用户名: 密码: 验证码:
微震震源定位的关键因素作用机制及可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微震监测技术作为一种实时、动态、连续的监测手段,在矿山、石油和边坡等岩土工程中得到了广泛应用。震源定位是微震技术应用的基础,也是国内外研究的重点和热点。震源定位的影响因素及其作用机制、震源定位可靠性评价方法是当前亟需解决的关键科学和技术问题。为此,本文围绕微震震源定位及可靠性评价,采用理论分析、实验室实验、数值模拟、现场试验等方法,研究并揭示了关键因素对震源定位的影响规律和作用机制;建立了微震到达波类型自动识别模型(APSIM)、基于APSIM的单纯形震源定位方法(APSIM-Simplex)和震源定位可靠性综合评价体系(SLRES);开发了微震定位与可靠性评价系统,并进行了试验验证和现场应用。
     实验研究了不同微震台网布设、波速和到时误差对震源定位可靠性的影响规律。结果表明,微震台网内部的震源定位精度高,随着震源远离台网中心,定位精度和稳定性都呈下降趋势;台网对震源定位的影响存在方向性,不同方向上的定位误差和变化特征都不相同,且存在定位精度下降最快的方向。震源定位精度随波速和到时输入误差的增加而降低,并且下降的速率越来越快;不同位置震源定位受输入误差影响不同,台网内部震源受输入误差影响较小,台网边缘和外部的震源受输入误差影响较大。
     建立了微震震源定位双曲线控制方程(MHGE),分析了震源定位双曲线域的非均匀性几何特性。研究并揭示了微震台网对震源定位的几何扩散效应和方向控制效应,分别构建了两种效应的三维空间量化模型,提出了配对传感器的方向角,确定了空间微震台网的优化布置原则。对比分析了波速和到时误差在震源求解中的传播特性;根据关键双曲线和微震台网形态,监测区域可划分为到时误差主导和波速误差主导的两个不同区域,通常在微震台网内部到时误差是造成定位误差的主导因素,随着震源远离台网中心,波速误差逐渐成为造成定位误差的主导因素。
     传感器到时之间存在观测到时差值、P波到时差值理论极限和延迟波到时差值理论极限。根据微震台网和监测空间几何特征、到时差值和台站残差,分别构建了到时差值分析表和残差分析表,进而建立了微震到达波类型(P波、S波、延迟波和外部异常波)自动识别模型(APSIM)和基于APSIM的单纯形微震震源定位方法(APSIM-Simplex)。现场试验结果表明,APSIM能够对P波、S波、延迟波和外部异常波四种到达波类型进行有效识别;APSIM-Simplex求解系统稳定,震源定位精度得到了很大的提高。
     提出了评价震源定位可靠性的事件残差指标、敏感度指标、触发序列指标,确定了各指标的评价准则,建立了震源定位可靠性综合评价体系(SLRES),并进行了实验验证。结果表明,SLRES能够对定位结果进行全面有效评价,评价结果符合实际情况。
     综合APSIM、APSIM-Simplex和SLRES,开发了微震定位与可靠性评价系统,并进行了现场应用。结果表明,该系统实现了震源的高精度定位,而且能够对震源定位可靠性进行综合评价,满足现场微震监测需求。
     本文研究成果对进一步提高震源定位精度和微震监测预警的准确性、促进微震监测技术的应用等具有重要理论意义和应用价值。
The microseismic (MS) monitoring technique is a real time, dynamic, and continuousmonitoring method which has been widely used in the general area of geotechnicalengineering, such as: mining, petroleum, and slopes engineering. Source location is thefoundation of the MS technique. It has been the research focus and hotspots in the MS area.The influence factors and their mechanisms of MS source location, and the reliabilityevaluation of source location are the key scientific and technical issues which need to addressurgently at present. Thus, this paper focuses on the MS source location and reliabilityevaluation problems by using theoretical analysis, laboratory physical experiment, numericalsimulation, field testing and practice. The influence law of MS source location affected by keyfactors, and the key factors in the mechanisms of MS source location are revealed. On thisbasis, the automatic identification model of MS arrival wave types (APSIM), Simplex MSsource location method based on APSIM (APSIM-Simplex), and comprehensive evaluationsystem for source location reliability (SLRES) are built. In the end, a new MS source locationand reliability evaluation system is developed. The verification tests and applications arecarried out.
     The influence law of MS source location affected by the MS network, velocity model, andarrival time are studied by laboratory physical experiments. Results show that the sourcelocation accuracy is relative high inside of MS network. The accuracy and stability of thesource location consistently reduce with the source away from the network center. Theinfluence of MS network to the source location is directional. Both the accuracy and changecharacteristics of source location in different directions are different, and there exists thequickest-decline-direcion of location accuracy. The source location accuracy decreases withthe increasing of velocity and arrival time errors, and the decline rate of location accuracybecomes faster and faster. The source locations at different places are affected differently bythe same input errors. Specifically, the source locations at the central region of the networkhave been less affected by the input errors than the outside of the network.
     Based on the arrival-time-difference source location theory, the hyperbolic governingequation of MS source location (MHGE) is established, and the non-uniformity geometricalcharacteristic of hyperbolic field is analyzed as well. And then, the geometrical spreadingeffect and the directional control effect of the MS network are revealed. Additionally, thethree-dimensional space quantitative models of these two effects are constructed respectively.The direction angle of pairing sensors is proposed. And then, based on the geometrical spreading effect, the directional control effect, and the direction angle, the basic principles ofMS network layout are concluded. The propagation characteristics of velocity error andarrival time error are compared analytically. Based on the critical hyperbola and the networklayout, the monitoring area can be divided into two regions. In general, the arrival time errorshave the major influence in the central region, and the velocity errors have the majorinfluence in the remaining area.
