用户名: 密码: 验证码:
基于BP神经网络的松辽平原盐碱土含盐量遥感反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于受自然和人为因素的影响,松辽平原西部土壤盐碱化日益严重,严重影响区域可持续发展。遥感为土壤盐分监测提供有效的技术手段,深入挖掘遥感影像中盐碱土含盐量信息,对有效治理土壤盐碱化、合理开发利用盐碱土资源和维持生态可持续发展具有重要意义。
     本文利用Aster遥感影像获取的裸露盐碱土光谱数据,结合土样化学分析数据来反演盐碱土含盐量。首先研究盐碱土盐分特征以实现盐碱化动态变化分析,通过盐碱土光谱特征分析,获得对盐碱土盐分敏感的诊断光谱:波段1、波段2、波段3;然后对土壤盐分信息与土壤光谱信息进行回归分析建立遥感反演的统计模型,通过决策树分类将盐碱土分为五类;以Aster遥感影像的1、2、3波段作为输入,隐含层神经元个数为10,以盐碱土含盐量作为输出,利用训练好的BP神经网络模型来反演盐碱土含盐量,能极大地提高遥感反演精度。
     本文尝试用两种模型对松辽平原盐碱土含盐量进行遥感反演研究,希望对定量估算土壤含盐量做出有益的探索。研究成果可以作为土地调查和农业生产等领域的参考资料,给有关部门在松辽平原盐碱化防治方面提供有益的决策支持。
The western part of Songliao Plain is one of the three main saline-sodic soil areas in the world. Owing to the co-effect of natural and man-made factor, salinization in soil is more and more serious, and the environment gets worse and worse, which affect sustainable development severely in this region. Acting as an effective technology for salinity detection in soil, remote sensing has been widely applied in reversing and mapping of salinity in soil. The information of salinity in soil is the key for studying saline-alkali soil scientifically, which plays an instructional role in eco-environment recovery. Studying deeply the information of salinity in saline-alkali soil in remote sensing image, has an important meaning in harnessing saline-alkali soil effectively and avoiding farther soil degeneration, exploiting the resource of saline-alkali soil reasonably and keeping the sustainable development of environment.
     In this thesis, using eight hydronium contents, the author estimates the salinity in saline-alkali soil, combining with the result of remote sensing image interpretation, analyzes the dynamic change of salinization in Songliao Plain. Through analyzing the spectral characteristic of saline-alkali soil in Aster remote sensing image, the author establishes the statistical model of the soil spectrum and the salinity in saline-alkali soil, and tries to design the salinity model of remote sensing reversion based on BP neural network, which can be applied in preventing and reducing and controlling for salinization in Songliao Plain.
     On the basis of the chemical analysis of soil sample in Songliao Plain, the optimal model of forecasting the contents of hydronium and salinity with the actual soil electric conductivity is established, besides, the grade of salinization is classified through studying the status of salinity in saline-alkali soil. In this paper, Da’qing and Sui’hua City in Heilongjiang Province, Song’yuan and Bai’cheng City in Jilin Province are chosen as the research areas, based on the analysis results of distribution characteristic of saline-alkali soil and dynamic change of salinization in Songliao Plain.
     Through abstracting the spectral reflectivity of sample point in Aster remote sensing image, the author obtains the spectral curve of the saline-alkali soil, and studies the spectral curve character of saline-alkali soil. Through analyzing the correlation coefficient, standard deviation and diagnosis index of the former nine bands in Aster remote sensing image, finds that the soil reflectivity of b1, b2, b3 in Aster remote sensing image is more sensitive to salt content in the soil, therefore, this spectrum is more conformable to reverse the salinity in saline- alkali soil in study area.
     Stepwise regression analysis is made by using the b1, b2, b3 in Aster remote sensing image as independent variable and salinity in soil as dependent variable, and the statistical model of the soil reflectivity data and the soil salt content data is established, which examines the precision of model by the actual sample data. The surface object is classified as non-saline-alkali soil, low-grade saline-alkali soil, secondary saline-alkali soil, heavy saline-alkali soil and saline soil by using decision tree sort, afterwards, the author reverses the salinity saline-alkali soil in study area through using regression equation in order to obtain the spatial distribution map of salinity in saline-alkali soil. The research indicates that the reversion result of salinity in saline-alkali soil and the visual interpretation result in Aster remote sensing image are coincident, which shows that the effect of remote sensing reversion based on statistical model is better and the result corresponds the actual situation. Thus, the research result has a certain value of reference and application.
