nijtmans LG, de Jong L, Artal Sanz M, et al. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. The EMBO Journal. 2000;19(11):2444-51.
    25. Artal-Sanz M, Tavernarakis N. Prohibitin and mitochondrial biology. Trends in Endocrinology and Metabolism.2009;20(8):394-401.
    26. Sanchez-Quiles V, Santamaria E, Segura V, et al. Prohibitin deficiency blocks proliferation and induces apoptosis in human hepatoma cells:molecular mechanisms and functional implications. Proteomics.2010;10(8):1609-20.
    27. Mishra S, Ande SR, Nyomba BL. The role of prohibitin in cell signaling. The FEBS Journal.2010;277(19):3937-46.
    28. Chiu CF, Ho MY, Peng JM, et al. Raf activation by Ras and promotion of cellular metastasis require phosphorylation of prohibitin in the raft domain of the plasma membrane. Oncogene.2013;32(6):777-87.
    29. Guo F, Hiroshima K, Wu D. et al. Prohibitin in squamous cell carcinoma of the lung: its expression and possible clinical significance. Human Pathology. 2012;43(8):1282-8.
    30. Wang KJ, Wang RT, Zhang JZ. Identification of tumor markers using two-dimensional electrophoresis in gastric carcinoma. World Journal of Gastroenterology. 2004;10:2179-83.
    31. Ren HZ, Wang JS, Wang P, et al. Increased expression of prohibitin and its relationship with poor prognosis in esophageal squamous cell carcinoma. Pathology Oncology Research.2010;16:515-22.
    32. Jupe ER, Liu XT, Kiehlbauch JL, et al. Prohibitin in breast cancer cell lines:loss of antiproliferative activity is linked to 3'untranslatedregion mutations. Cell Growth & Differentiation.1996;7:871-8.
    33. Ummanni R, Junker H, Zimmermann U, et al. Prohibitin identified by proteomic analysis of prostate biopsies distinguishes hyperplasia and cancer. Cancer Letters. 2008;266:171-85.
    34. Wu TF, Wu H, Wang YW, et al. Prohibitin in the pathogenesis of transitional cell bladder cancer. Anticancer Research.2007;27(2):895-900.
    35. Wang S, Faller DV. Roles of prohibitin in growth control and tumor suppression in human cancers. Translational Oncogenomics.2008;3:23-37.
    36. Fusaro G, Dasgupta P, Rastogi S, et al. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. Journal of Biological Chemistry.2003;278(48):47853-61.
    37. Jakubowska A, Rozkrut D, Antoniou A, et al. Association of PHB 1630 C>T and MTHFR 677 C>T polymorphisms with breast and ovarian cancer risk in BRCA1/2 mutation carriers:results from a multicenter study. British Journal of Cancer. 2012;106(12):2016-24.
    38. Tang L, Zhao Y, Nie W, et al.3'untranslated region 1630 C>T polymorphism of prohibitin increases risk of breast cancer. Onco Targets and Therapy.2013;6:177-82.
    39. Dart DA, Brooke GN, Sita-Lumsden A, et al. Reducing prohibitin increases histone acetylation, and promotes androgen independence in prostate tumours by increasing androgen receptor activation by adrenal androgens. Oncogene. 2012;31(43):4588-98.
    40. Fletcher CE, Dart DA, Sita-Lumsden A, Androgen-regulated processing of the oncomir miR-27a, which targets Prohibitin in prostate cancer. Human Molecular Genetics. 2012;21(14):3112-27.
    41. Chiu CF, Ho MY, Peng JM, et al. Raf activation by Ras and promotion of cellular metastasis require phosphorylation of prohibitin in the raft domain of the plasma membrane. Oncogene.2013;32(6):777-87.
    42. Chen D, Chen F, Lu X, et al. Identification of prohibitin as a potential biomarker for colorectal carcinoma based on proteomics technology. International Journal of Oncology.2010;37(2):355-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700