用户名: 密码: 验证码:
栓皮栎无性繁殖及其在种群恢复中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以秦岭地区的天然栓皮栎次生林为对象,在不同地区、不同生境设置固定样地,通过连续3年的样地监测、控制实验以及室内的植物内源激素分析,研究了栓皮栎无性繁殖幼苗种类以及对种群更新的作用、分析了萌生幼苗生长发育与环境因素和时间因素的关系,探讨了栓皮栎萌生苗发生与内源激素的关系,提出了利用栓皮栎无性繁殖基本规律的策略和对策,为秦岭地区栓皮栎次生林的持续经营提供了依据。主要研究结论如下:
     (1)秦岭地区的栓皮栎幼苗可以划分成实生苗、伐桩萌苗和干基萌苗:3种幼苗对栓皮栎次生林种群更新的贡献为伐桩萌苗>实生苗>干基萌苗,伐桩萌苗是最主要的幼苗,也是栓皮栎最主要的无性繁殖方式;实生苗有完整的、进展型年龄结构,伐桩萌苗各年龄的个体数呈间歇性波动;在1~5年生阶段,伐桩萌苗的基径、高度、地上生物量和叶面积均好于实生苗;伐桩萌苗竞争激烈,萌苗枯死率较高。伐桩萌苗生长快、个体多的特性,有利于其在快速恢复林地覆盖中发挥巨大作用;。
     (2)对择伐后不同时期的栓皮栎次生林中栓皮栎幼苗的调查发现,栓皮栎种群的繁殖方式受种群所处的恢复时期影响:伐桩萌苗密度为伐后5年>伐后10年>伐后20年>未砍伐林地,伐桩萌苗是择伐后林地中栓皮栎最主要的更新幼苗,其在种群更新的主导地位随着伐后时间的延长而下降,对种群恢复的贡献在林地择伐后初期更为重大;实生苗密度随着伐后时间的延长而上升,由于生长缓慢,对种群更新的作用在择伐后初期较小;干基萌苗没有竞争优势,对种群恢复的贡献较小。
     (3)生境条件对栓皮栎种群繁殖影响较大:在阴坡和阳坡,伐桩萌苗均是最主要的幼苗,坡向显著影响幼苗生长,伐桩萌苗和实生苗的基径均为阳坡>阴坡,高度为阴坡>阳坡;在林内,实生苗和伐桩萌苗重要值接近;在林窗和林缘中,伐桩萌苗的基面积和重要值均最大,在种群更新中占主要地位,林窗的存在对实生苗以及伐桩萌芽的产生及生长有利。
     (4)连续3年对栓皮栎皆伐迹地上伐桩萌发过程的跟踪调查和研究发现,80%的栓皮栎伐桩可以在伐后3年内一直产生和保存活萌苗,但伐桩存活率、萌苗数量和萌苗高度年增加量随伐后时间延长而不断下降;休眠季(12月)砍伐有利于伐桩萌苗发育生长,砍伐季节对萌苗生长的影响在伐后第2~3年消失;伐桩直径越大,其上萌苗数量越多,生长旺盛,伐桩高度仅在伐后第1年对萌苗数量和萌苗生长产生积极影响;较大直径(>15cm)和较高伐桩(>30cm)有利于萌苗生长发育。同一伐桩萌芽数量越多,竞争越激烈,萌苗生长越差,砍伐后应该及时抹芽以保证萌苗的生长。小生境对伐桩萌苗有有较大影响,林窗充足的光照环境有利于伐桩萌苗的产生和地上生物量累积,但林窗中萌苗枯死率高于林缘和林内。
     (5)不同胸径栓皮栎母树的主干基部环剥实验和连续2个生长季跟踪观测表明,直径在10cm~20cm的栓皮栎母树在环剥后容易产生干基萌苗,萌苗数量在2个生长季较为稳定,萌苗基径和高度也优于其他径级的母树;母树的直径(年龄)越大,产生干基萌苗的时间越晚,萌苗数量越少。
     (6)不同胸径母树的断根实验以及连续2个生长季的跟踪观测表明,断根处理能够促使胸径为10cm~20cm的栓皮栎母树的根系产生不定芽,但不定芽不能萌发成苗;秦岭地区的栓皮栎根系萌苗的发生是偶然的,其对栓皮栎种群更新的贡献有限。
     (7)高效液相色谱法对栓皮栎伐桩休眠芽和萌动芽中玉米素、生长素、赤霉素和脱落酸含量的测定表明,栓皮栎休眠芽的萌发与内源激素的种类及数量的关系十分密切:伐桩休眠芽中玉米素、赤霉素和生长素含量均远远小于萌动芽中的含量;休眠芽中脱落酸含量是萌动芽的2倍。赤霉素对休眠芽破除休眠有重要的促进作用。细胞分裂素类激素对伐桩休眠芽的始萌发也起着一定的促进作用。生长素对伐桩休眠芽的始萌发影响不大,脱落酸对休眠芽的萌发可能起着平衡和抑制作用。较高的赤霉素/脱落酸比值有利于伐桩休眠芽萌发。
     (8)在未来栓皮栎次生林经营中,应充分利用栓皮栎无性繁殖规律,促进种群持续发育和林地生态功能持续发挥:对栓皮栎次生林的择伐应选择在休眠季进行,且以伐桩高度大于30cm为标准,砍伐直径>15cm的栓皮栎个体,利用萌生苗速生特性,尽快恢复林地的生态防护功能;同时在择伐后又要尽量保护实生苗并适当增加实生苗数量以维持种群遗传多样性,促进林地持续发展;在更新不良的栓皮栎次生林中可以适当间伐生长不良的栓皮栎个体,开辟林窗,增加伐桩数量,促进栓皮栎种群更新;在栓皮栎次生林改造和经营中,可对胸径在10cm~20cm的间伐对象进行环剥,待其产生干基萌苗后再进行砍伐,有利于间伐林地的快速恢复。
Natural Quercus variabilis forests in China have degraded because of over exploitingand cutting. Asexual propagation (sprouting) is an important reproduction mechanism insecondary Q. variabilis stands; however, limited information exists on the type of asexualreproduction, their positions and contributions to population recovery as well as factorsaffected sprouting in this species. The type of Q. variabilis sprouts, their positions in forestrestoration, time and space factors affected their contributions and growth were studied insecondary Q. variabilis forest, which is located in Qinling Mountains, through permanentplots survey and fixed experiments during2008~2010. Meanwhile, endogenous hormone indormant buds and sprouting buds of stump were detected to reveal the inner mechanism ofsprouting. The results were displayed below.