     There are observed arrival time differences, theoretical limit arrival time differences of Pwave and delayed wave between two sensors. According to the geometrical characteristics ofMS network and monitoring space, the arrival time differences analysis as well as and stationresiduals, the arrival time difference analysis table and station residual analysis table areformed, and then the APSIM and APSIM-Simplex are built. Results from field tests showsthat P wave, S wave, delayed waves and external outlier waves can be identified correctly andeffectively by APSIM. The accuracy and stability of source location are greatly improved byusing APSIM-Simplex.
     The event residual index, sensitivity index, and hit sequence index are proposed, andevaluation criteria of these3indexes are defined. The SLRES is established based on theabove indexes, and verification tests are carried out. Results indicate SLRES can evaluate thesource location accuracy and stability comprehensively and effectively. The evaluation resultsof SLRES accordant with the actual situation.
     Based on the APSIM, APSIM-Simplex, and SLRES, a MS source location and reliabilityevaluation system is developed. In the end, this system is applied to the engineering practiceand applications. The successful applications show this system can achieve the identificationof MS arrival wave types, high accuracy source location, and comprehensive evaluation forsource location reliability. It meets the needs of field MS monitoring.
     This paper profoundly reveals the key factors in mechanisms of MS source location. Theresearch results have important theoretical and practical significance for improving the MSsource location accuracy and stability, and driving the research of MS monitoring and earlywarning for rockbursts.
引文
[1]中国煤炭网.全国煤炭保有查明资源储量13412亿吨[EB/OL].http://www.ccoalnews.com/zt/shierwuguihua/180033.html,2012-03-26.
    [2]王超.基于未知测度理论的冲击地压危险性综合评价模型及应用研究[D].徐州:中国矿业大学,2011.
    [3]何满潮.深部开采工程岩石力学的现状及其展望[A].第八次全国岩石力学与工程学术大会论文集[C].中国岩石力学与工程学会主编,北京:科学出版社,2004.88-94.
    [4]晏玉书.我国煤矿软岩巷道围岩控制技术现状及发展趋势[A].何满潮主编:中国煤矿软岩巷道支护理论与实践[C].北京:中国矿业大学出版社,1996.1-17.
    [5]何满潮,谢和平,彭苏萍.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [6]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.
    [7]何满潮,谢和平,彭苏萍,等.深部开采岩体力学及工程灾害控制研究[J].煤矿支护,2007,3:1-14.
    [8]潘一山,李忠华,章梦涛.我国冲击地压分布,类型,机理及防治研究[J].岩石力学与工程学报,2003,22(11):1844-1851.
    [9] T. Li, M.F. Cai, M. Cai. A review of mining-induced seismicity in China[J]. International Journal ofRock Mechanics&Mining Sciences,2007,44(8):1149–1171.
    [10]巩思园.矿震震动波波速层析成像原理及其预测煤矿冲击危险应用实践[D].徐州:中国矿业大学,2011.
    [11]陆菜平.组合煤岩的强度弱化减冲原理及其应用[D].徐州:中国矿业大学,2007.
    [12]钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010.
    [13]李玉生.矿山冲击名词探讨-兼评冲击地压[J].煤炭学报,1982,10(2):89-96.
    [14]窦林名,何学秋,王恩元,等.冲击矿压与震动的机理及预测研究[J].矿山压力与顶板管理,1999,(3):199-203.
    [15] Hardy R. Acoustic emission/microseismic activity: Volume1[M]. Lisse, Netherlands: A.A. BalkemaPublishers,2003.
    [16] Ge M. Efficient mine microseismic monitoring[J]. International Journal of Coal Geology,2005,64:44-56.
    [17]陈颙.声发射技术在岩石力学研究中的应用[J].地球物理学报,1977,20(4):312-322.
    [18]窦林名,何学秋.采矿地球物理学[M].北京:中国科学文化出版社,2002.
    [19]陆菜平,窦林名,王耀峰,等.坚硬顶板诱发煤体冲击破坏的微震效应[J].地球物理学报,2010,53(2):450-456.
    [20]曹安业,窦林名,秦玉红,等.微震监测冲击矿压技术成果及其展望[J].煤矿开采,2007,12(1):20-23,39.
    [21]姜福兴,XUN Luo.微震监测技术在矿井岩层破裂监测中的应用[J].岩土工程学报,2002,24(2):147-149.
    [22]姜福兴,杨淑华,成云海等.煤矿冲击地压的微地震监测研究[J].地球物理学报,2006,49(5):1511-1516.
    [23]张书敬,姚建国,鞠文君.千秋煤矿冲击地压与微震活动关系[J].煤炭学报,2012,37(增刊1):7-12.
    [24] Ge M. Optimization of transducer array geometry for acoustic emission/microseismic sourcelocation[D]. Pennsylvania: Pennsylvania State University,1988.
    [25]朱权洁,姜福兴,王存文,等.微震波自动拾取与多通道联合定位优化[J].煤炭学报,2013,38(3):397-403.
    [26]袁振明,马羽宽,何泽云.声发射技术及其应用[M].北京:机械工业出版社,1985.
    [27]腾山邦久.声发射(AE)技术的应用[M].冯夏庭译.北京:冶金工业出版社,1996.
    [28] Obert L, Duvall W I. Use of Sub audible Noises for the Prediction of Rock Bursts. Part II[R]. RI3654,USBM.,1942.
    [29] Obert L. The microseismic method: discovery and early history[C]. Proc.1st Conference of AcousticEmission/Microseismic Activity in Geological Structures and Materials. Clausthal-Zellerfeld:Trans.Tech. Publications,1975:11-12.
    [30] Cook N G W. The application of seismic techniques to problems in rock mechanics[J]. InternationalJournal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1964,1(2):169-179.
    [31]陈颙.声发射技术在岩石力学研究中的应用[J].地球物理学报,1977,20(4):312-322.
    [32] Bassim, M N.1987. Macroscopic Orgins of Acoustic Emission, Nondestructive Testing Handbook,Vol.5: Acoustic Emission Testing, Section2, P.McIntire (ed.). American Society for NondestructiveTesting, Columbus, Ohio, pp.46–61.