     A Back-Propagation neural network model is established which has three layers consists of input layer, hidden layer and output layer, by using the software MATLAB7.0 to design the framework of neural network and using the superior ability for solving the non-linear problem of BP neural network. After that, the remote sensing reversion of salinity in saline-alkali soil is designed based on BP neural network, which uses the b1(520-600nm), b2(630-690nm), b3(780-860nm) in Aster remote sensing image as input, salinity as output, and the nerve cell number of hidden layer is ten, for the sake of realizing the precise reversion of salinity in saline-alkali soil. Through the accuracy evaluation of the neural network reversion model, the author finds that the reversion accuracy of salinity in soil is greatly improved in contrast to that with the statistical model.
     On the basis of the previous research, four primary conclusions are drawn as follows:
     1. The relation model of the electric conductivity and the hydronium and the salinity in saline-alkali soil which is suitable for the study area in Songliao Plain is established.
     2. The diagnosis spectrum which is more sensitive to the salinity in saline-alkali soil is obtained, through analyzing spectral characteristic in Aster remote sensing image.
     3. The spatial distribution map of the salinity in saline-alkali soil in the study area is acquired, by using multi-linear regression equation to reverse the salinity in saline-alkali soil.
     4. The RS reversion model of the salinity in saline-alkali soil based on BP neural network in the study area in Songliao Plain offers technique support in RS reversing the salinity in saline-alkali soil in other large-scale area.
     In this article, the author tries to do remote sensing reversion research of the salinity in saline-alkali soil in Songliao Plain using two mathematic models, and hopes the result can make profitable explore in estimating salinity in soil quantitatively. The research has an important role in lightening the loss of agricultural yield owing to salinization and developing agricultural yield steadily. Besides, several useful improved suggestions for salinazation in Songliao Plain are put forward. The research result of this paper can be acted as reference material of land investigation and agricultural production, which offers the related official department helpful decision-making support in reducing and controlling salinization in Songliao Plain.
引文
[1] 亢庆,于嵘,张增祥等.土壤盐碱化遥感应用研究进展[J].遥感技术与应用, 2005,20(4):447-454.
    [2] 翁永玲,宫鹏.土壤盐渍化遥感应用研究进展[J].地理科学,2006,26(3):369- 375.
    [3] Dehaan,R L,Taylor G R.Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil satinization[J].Remote Sensing of Environment 2002,80:406-418.
    [4] Metternicht G I,Zinck J A.Remote sensing of soil salinity:potentials and constraints [J].Remote Sensing of Environment,2003 (85):1-20.
    [5] 方洪宾,赵福岳,姜琦刚等.松辽平原经济区第四系基础地质遥感调查报告[M].北京:中国国土资源航空遥感中心,2007:1-2.
    [6] 王静.基于 BP 神经网络的盐碱土盐分遥感反演模型[D].长春:东北师范大学, 2005.
    [7] 李秀军.松嫩平原西部土地盐碱化与农业可持续发展[J].地理科学,2000,20 (1):51-55.
    [8] Singh A N,Kristof S J,Baumgardner M R.Delineating salt-affected Soils in the Gangetic Plain India by Digital Analysis of Landsat Data[R].Purdue University Laboratory for Applications of Remote Sensing.Technical report111477,1977.
    [9] Budd J T C.Remote Sensing of Salt Marsh Vegetation in the First Four Proposed Thematic Mapper Bands[J].International Journal of Remote Sensing,1982,3(2):147- 161.
    [10] Sommerfeldt T G,Thompson M D,Pront N A.Delineation and Mapping of Soil Salinity in Southern Alberta from Landsat Data[J].Canadian Journal of Remote Sensing,1985(10):104-118.
    [11] Singh A N,Dwivedi R S.Delineation of salt-affected soils through digital analysis of Landsat MSS data[J].International Journal of Remote Sensing,1989,10(1):83-92.
    [12] Sharma R C,Byhargava G P.Landsat Imagery for Mapping Saline Soils and Wetlan- ds in North-west India[J].International Journal of Remote Sensing,1988,9(1):39-44.