     (1) There were three different origins for Q. variabilis recruits in the research area,named as true seedling, stump sprout and stem base sprout, respectively, and stump sproutswere the main asexual recruits, and they contributed most to population restoration, trueseedlings were the second important recruits, and stem base sprouts just contributed a little topopulation restoration. Stump sprouts those were2~4years-old were abundant compared withother ages, while the age structure of true seedling was complete and the number of trueseedling declined with increasing age; base diameter, height, aboveground biomass and leafarea of stump sprouts were all higher than those of stem base sprouts and true seedlings; therewere drastic competition among stump sprouts, which was suggested by higher mortality rate.Stump sprouts were propitious to forestland recovering in short time because of their fastgrowth and abundant stems.
     (2) The relative importance of true seedlings and sprouts in different restoration stagesafter select logging for Q. variablilis population was evaluated in5,10and20yearspost-logging stands and unlogged stand. Sprouts especially stump sprouts were thepredominant recruitments in select-logged stands, while true seedlings were dominant inunlogged stand. The density of stump sprouts and sprouts number per stump, from high to low,were5years post-logging>10years post-logging>20years post-logging> unlogged stand, thedominant position of stump sprouts declined with increasing of post-logging age, the stumpsprouts contributed more to population recovery in the early stage after select-logging. True seedling’s contribution may be limited in the early stage after select-logging, but its densityincreased with prolong of population restoration time, meanwhile it benefits for forestlong-term development due to their ongoing age structure. Stem base sprouts, which wereshorter and smaller than other recruitments, were just observed in20years post-logging andcontrol plots and they contributed a little to population regeneration.
     (3) Slope aspect had no influence on population reproductive strategy, stump sproutswere the predominant recruits in both sunny slope and shady slope. But slope aspect didaffected the growth of recruits, the base diameter of stump sprouts and true seedlings in sunnyslope were greater than those in shady slope, and the height of these two kinds of recruitsdisplayed opposite trend. Q. variablilis took different reproductive strategies in understory,forest gap and forest edge: in understory, the positions of stump sprouts and true seedlingswere almost equal, but in forest gap and forest edge, stump sprouts occupied predominantposition implied by their largest base area and important value. Forest gap was a kind offriendly habitats which was beneficial for growth of sprouts and true seedlings compared withforest understory and forest edge. The number and growth of stem base sprouts were notinfluenced by slope aspect and micro-habitats, and there was no stem base sprout in forestgap.