    [33] Wadley, H N G.1987. Microscopic Origins of Acoustic Emission, Nondestructive Testing Handbook,Vol.5: Acoustic Emission Testing, Section3,(Editor, P. McIntire), American Society forNondestructive Testing, Columbus, Ohio, pp.64–90.
    [34]王丽君,韩强,赵振铎,等.金属板料成形摩擦机理研究[J].金属成形工艺,2002,20(4):8-12.
    [35]耿荣生,景鹏,雷洪,等.飞机主梁疲劳裂纹萌生声发射信号的识别方法[J].航空学报,1996,17(3):368-372.
    [36]沈功田,戴光,刘时风.中国声发射检测技术进展-学会成立25周年纪念[J].无损检测,2003,25(6):302-307
    [37] McKavanagh G M, Enever J R. Developing a Microseismic Outburst Warning System[C].Proceedings Second Conference on Acoustic Emission/Microseismic Activity in Geologic Structuresand Materials. Clausthal-Zellerfeld, Germany: Trans Tech Publications,1978:213–225.
    [38] McCabe W M. Acoustic Emission in Coal: A Laboratory Study, Proceedings [C]. Proceedings SecondConference on Acoustic Emission/Microseismic Activity in Geologic Structures and Materials.Clausthal-Zellerfeld, Germany: Trans Tech Publications,1978:35–53.
    [39] Kaiser E J. A study of acoustic phenomena in tensile test[D]. Technische Hochschule Munchen,1950
    [40] Kaiser E. J.“Untersuchungen uber das Auftreten Gerauschen Beim Zugversuch”, Arkiv fur dasEisenhuttenwesen[J].1953,24:43–45.
    [41] Cook N.G.W. The seismic location of rockbursts[C]. Proc.5th Rock Mechanics Symposium. Oxford:Pergamon Press,1963:493–518.
    [42] Leighton F, Blake W. Rock noise source location techniques[R]. USBM RI7432,1970.
    [43] Leighton F, Duvall W I. A least squares method for improving rock noise source locationtechniques[R]. USBM RI7626,1972.
    [44] Young R P, Talebi S, Hutchins D A, et al. Analysis of mining-induced microseismic events atStrathcona Mine, Subdury, Canada[J]. Pure and Applied Geophysics,1989,129:455-474.
    [45] Young R P, Hutchins D A, McGaughey J., et al. Geotomographic imaging in the study of mininginduced seismicity[J]. Pure and Applied Geophysics,1989,129:571-596.
    [46] Young R P, Hutchins D A, Talebi S, et al. Laboratory and field investigations of rockburst phenomenausing concurrent geotomographic imaging and acoustic emission/microseismic techniques[J]. Pureand Applied Geophysics,1989,129:647-659.
    [47] Hasegawa Henry S., Wetmiller Robert J., Gendzwill Don J.. Induced seismicity in mines inCanada-An overview[J]. Pure and Applied Geophysics,1989,129:423-453.
    [48] Brady B T, Leighton F W. Seismicity anomaly prior to a moderate rock burst: A case study[J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1977,14(13):127-132.
    [49] Philips W S, Rutledge J T, House L S, et al. Induced micro-earthquake patterns in hydrocarbon andgeothermal reservoirs: six case studies[J]. Pure Appl. Geophys,2002,(159):345-369.
    [50] Legge, N B, Spottiswoode SM. Fracturing and microseismicity ahead of a deep gold mine stope in thepre-remnant and remnant stages of mining[C]. Proc.6th ICRM Congress, Montreal, Canada:International Society for Rock Mechanics,1987:1071-1077.
    [51] Heick C, Flach D. Microseismicity in a flooded potash mine, the Hope mine, Federal Republic ofGermany[J]. Pure and Applied Geophysics,1989,129:475-496.
    [52] Senfaute G. Chambon C. Bigarre P, et el. Spatial distribution of mining tremors and the relationship torockburst hazard[J]. Pure Appl Gaophys.1997.(150):451-459.
    [53] Lasocki S. Statistical short-term prediction in mining induced seismicity[J]. Rockbursts andSeismicity in Mines, Young(ed.),1993.
    [54] Glowacka E, Kijko A. Continuous evaluation of seismic hazard induced by the deposit extraction inselected coal mines in Poland[J]. Pure and Applied Geophysics,1989,129:523-533.
    [55] Lurka. A. Location of high seismic activity zones and seismic hazard assessment in ZabrzeBielszowice coal mine using passive tomography[J]. Journal of China University of Mining andTechnology,2008,18(2):177-181.
    [56] Adams L, Williamson E. On the compressibility of minerals and rocks at high pressures[J].Journal ofthe Franklin Institute,1923,195:475-531.
    [57] Wyllie R, Gregory A, Gardner G. An experimental investigation of factors affecting elastic waveveloicties in porous media[J]. Geophysics,1958,23(3):459-493.
    [58] Toksoz M, Cheng C, Timur A. Velocities of seismic waves in porous rocks[J]. Geophysics,1976,41(4):621-635.
    [59] Seya K, Suzuki I, Fujiwara H. The change in ultrasonic wave velocities in triaxially stressed brittlerock[J]. Journal of Physics of the Earth,1979,27(5):409-421.
    [60] Young P R, Maxwell S C. Seismic characterization of a highly stressed rock mass using tomographicimaging and induced seismicity[J]. Journal of Geophysical Research,1992,97(B9):12361-12373.
    [61] Maxwell S C, Young R P. Seismic Velocity Inversion from Microseismic Data, Seimic Monitoring inMines[Z]. London: Chapmann&Hall,1997.
    [62] Shalev E, Lees M. Cubic B-splines tomography at loma prieta[J]. Bulletin of the SeismologicalSociety of America,1998,88(1):256-269.
    [63] Mogi, K. On the time distribution of aftershocks accompanying the recent major earthquakes in andnear Japan[J]. Bulletin Earthquake Research Institute. Tokyo University.1962,40:107-124.