    [13] Kalra N K,Joshi D C.Potentiality of Landsat,SPOT and IRS Satellite Imageries,for Recognition of Salt Affected Soils in Indian Arid Zone[J].International Journal of Remote Sensing,1996,17(15):3001-3014.
    [14] Dvivedi R S,Sreenivas K,Ramana K V,et al.Inventory of Salt-affected Soils and Waterlogged Areas:A Remote Sensing Approach[J].International Journal of Remote Sensing,1999,20(8):1589-1599.
    [15] Dwivedi R S,Rao B R M.The Selection of the Best Possible Landsat TM Band Combination for Delineating Salt-affected Soils[J].International Journal of Remote Sensing,1992,13(11):2051-2058.
    [16] Rao B R M,Sankar T R,Dwivedi R S,et al.Spectral behaviour of salt-affected soils[J].International Journal of Remote Sensing,1995,16(12):2125-2136.
    [17] Talor G R,Mah A H,etal.Characterization of Saline Soils Using Airborne Radar Imagery[J].Remote Sensing of Enviromenment,1996,57(3):127-142.
    [18] Dwivedi R S,Sreenivas K.Image Transforms as a Tool for the Study of Soil Salinity and Alkalinity Dynamics[J].International Journal of Remote Sensing,1998,19(4): 605-619.
    [19] D.WANG,C.WILSON and M.C.SHANNON.Interpretation of salinity and irrigation effects on soybean canopy reflectance in visible and near-infrared spectrum domain[J].International Journal of Remote Sensing,2002,23(5):811-824.
    [20] Fouad AI-haier Soil Salinity Detection using satellite remote sensing[M].Master's thesis International institute forGeo-information science and earth observation, enschede,the Netherlands,2003,3.
    [21] J Farifteh,F Van der Meer,et al.Quantitative analysis of salt-affected soil reflectance spectra:A comparison of two adaptive methods(PLSR and ANN).Remote Sensing of Enviromenment,2006,7(2):1-20.
    [22] Lawrence C Rowan,et al.Distribution of hydrothermally altered rocks in the Reko Diq Pakistan mineralized area based on spectral analysis of ASTER data.2007,14 (5):74-87.
    [23] 扶卿华.土壤盐分含量的遥感反演及其在东亚飞蝗研究中的应用[D].南京:南京师范大学,2005.
    [24] 关元秀,刘高焕.区域土壤盐渍化遥感监测研究综述[J].遥感技术与应用,2001, 16(1):40-44.
    [25] 吴景坤,章兆兴,王爱军.库尔勒盐渍土的遥感图像处理[J].遥感信息,1987(1) :26.
    [26] 彭望琭,李天杰.TM 数据的 Kauth-Thomas 变换在盐渍土分析中的作用-以阳高 盆地为例[J].环境遥感,1989,4(3):183-190.
    [27] 陈述彭.国土普查卫星资料应用研究(第二集)[M].北京:科学出版社,1989:1- 50.
    [28] 彭望录.土壤盐碱化量化的遥感与 GIS 实验[J].遥感学报,1997,1(3):237- 240.
    [29] 布和敖斯尔.基于知识发现和决策规则的盐碱地遥感分类方法研究[J].中国图像图形学报,1999,4(11):965-969.
    [30] 霍东民,张景雄,孙家抦.利用 CBERS-1 卫星数据进行盐碱地专题信息提取研究[J].国土资源遥感,2001,48(2):48-52.
    [31] 关元秀,刘高焕,王劲峰.基于 GIS 的黄河三角洲盐碱地改良分区[J].地理学报 ,2001,56(2):198-205.
    [32] 骆玉霞.GIS 支持下的 TM 图像土壤盐渍化分级[J].遥感信息.2001(4):12-15.
    [33] 翁永玲,宫鹏.黄河三角洲盐渍土盐分特征研究[J].南京大学学报(自然科学), 2006,42 (6):602-610.
    [34] 扶卿华,倪绍祥,王世新等.土壤盐分含量的遥感反演研究[J].农业工程学报, 2007,23(1):48-54.
    [35] 李桢,祁承留,孙文昌.东北地区自然地理[M].北京:高等教育出版社,1993:22- 58.