     (4) Through surveying stump sprouting during3continuous years in clear-cutting Q.variabilis stand, we found that more than80%Q. variabilis stumps could keep live sproutsduring three years after cutting. All stumps sprouted in the first year after cutting, and stumpsurvival rate, sprout number, and sprout height growth declined with time after cutting.Stumps formed in December (dormant season) displayed greater sprouting ability than thosecut in growing season, but the effect of cutting season on sprouts growth disappeared in thesecond and third growing seasons after cutting. Stump diameter affected sprouting positivelythroughout the three years, while stump height influenced sprout number and sprout heightduring the first year, and the effect disappeared in the second and third years. So, larger basediameter (>15cm) and higher stump was beneficial for sprouting. It was essential toadjustment sprout number per stump in the early stage after cutting. After comparing thestump sprouts of understory, forest gap and forest edge, we found that forest gap was a kind offriendly habitat which was beneficial for stump sprouting and sprouts growth compared withforest understory and forest edge, although the mortality of stump sprouts in forest gap was alittle high.
     (5) The number and growth of stem base sprouts, which sprouted from mother trees indifferent DBH, were studied during two continuous growing seasons based on girdingexperiment. Q. variabilis mother trees in10cm~20cm DBH could form stem base sprouts easily after been girding, and the number of sprouts in these trees was stable, meanwhile, thesprout base diameter and height were both greater than those sprouts grew from other mothertrees during two years. However, sprouts mortality of these trees was lower than that of othermother trees. The relationship of sprouts number and mother tree DBH was negative, whichwas implied by sprouts number declining with increasing mother tree DBH(excpet first DBHclass), as well as the sprouting time of large mother tree was later than that of small (smallDBH) mother tree.
     (6) Based on root-broken experiment that conducted in Q. variabilis mother trees withdifferent size, the broken root could form root sucker or not, as well as sprouts survival rateand growth were monitored during two continuous growing seasons. Adventitious buds weredetected in the broken root system of mother trees in10cm~20cm DBH, but these buds cannot develop to root sprouts. For Q. variabilis in Qinling Mountains, root sprouting was justaccidental phenomenon, and contribution of root sprouts to population regeneration waslimited.
     (7) The contents of four endogenous hormones, including ABA, IAA, GA3and Zeatin, insprouting buds and dormant buds of Q. variablilis stump were determined through highperformance liquid chromatography (HPLC). The sprouting of dormant bud was influencedintensely by the kinds and contents of endogenous hormones. The contents of IAA, GA3andZeatin in dormant bud were all far less than those in sprouting bud, while the content of ABAin dormant bud was as two times as that in sprouting bud. GA3played an important role inbreaking dormancy of dormant bud, and Zeatin promoted the initial sprouting of the dormantbud. IAA had little effect on dormant bud sprouting, while ABA inhibited and played abalancing act in sprouting. Higher value of GA3/ABA was better for dormant buds breakingdormancy.
     (8) During managing and conversion Q.variabilis secondary forest in the future, it wasbeneficial for stand fast recovery and polulation sustained development if applying asexualreproduction character reasonabley: cutting Q. variabilis with a larger base diameter (>15cm)at more than30cm high aboveground during the dormant season can maximize stumpsprouting, and the fast growth of stump sprouts can recover the ecological protection fuctionas soon as possible; meanwhile, after select cutting, keep the amount of true seedlings at areasonable level through protection and/or increasing the sowing density can increasepopulation gene diversity in cutting stand and be beneficial to true seedlings play a role inpopulation restoration in a long time; making girding to target Q.variabilis trees those were10cm~20cm in DBH first and then cut them after they sprouting, this method could helpcutting stand recover fastly; in the Q.variabilis secondary forest that was lack of recruits, cutting undergrowth Q. variablilis individuals appropriately to open forest gap, this measurecould promote population regeneration.