    [64] Mogi, K. Study of elastic shocks caused by the fracture of heterogeneous materials and its relation toearthquake phenomena[J]. Bulletin Earthquake Research Institute. Tokyo University.1962,40:125-173.
    [65] Mogi, K. The fiacture of a semi-infinite body caused by an inner stress origin and its relation to theearthquake phenomena (lst paper)[J]. Bulletin Earthquake Research Institute. Tokyo University.1962,40:815-829.
    [66] Sato K, Fujii Y. Source mechanism of a large scale gas outburst at Sunagawa Coal Mine in Japan[J].Pure and Applied Geophysics,1989,129:325-343.
    [67] McGarr A, Bicknell J, Sembera E, et al. Analysis of exceptionally large tremors in two gold miningdistricts of South Africa[J]. Pure and Applied Geophysics,1989,129:295-307.
    [68] Frid V, Vozoff K. Electromagnetic radiation induced by mining rock failure[J]. International Journalof Coal Geology,2005,64:57-65.
    [69] Shen B, King A, Guo H. Displacement, stress and seismicity in roadway roofs during mining-inducedfailure[J]. International Journal of Rock Mechanics and Mining Sciences,2007,45(5):672-688.
    [70] Henry S, Hasegawa, Robert J, et al. Gendzwill. Induced seismicity in mines in Canada-an overview[J].Pure and Applied Geophysics,1989,129:423-453.
    [71] Durrheim, R J. Mitigating the risk of rockbursts in the deep hard rock mines of South African:100years of research[C]. In Extracting the Science: a century of mining research, J. Brune (editor),Denver, Colorado, USA: Society for Mining, Metallurgy, and Exploration, Inc.,2010:156-171.
    [72] Aleksander J, Mendecki, Richard A Dmitriy A. Malovichko. Routine Micro-Seismic Monitoring inMines[C]. Australian Earthquake Engineering Society2010Conference Perth, Western Australia:2010:1-33.
    [73]李世愚,和雪松,张少泉,等.矿山地震监测技术的进展及最新成果[J].地球物理进展,2004,19(4):853-859.
    [74]刘国清.基于声发射的岩体工程灾害威震监测系统[J].采矿技术,2005,5(1):30.
    [75]李世愚,和雪松,张天中,等.地震学在减轻矿山地质灾害中的应用进展[J].国际地震动态,2006,328(4):1-9.
    [76]李世愚,和雪松,张少泉,等.矿山地震监测的仪器及观测情况[J].地球物理学进展,2004,19(4):853-859.
    [77]李世愚,和雪松,张天中,等.矿山地震(冲击地压)灾害监测速报系统建立和分析预测研究[J].矿山压力与顶板管理,2005,(s3):39-42.
    [78]李世愚,和雪松,张天中,等.“矿山地震监测速报系统和分析预测研究”项目成果介绍[J].国际地震动态,2006,333(9):59-66.
    [79]和雪松,李世愚,潘科,等.矿山地震与瓦斯突出的相关性及其在震源物理研究中的意义[J].地震学报,2007,29(3):314-327.
    [80]窦林名,何学秋.煤矿冲击矿压的分级预测研究[J].中国矿业大学学报,2008,36(6):717-722.
    [81]陆菜平,窦林名,曹安业,等.深部高应力集中区域矿震活动规律研究[J].岩石力学与工程学报,2008,27(11):2302-2308.
    [82]曹安业,窦林名,秦玉红,等.高应力区微震监测信号特征分析[J].采矿与安全工程学报,2007,24(2):146-149,154.
    [83]陆菜平,窦林名,吴兴荣,等.煤岩冲击前兆微震频谱演变规律的试验与实证研究[J].岩石力学与工程学报,2008,27(3):519-525.
    [84]谭云亮,李芳成,周辉,等.冲击地压声发射前兆模式初步研究[J].岩石力学与工程学报,2000,19(4):425-428.
    [85]谢和平.分形-岩石力学导论[M].北京:科学出版社,1996.
    [86] Xie H, Pariseau W G. Fractal character and mechanism of rockbursts[C]. Proc.33rd USSRM:Workshop on Induced Seismicity,1992, Pre-workshop volume140-156.
    [87]谢和平.岩爆的分形特征及机制[J].岩石力学与工程学报,1993,12(1):28-37.
    [88]谢和平,鞠杨,黎立云,等.岩体变形破坏过程的能量机制[J].岩石力学与工程学报,2008,27(9):1731-1740.
    [89]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570.
    [90]王恩元.含瓦斯煤破裂的电磁辐射和声发射效应及其应用研究[D].中国矿业大学,1997
    [91]王恩元,何学秋,刘贞堂.煤岩破裂声发射实验研究及RS统计分析[J].煤炭学报,1999,24(3):270-273.
    [92]王恩元,何学秋,刘贞堂,等.煤体破裂声发射的频谱特征研究[J].煤炭学报,2004,29(3):289-292.
    [93]王恩元,何学秋,窦林名,周世宁,聂百胜,刘贞堂.煤矿采掘过程中煤岩体电磁辐射特征及应用[J].地球物理学报,2005,48(1):216-221.
    [94]李楠,王恩元,赵恩来,等.岩石循环加载和分级加载损伤破坏声发射实验研究[J].煤炭学报,2010,35(7):1009-1103.
    [95]王恩元,王云刚,李忠辉,等.受载煤体变形破裂微波辐射前兆规律的实验研究[J].地球物理学报,2011,54(9):2429-2436.
    [96] Wang E, He X, Wei J, et al. Electromagnetic emission graded warning model and its applicationsagainst coal rock dynamic collapses[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(4):556-564.
    [97] Nan Li, Enyuan Wang, Maochen Ge, et al. The fracture mechanism and acoustic emission analysis ofhard roof: a physical modelling study [J]. Arabian Journal of Geosciences,2014,04,07, DOI:10.1007/s12517-014-1378-y.