    [36] 姚荣江,杨劲松,刘广明.东北地区盐碱土特征及其农业生物治理[J].土壤, 2006,38(3):256-262.
    [37] 郑冬梅.松嫩平原盐渍土水盐运移的时间节律研究[D].长春:东北师范大学, 2005.
    [38] 孙婉.松嫩平原苏打型盐渍土强度特性研究[D].北京:中国地质大学,2006.
    [39] 李昭阳.多源遥感数据支持下的松嫩平原生态环境变化研究[D].长春:吉林大 学,2006.
    [40] 王耿明,姜琦刚,李远华等.松辽平原黑土区 Aster 数据光谱特征及自动分类研究[J].世界地质,2007,26(3):313-318.
    [41] 曾晔.松嫩平原盐渍土积盐条件与盐分补给类型的空间分异研究[D].长春:东北师范大学,2006.
    [42] 马喆.吉林西部低平原盐渍化水盐运移影响因素研究[D].长春:吉林大学, 2007.
    [43] 林学钰,陈梦熊等.松嫩盆地地下水资源与可持续发展研究[M].北京:地震出 版社,2000:4-29.
    [44] 李振全,胡庆武.东北经济区经济地理总论[M].长春:东北师范大学出版社, 1988.60-70.
    [45] 郭亚东,史舟.先进星载热发射和反射辐射仪(ASTER)的特点及应用[J].遥感 技术与应用,2003,8(5):346-351.
    [46] 李海涛,田庆久.ASTER 数据产品的特性及其计划介绍[J].遥感信息,2004,53 (3):53-56.
    [47] 程彬.松辽平原黑土有机质及相关元素遥感定量反演研究[D].长春:吉林大学, 2007.
    [48] 王利花.基于遥感技术的若尔盖高原地区湿地生态系统健康评价[D].长春:吉林大学,2007.
    [49] 李开丽.东亚飞蝗生境的遥感分类研究[D].南京:南京师范大学,2005.
    [50] 吴昀昭,田庆久,金震宇等.ETM+数据绝对反射率反演方法分析[J].遥感信息, 2004,38(2):9-12.
    [51] 张友水,冯学智,周成虎.多时相TM影像相对辐射校正研究[J].测绘学报,2006,35(2):122-126.
    [52] S.J.Hook,ASTER validation plan.http://www.gds.aster.ersdac.or.jp,2006.
    [53] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:163-199.
    [54] 姚荣江,杨劲松,刘广明.东北地区盐碱土特征及其农业生物治理[J].土壤, 2006,38(3):256-262.
    [55] 刘广明,杨劲松,姚荣江.影响土壤浸提液电导率的盐分化学性质要素及其强度研究[J].土壤学报,2005,42(2):247-252.
    [56] 张瑜斌,邓爱英,庄铁诚等.潮间带土壤盐度与电导率的关系[J].生态环境, 2003,12(2):164-165.
    [57] 王遵亲,祝寿泉,尤文瑞等.中国盐渍土[M].北京:科学出版社,1993:1-103.
    [58] 沙晋明,陈鹏程,陈松林.土壤有机质光谱响应特性研究[J].水土保持研究, 2003,10(2):21-24.
    [59] 周成虎,骆剑承,杨晓梅等.遥感影像地学理解与分析[M].北京:科学出版社, 2001:1-186.
    [60] 徐冬青.遥感技术应用于土壤盐渍化动态监测[D].乌鲁木齐:新疆农业大学, 2005.
    [61] 王占昌.利用决策树对卫星遥感数据进行分类[J].青海科技,2005,5:28-33.
    [62] 李爽,张二勋.基于决策树的遥感影像分类方法研究[J].地域研究与开发,2003 ,22(1):17-21.
    [63] 飞思科技产品研发中心.神经网络理论与MATLAB 2007实现[M].北京:电子工业出版社,2007:55-126.
    [64] 苏金明,王永利.MATLAB 7.0 实用指南[M].北京:电子工业出版社,2004:24-87.
    [65] Nils J Nilsson著.郑扣根,庄越挺译.人工智能[M].北京:机械工业出版社,2000: 76-147.
    [66] 楼琇林,黄韦艮.基于人工神经网络的赤潮卫星遥感方法研究[J].遥感学报, 2003(3):125-129.
    [67] 党建武.神经网络技术及应用[M].北京:中国铁道出版社,2000:18-82.
    [68] 张亭禄,贺明霞.基于人工神经网络的一类水域叶绿素-a 浓度反演方法[J].遥 感学报,2002(1):40-45.
    [69] 朱鹤健,何宜庚.土壤地理学[M].北京:高等教育出版社,2000:28-81.
    [70] 史晓霞.基于 CA 模型的长岭县土壤盐渍化时空演变可视化模拟[D].长春:东北 师范大学,2005.
    [71] 龚子同.中国土壤系统分类:理论·方法·实践[M].北京:科学出版社,1999:12- 75.
    [72] 李彬,王志春.松嫩平原苏打盐渍土碱化特征与影响因素[J].干旱区资源与环 境,2006,20(6):183-191.
    [73] 施英妮.基于人工神经网络技术的高光谱遥感浅海水深反演研究[D].青岛:中国海洋大学,2005.
    [74] Simon Haykin.Neural Networks.A Comprehensive Foundation.Second Edition[M]. 北京:清华大学出版社,2001.
    [75] 丁静.基于神经网络的二类水体大气修正与水色要素反演[D].青岛:中国海洋大学,2004.
    [76] 楼顺天等.基于 MATLAB 的系统分析与设计[M].西安:西安电子科技大学出版社,2000:22-139.
    [77] 闻新,周露等.MATLAB 神经网络仿真与应用[M].北京:科学出版社,2003:14- 81.
    [78] 刘恒.BP 神经网络在千岛湖水体富营养化变化预测中的应用[D].杭州:浙江大学,2007.
    [79] 吕恒,李新国,曹凯.基于 BP 神经网络模型的太湖悬浮物浓度遥感定量提取研 究[J].武汉大学学报·信息科学版,2006,31(8):683-686.
    [80] 丛爽.面向 MATLAB 工具箱的神经网络理论与应用[M].合肥:中国科学技术大 学出版社,1998:43-115.
    [81] 罗扬帆.基于 BP 神经网络的遥感影像分类研究[D].北京:北京林业大学,2007.
    [82] 杨国东.应用遥感和三维图像研究查证吉林省西部地表水系变迁及其对生态环境的影响[D].长春:吉林大学,2004.
    [83] 裘善文,孙酉石.松嫩平原盐碱地与风沙地农业综合发展研究[M].北京:科学出版社,1997:20-142.
    [84] “东北平原第四纪自然环境形成与演化”基金课题组.中国东北平原第四纪自 然环境形成与演化[M].哈尔滨:哈尔滨地图出版社,1990:11-47.
    [85] 牛博.干旱区土地盐渍化动态演变的遥感分析-以新疆于田县为例[D].乌鲁木齐:新疆大学,2005.
    [86] 郭振华.基于 RS 和 GIS 的艾比湖流域土壤盐渍化研究[D].西安:长安大学, 2006.
    [87] 翁永玲,宫鹏,朱智良.基于 PLSR 方法的高光谱遥感土壤盐分估算[J].第 16 届全国遥感技术学术交流会论文集,2007:254-258.
    [88] 庞治国,吕宪国,李取生.3S 技术支持下的盐碱化土地发展现状评价与持续发展对策研究--以吉林西部为例[J].国土与自然资源研究,2000,(4):42-45.
    [89] 庞治国,李纪人,李取生.吉林西部盐碱化土地空间变化及防治措施[J].国土资源遥感,2004,60(2):56-60.
    [90] 张殿发,林年丰.吉林西部土地退化成因分析与防治对策[J].长春科技大学学 报,1999,29(4):355-359.
    [91] 王春裕,王汝镛.中国东北西部地区土壤盐溃化演变及其防治的若干对策[J]. 生态学杂志,1995,15(2):44-48.
    [92] 裘善文,张柏,王志春.中国东北平原西部荒漠化现状、成因及其治理途径研究 [J].第四纪研究,2005,23(1):63-73.
    [93] 李取生,裘善文,邓伟.松嫩平原土地次生盐碱化研究[J].地理科学,1998,18(3):268-272.
    [94] 裘善文.吉林霍、洮两河中下游地区土地盐碱化的特征、成因及治理的实用技术研究[J].土壤通报,2001,32(6):18-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700