    [98]张兴东,唐春安,李元辉,等.基于微震监测及应力场分析的冲击地压预测方法[J].岩石力学与工程学报,2005,24(Supp.1):4745-4749.
    [99]徐奴文,唐春安,周钟,等.岩石边坡潜在失稳区域微震识别方法[J].岩石力学与工程学报,2011,30(5):893-900.
    [100]姜福兴,XUN Luo,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究[J].岩土工程学报,2003,25(1):23-25.
    [101]潘一山,赵扬锋,官福海,等.矿震监测定位系统的研究及应用[J].岩石力学与工程学报,2007,26(5):1002-1011.
    [102]李庶林,尹贤刚,郑文达,等.凡口铅锌矿多通道微震监测系统及其应用研究[J].岩石力学与工程学报,2005,24(12):2048-2053.
    [103]李庶林,尹贤刚,李爱兵.多通道微震监测技术在大爆破余震监测中的应用[J].岩石力学与工程学报,2005,24(S1):4711-4711.
    [104]唐礼忠,潘长良,杨承祥,等.冬瓜山铜矿微震监测系统及其应用研究[J].金属矿山,2006,(10):41-45.
    [105]唐绍辉,潘懿,黄英华,等.深井矿山地压灾害微震监测技术应用研究[J].岩石力学与工程学报,2009,28(S2):3597-3603.
    [106]唐礼忠,K. W. XIA,李夕兵.矿山地震活动多重分形特性与地震活动性预测[J].岩石力学与工程学报,2010,29(9):1818-1824.
    [107] Ge M, Analysis of source location algorithms: Part I. Overview and non-iterative methods[J].Journal of Acoustic Emission,2003,21:14-28.
    [108] Ge M. Analysis of source location algorithms: Part II. Iterative methods[J]. Journal of AcousticEmission,2003,21:29-51.
    [109] Brink A V Z, Connor D. Research on the Prediction of Rockbursts at Western Deep Levels[J].Journal of the South African Institute of Mining and Metallurgy,1983,1:1-10.
    [110] Albright J N, Pearson C F. Microseismic monitoring at Byran Mound strategic petroleumreserve[R]. Internal Report, Los Alamos Scientific Laboratory, Los Alamos, March1979.
    [111] Albright J N, Pearson C F. Acoustic emission as a tool for hydraulic fracture location: experienceat the Fenton Hill hot dry rock site[J]. Society Petroleum Engineering Journal,1982,22(4):523-530.
    [112] Baria R K, Batchelor A S. Induced seismicity during the hydraulic stimulation of a potential hotdry rock geothermal reservoir[C]. Proc.4th Conference on Acoustic Emission/Microseismic activityin geologic structures and materials, Clausthal-Zellerfeld, Germany, Trans Tech Publications,1985:327-325.
    [113] Niitsuma H, Nakatsuka K, Chubachi N, et al. Downhole AE measurement of a geothermalreservoir and its application to reservoir control[C]. Proc.4th Conference on AcousticEmission/Microseismic activity in geologic structures and materials, Clausthal-Zellerfeld, Germany,Trans Tech Publications,1985:327-325.
    [114] Inglada V. Die berechnung der herdkoordinated eines nahbebens aus den eintrittszeiten der ineiningen benachbarten stationen aufgezeichneten P-oder P-wellen[Z] Gerlands Beitrage zurGeophysik19,1928:73-98.
    [115] Geiger L. Herbsetimmung bei Erdbeben aus den Ankunfzeiten[J]. K. Gessell. Wiss. Goett.1910,4:331-349.
    [116] Geiger L. Probability method for the determination of earthquake epicentres from the arrivaltime only[J]. Bull. St. Louis. Univ.1912,8:60-71.
    [117] Thurber C. H. Nonlinear earthquake location: theory and examples[J]. Bulletin of theSeismological Society of America,1985,75(3):779-790.
    [118]唐国兴.用计算机确定地震参数的一个通用方法[J].地震学报,1979,1(2):186-196.
    [119] Prugger A, Gendzwill D. Microearthquake location: a non-linear approach that makes use of aSimplex stepping procedure[J]. Bulletin of the Seismological Society of America,1988,78(2),799-815.
    [120] Gendzwill D, Prugger A. Algorithms for micro-earthquake location[C]. Proc.4th Conference onAcoustic Emission/Microseismic activity in geologic structures and materials, Clausthal-Zellerfeld,Germany: Trans Tech. Publications,1989:601-605.
    [121] Waldhauser F, Ellsworth W L. A double-difference earthquake location algorithm: method andapplication to the Northern Hayward Fault, California[J]. Bulletin of the Seismological Society ofAmerica,2000,90(6):1353-1368.
    [122]田玥,陈晓非.地震定位研究综述[J].地球物理学进展,2002,17(1):147-155.
    [123] Smith E C. Scaling the equations of condition to improve conditioning[J]. Bulletin of theSeismological Society of America,1976,66(6):2075-2076.
    [124] Lee W K, Stewart S W. Principles and applications of microearthquake networks, Adv. Geophys.Suppl.2[M]. New York, Academic Press,1981
    [125] Kenneth R. Anderson. Robust earthquake location using M-estimates[J]. Physics of the Earth andPlanetary Interiors,1982,30:119-130.
    [126] Lienert B R, Frazer L N. An improved earthquake location algorithm[J]. EOS, Trans. Am.Geophys. Union,1983,64:267.
    [127] Lee W H K, Lahr J C. HYPO71: A computer program for determining hypocenter, magnitude,and first motion pattern of local earthquakes[R]. U. S. Geol. Surv. Open-File Rept,1975:75-311.
    [128] Klein F W. Hypocenter location program HYPOINVERSE Part I: Users guide to versions1,2,3and4[J]. U. S. Ge2ol. Surv. Open2File Rept,1978,78-694.
    [129] Lienert B R, Berg E, Frazer L N. Hypocenter: an earthquake location method using centered,scaled, and adaptively damped least squares[J]. Bulletin of the Seismological Society of America,1986,76(3):771-783.
    [130] Nelson G D, John E Vidale. Earthquake locations by3-D finite-difference travel times[J].Bulletin of the Seismological Society of America,1990,80(2):395-410.
    [131]赵仲和.多重模型地震定位程序及其在北京台网的应用[J].地震学报,1983,5(2):242-254.
    [132]赵兴东,刘建坡,李元辉,等.岩石声发射定位技术及其实验验证[J].岩土工程学报,2008,30(10):1472-1476.
    [133]林峰,李庶林,薛云亮,等.基于不同初值的微震源定位方法[J].岩石力学与工程学报,2010,29(5):996-1002.
    [134] Romney C. Seismic waves from the Dixie Valley Fairview Peak earthquakes[J]. Bulletin of theSeismological Society of America,1957,47(4):301-319.
    [135] Lomnitze C. A fast epicenter location program[J]. Bulletin of the Seismological Society ofAmerica,1977,67(2):425-431.
    [136] Tomás Garza, Cinna Lomnitz, Carlos Ruíz de Velasco. An interactive epicenter locationprocedure for the RESMAC seismic array: I[J]. Bulletin of the Seismological Society of America,1977,67(6):1577-1586.
    [137] Tomás Garza, Cinna Lomnitz, Carlos Ruíz de Velasco. An interactive epicenter locationprocedure for the RESMAC seismic array: II[J]. Bulletin of the Seismological Society of America,1979,69(4):1215-1236.
    [138]赵珠,曾融生.一种修定震源参数的方法[J].地球物理学报,1987,30(4):379-388.
    [139] Robert S. Crosson. Crustal Structure Modeling of Earthquake Data1. Simultaneous LeastSquares Estimation of Hypocenter and Velocity Parameters[J]. Journal of geophysical research,1976,81(17):3036-3046.
    [140] Aki K, Lee W H K. Determination of three-dimensional velocity anomalies under a seismic arrayusing first P arrival times from local earthquakes, part1: A homogeneous initial model[J]. Journal ofGeophysical Research,1976,81(23):4381-4399.
    [141] Aki K, Anders Determination of the three-dimensional seismic structure of the lithosphere[J].Journal of Geophysical Research,1977,82(2):277-296.
    [142] Gary L. Pavlis, John R. Booker. The mixed discrete-continuous inverse problem: application tothe simultaneous determination of earthquake hypocenters and velocity structure[J]. Journal ofGeophysical Research,1980,85(9):4801-4810.
    [143] Carl Spencer, David Gubbins. Travel-time inversion for simultaneous earthquake location andvelocity structure determination in laterally varying media[J]. Geophysical Journal of the RoyalAstronomical Society,1980,63(1):95-116.
    [144]赵仲和.北京地区地震参数与速度结构的联合测定[J].地球物理学报,1983,26(2):131-139.
    [145]刘福田.震源位置和速度结构的联合反演(I)-理论和方法[J].地球物理学报,1984,27(2):167-175.
    [146]李强,刘福田.一种横向不均匀介质中地震基本参数的测定方法[J].中国地震,1991,7(3):54-63.
    [147]马宏生,张国民,周龙泉,等.川滇地区中小震重新定位与速度结构的联合反演研究[J].地震,2008,28(2):29-38.
    [148]郭贵安,冯锐.新丰江水库三维速度结构和震源参数的联合反演[J].地球物理学报,1992,35(3):331-341.
    [149]赵燕来,孙若昧,梅世蓉.渤海地区地震参数的修定[J].中国地震,1993,9(2):129-137.
    [150]朱元清,范长青,浦小峰.南黄海地震序列时空参数的精细测定和分析[J].中国地震,1995,11(1):54-61.
    [151] Engdahl E R, Rob van der Hilst, Raymond Buland. Global teleseismic earthquake relocationwith improved travel times and procedures for depth determination[J]. Bulletin of the SeismologicalSociety of America,1998,88(3):722-743.
    [152] Kennett B L N, Sambridge M S. Earthquake location-genetic algorithms for teleseisms[J].Physics of the Earth and Planetary Interiors,1992,75:103-110.
    [153] Sambridge M, Gallagher K. Earthquake hypocenter location using genetic algorithms[J]. Bulletinof the Seismological Society of America,1993,83(5):1467-1491.
    [154] Billings S D, Kennett B L N, Sambridge M S. Hypocentre location: genetic algorithmsincorporating problem-specific information[J]. Geophysical Journal International,1994,118(3):693-700.
    [155] Xie Z, Spencer T W, Rabinowitz P D, et al. A new regional hypocenter location method[J].Bulletin of the Seismological Society of America,1996,86(4):946-958.
    [156]周民都,张元生,张树勋.遗传算法在地震定位中的应用[J].西北地震学报,1999,21(2):167-171.
    [157] LI Xi-bing, Dong Long-jun. Comparison of Two Methods in Acoustic Emission Source LocationUsing Four Sensors Without Measuring Sonic Speed[J]. Sensor letters,2011,9(5):2025-2029.
    [158]董陇军,李夕兵,唐礼忠,等.无需预先测速的微震震源定位的数学形式及震源参数确定[J].岩石力学与工程学报,2011,30(10):2057-2067.
    [159]陈炳瑞,冯夏庭,李庶林,等.基于粒子群算法的岩体微震源分层定位方法[J].岩石力学与工程学报,2008,28(4):740-749.
    [160] Shishay B, Heather R D, Charlotte R. Microseismic Swarm Activity in the New Madrid SeismicZone[J]. Bulletin of the Seismological Society of America,2012,102:1167-1178.
    [161] Nelder J A, Mead R. A simplex method for function minimization[J]. The computer journal,1965,7(4):308-313.
    [162] Box M J. A New Method of Constrained Optimization and a Comparison With Other Methods[J]. The Computer Journal,1965,8(1):42-52.
    [163] Olssona Donald M., Nelsona Lloyd S. The Nelder-Mead Simplex Procedure for FunctionMinimization [J]. Technometrics,1975,17(1):45-51.
    [164] Kolda T G, Lewis R M, Torczon V. Optimization by direct search: New perspectives on someclassical and modern methods [J]. SIAM Review,2003,45(3):385-482.
    [165] Fan Shu-Kai S., Zahara Erwie. A hybrid simplex search and particle swarm optimization forunconstrained optimization [J]. European Journal of Operational Research,2007,181(2):527-548.
    [166] Chang K. Stochastic Nelder-Mead simplex method-A new globally convergent direct searchmethod for simulation optimization [J]. European Journal of Operational Research,2012,220(3):684–694
    [167]赵珠,丁志峰,易桂喜,等.西藏地震定位-一种使用单纯形优化的非线性方法[J].地震学报,1994,16(2):212-219.
    [168] Nan Li, Enyuan Wang, Maochen Ge, et al. A nonlinear microseismic source location methodbased on Simplex method and its residual analysis [J]. Arabian Journal of Geosciences,2013,09,21,DOI:10.1007/s12517-013-1121-0.
    [169] Yale D. Recent advances in rock physics[J]. Geophysics,1985,50(12):2480-2491.
    [170] Nur A, Simmons G. Stress-Induced Velocity Anisotropy in Rock: An ExperimentalStudy[J].Journal of Geophysical Research,1969,74(27):6667-6674.
    [171] Rothman R L. Crack Distribution Under Uniaxial Load and Associated Changes in SeismicVelocities Prior to Failure[D]. Geophysics Section, Department of Geosciences, The PennsylvaniaState University,1975.
    [172] Hardy R, Mowrey G L. A microseismic study of an underground natural gas storage reservoir,volume II-field data, analysis and results[R]. American Gas Association, Inc., Arlington, Virginia,A.G.A Cat. No. L51396,343p,1981.
    [173] Crosson R S, Peters D C. Estimates of Miner Location Accuracy: Error Analysis in SeismicLocation Procedures for Trapped Miners[Z]. Seismic Detection and Location of Isolated Miners, vol.2, A. D. Little, Inc., Cambridge, Mass,1974.
    [174] Dean W D. The Reference Event Method of Seismic Location for Mine Rescue Systems[Z].Seismic Detection and Location of Isolated Miners, vol.2, A. D. Little, Inc., Cambridge, Mass,1974.
    [175] Ruths M A. The Reference-Correction Method for Improving Accuracy in the Seismic Locationof Trapped Coal Miners, M.S. Thesis[D]. The Pennsylvania State University, College of Earth andMineral Sciences, University Park, PA, November1977.
    [176] Hardy R, Mowrey G L, Kimble E J. Microseismic Monitoring of a Longwall Coal Mines:Volume1-Microseismic Field Studies[R]. Final Report U.S. Bureau of Mines, Grant G01440l3,1978.
    [177]王进强,姜福兴,吕文生,等.地震波传播速度原位试验及计算[J].煤炭学报,2010,35(12):2059-2063.
    [178] Reasenberg P. Comparison of performance of automatic and human P-picking systems using acommon date set[J]. ESO,1980,61:1030.
    [179] Matsumura S K. Hamada. Determination of P-wave onset times by a digital computer[J]. ZISIN,1976,2(29):383-394(in Japanese).
    [180] Stewart S W. Real-time detection and location of local seismic events in California[J]. Bulletin ofthe Seismological Society of America,1977,72(2):303-325.
    [181] Rex V. Allen. Automatic earthquake recognition and timing from single traces[J]. Bulletin of theSeismological Society of America,1978,68(5):1521-1532.
    [182] Rex V. Allen. Automatic phase pickers: Their present use and future prospects[J]. Bulletin of theSeismological Society of America,1982,72(6B): S225-S242.
    [183] Trina A, Carlos G. Time-frequency representations and genetic algorithms for S-wavedetection[C]. World multi conference on systemics,,Cybernetics and informatics, Florida, USA,2001
    [184] Tom Goforth, Eugene Herrin. An automatic seismic signal detection algorithm based on theWalsh transform[J]. Bulletin of the Seismological Society of America,1981,74(4):1351-1360.
    [185] Wood Lawrence C. Seismic data compression methods[J]. Geophysics,1974,39(4):499-525.
    [186] Kiyoshi Yomogida. Detection of anomalous seismic phases by the wavelet transform[J].Geophysical Journal International,1994,116(1):119-130.
    [187] Anant K S, Farid U D. Wavelet transform methods for phase identification in three-componentseismograms[J]. Bulletin of the Seismological Society of America,1997,87(6):1598-1612.
    [188] Oonincx P J. Automatic phase detection in seismic data using the discrete wavelet transform[R].CWI-Report, PNA-R9811,1998.
    [189] Oonincx P J. A wavelet method for detection S-wave in seismic data[J]. ComputationalGeoscience,1999,3:111-134.
    [190] Oonincx P J. Empirical mode decomposition: A new tool for S-wave detection[R]. CWI-Report,PNA-R0203,2002.
    [191]巩思园,窦林名,曹安业,等.煤矿微震监测台网优化布设研究[J].地球物理学报,2010,53(2):457-465.
    [192]李会义,姜福兴,杨淑华.基于Matlab的岩层微地震破裂定位求解及其应用[J].煤炭学报,2006,31(2):154-158.
    [193] Dai H, MacBeth C. Automatic picking of seismic arrivals in local earthquake data using anartificial neural network[J]. Geophysical Journal International,1995,120(3):758–774.
    [194] Jang G, Dowla F, Vemuri V. A comparison of neural network performance for seismic phaseidentification[J]. Journal of the Franklin Institute,1993,330(3):505–524.
    [195]周彦文,刘希强.初至震相自动识别方法研究与发展趋势[J].华北地震科学,2007,25(4):18-22.
    [196]叶根喜,姜福兴,杨淑华.时窗能量特征法拾取微地震波初始到时的可行性研究[J].地球物理学报,2008,51(5):1574-1581.
    [197]吕世超.微地震有效事件识别及震源自动定位方法研究[D].中国石油大学,2011
    [198]朱权洁,姜福兴,尹永明,等.基于小波分形特征与模式识别的矿山微震波形识别研究[J].岩土工程学报,2012,34(11):2036-2042.
    [199]朱权洁,姜福兴,于正兴,等.爆破震动与岩石破裂微震信号能量分布特征研究[J].岩石力学与工程学报,2012,31(4):723-730.
    [200]陆菜平,窦林名,吴兴荣.岩体微震监测的频谱分析与信号识别[J].岩土工程学报,2005,27(7):772-775.
    [201]刘超,唐春安,薛俊华,等.煤岩体微震事件属性识别与标定综合分析方法[J].采矿与安全工程学报,2011,28(1):61-65.
    [202]李楠,GE Maochen,王恩元,等.基于到时差值的微震波异常信号识别方法[J].岩石力学与工程学报,2013-1346,已录用
    [203] Peters D C, Crosson R S. Application of Prediction Analysis to Hypocenter Determination Usinga Local Array[J]. Bulletin of the Seismological Society of America,1972,62(3):775-788.
    [204] Lilwall R C, Francis T J C. Hypocentral Resolution of Small Ocean Bottom Seismic Networks[J].Geophysical Journal of the Royal Astronomical Society,1978,54(3):721-728.
    [205] Bolt B A, Okubo P.. Uhrhammer. Optimal Station Distribution and Determination ofHypocenters for Small Seismographic Networks[R]. U.S. Army Engineer Waterways ExperimentStation, Miscellaneous Paper S-78-9,1978.
    [206] Uhrhammer R A. Analysis of Small Seismographic Station Networks[J]. Bulletin of theSeismological Society of America,1980,70(4):1369-1379.
    [207] Cete A."Seismic Source Location in the Ruhr District," Proceedings First Conference onAcoustic Emission/Microseismic Activity in Geologic, Clausthal, Germany: Trans Tech Publications,1977:231-242.
    [208] Rindorf H J. Acoustic Emission Source Location[Z]. Bruel&Kjaer Technical Review No.2-1981.
    [209] Rindorf H J. Location of Microseismic Activity: An Algorithm for Three-Dimensional SourceLocation Based on the Arrival Time Differences Among Four Pickup Points[C]. Proceedings ThirdConference on Acoustic Emission/Microseismic Activity in Geologic Structures, Clausthal, Germany:Trans Tech Publications,1981:.695-706.
    [210] Hardy H. R. Jr., G. L. Mowrey, E. J. Kimble Jr. Microseismic Monitoring of a Longwall CoalMines: Volume1-Microseismic Field Studies[R]. Final Report U.S. Bureau of Mines, GrantG01440l3,1978.
    [211] Nan Li, Maochen Ge, Enyuan Wang. Two types of multiple solutions for microseismic sourcelocation based on arrival-time-difference approach [J]. Natural Hazards,2014,03,06, DOI:10.1007/s11069-014-1110-y.
    [212] Kijko A. An algorithm for the optimum distribution of a regional seismic network-I[J]. Pageoph,1977,115(4):999-1009.
    [213] Kijko A. An algorithm for the optimum distribution of a regional seismic network-II:an analysisof the accuracy of location of local earthquakes depending on the number of seismic stations[J].Pageoph,1977,115(4):1011-1021.
    [214] Kijko A, Sciocatt M. Optimal spatial distribution of seismic stations in mines[J]. InternationalJournal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1995,32(6):607-615.
    [215] Mendecki A J. Seismic monitoring in mines[M]. London: Chapman and Hall Press,1997.
    [216]唐礼忠,杨承祥,潘长良.大规模深井开采微震监测系统站网布置优化[J].岩石力学与工程学报,2006,25(10):2036-2042.
    [217]巩思园,窦林名,马小平,等.提高煤矿微震定位精度的最优通道个数的选取[J].煤炭学报,2010,35(12):2017-2021.
    [218]贾宝新,李国臻.矿山地震监测台站的空间分布研究与应用[J].煤炭学报,2010,35(12):2045-2048.
    [219]夏永学,潘俊锋,王元杰,等.基于高精度微震监测的煤岩破裂与应力分布特征研究[J].煤炭学报,2011,32(2):239-243.
    [220]李楠,王恩元,GE Maochen,等.微震震源定位可靠性综合评价模型[J].煤炭学报,2013,38(11):1940-1946.
    [221]巩思园,窦林名,马小平,等.提高煤矿微震定位精度的台网优化布置算法[J].岩石力学与工程学报,2012,31(1):7-17.
    [222] Ge Maochen. Source location error analysis and optimization methods[j]. Journal of RockMechanics and geotechnical engineering,2012,4(1):1-10.
    [223]巩思园,窦林名,马小平,等.煤矿矿震定位中异向波速模型的构建与求解[J].地球物理学报,2012,55(5):1758-1763.
    [224] Gibowicz S. J., Kijko A. An introduction to mining seismology[M]. Translated by Xiu Jigang.Beijing: Scismological Press,1996.
    [225]李宝家,刘昊阳.超定方程组的一种解法[J].沈阳工业大学学报.地震学报,2002,24(1):76-77.
    [226]陈金梅.谈矿山测量仪器及技术发展与应用[C].中国采选技术十年回顾与展望,2012中国矿业科技大会论文集,北京:冶金工业出版社出版,2012:522-525.
    [227]赵荣国.震相分析是地震科学的心脏[J].地震地磁观测与研究,1999,20(5):121-126.
    [228]吴书贵,赵永.实用数字地震分析[M].地震出版社,2009.
    [229] Rindorf H J. Acoustic Emission Source Location in theory and in pratice[J]. Bruel and KjaerTechnical Review,1981,(2):3-44.
    [230]刘志修.试论过圆、椭圆、双曲线上一点的切线方程的统一性[J].中学数学研究,2007,(1):21-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700