引文
敖红,王昆,冯玉龙.2002.长白落叶松插穗的内源激素水平及其与扦插生根的关系.植物研究,4:190~195
    程淑婉,姜紫荣,杨伦.1987.杉木萌芽中内源细胞分裂素的分离鉴定.林业科学,23(1):79~84
    程淑婉,王改萍,丁国华,叶镜中.1995.杉木伐桩萌芽的氮素营养.浙江林学院学报,12(2):133~138
    丁国华,程淑婉,叶镜中.1996.杉木不同季节采伐伐桩萌芽的内源激素动态.福建林学院学报,16(2):109~113
    丁慧萍,钱克红,杨运经.2007.陕西栓皮栎种群分布格局的分形特征.西北林学院学报,22(60):7~9
    丁静,沈镇德,方亦雄,冯秀香,李琳,倪晋山.1979.植物内源激素的提取分离和生物鉴定.植物生理学通讯,2:27~39
    杜黎明,许庆琴.2000.气相色谱法分离和测定3种植物内源激素.色谱,18(1):67~69
    费世民,何亚平,王鹏,蒋俊明,陈秀明,何飞,雷彻洪,徐代伦.2004.二滩库区锥连栎林土壤种子库和幼苗格局初步研究.四川林业科技,25(2):15~20
    傅焕光,于光明.1978.栓皮栎栽培与利用.北京:中国林业出版社,:7~10
    高健,程淑婉,夏民洲,叶镜中.1994.杉木伐桩休眠芽萌发时的内源激素状况.林业科学研究,7(5):550~554
    高健,叶镜中.光照和土温对杉木伐桩休眠芽初始萌发的作用.南京林业大学学报,1994,18(3):51~54
    高贤明,王巍,杜晓军,马克平.2001.北京山区辽东栎林的径级结构、种群起源及生态学意义.植物生态学报,25(6):673~678
    葛辛.2004.高级植物分子生物学.北京:科学出版社.
    韩有志,王政权.2002.森林更新与空间异质性.应用生态学报,13(5):615~619
    韩照祥,山仑.2005.栓皮栎种群变异与适应对策研究.林业科学,41(6):16~22
    胡建斌,李建吾,孙守如.2007.薯预中内源激素的提取及高效液相色谱测定法.植物生理学通讯,43(3):529~532
    黄华宏,童再康,廖望仪,毕春晖,楼雄珍.2005.香榧雌花芽部分内源激素的HPLC分析及动态变化.浙江林学院学报,22(4):390~395
    荆涛,马万里, Kujansuu J,罗菊春,王广发,孙波.2002.水曲柳萌芽更新的研究.北京林业大学学报,24:12~15
    李景文,刘世英,王清海,王非,王文杰.2000.三江平原低山丘陵区水曲柳无性更新研究.植物研究,20(2):215~220
    李景文,聂绍荃,安滨河.2005.东北东部林区次生林主要阔叶树种的萌芽更新规律.林业科学,41(6):72~77
    李勉,姚文艺,李占斌.2004.黄土丘陵区坡向差异及其在生态环境建设中的意义.水土保持研究,11(1):37~39
    李荣,张文辉,何景峰,周建云.2011.不同间伐措施对辽东栎幼苗自然更新及生长状况的影响.西北农林科技大学学报(自然科学版),39(1):52~60
    李小双,彭明春,党承林.2007.植物自然更新研究进展.生态学杂志,26(12):2081~2088
    刘金福.2003.格式栲群落林窗边缘效应研究.应用生态学报,14(9):1421~1426
    刘新玉,张泽钧,郑晓燕,赵纳勋,梁虎成,阮英琴.2008.佛坪自然保护区6种有蹄动物的活动痕迹监测.生态学报,28(9):4582~4588
    卢志军.2002.栓皮栎种群生殖生态学研究[硕士学位论文].西北农林科技大学.杨凌:西北农林科技大学
    马闯,张文辉,薛瑶芹,马莉薇,吴敏,周建云.2011.邻体竞争和环境因子对栓皮栎伐桩萌苗表型特征的影响.西北农林科技大学学报(自然科学版),39(10):71~80
    马莉薇,张文辉,薛瑶芹,马闯,周建云.2010.秦岭北坡不同生境栓皮栎实生苗生长及其影响因素.生态学报,30(23):6512~6520
    马莉薇.2011.不同生境栓皮栎种群种子库及幼苗定居过程研究[硕士学位论文].西北农林科技大学.杨凌:西北农林科技大学
    祁建,马克明,张育新.2008.北京东灵山不同坡位辽东栎叶属性的比较.生态学报,28(1):122~128
    宋新章,张智婷,肖文发,杨建国.2008.长白山杨桦次生林采伐林隙幼苗更新动态.林业科学,44(3):13~20
    宋永昌.2001.植物生态学.上海:华东师范大学出版社
    孙黎黎,张文辉,何景峰,李倩.2010.黄土高原丘陵沟壑区不同生境条件下柠条人工种群无性繁殖与更新研究.西北林学院学报,25(1):1~6
    王彬,王辉,杨君珑,孙栋元.2007.子午岭次生油松林主要乔木树种的更新特点.浙江林学院学报,24(5):559~563
    王洪义,王正文,李凌浩,陈雅君,任丽昀.2005.不同生境中克隆植物的繁殖倾向.生态学杂志,24(6):670~676
    王艳梅,刘震,牛晓锋.2012.1年生泡桐不同部位顶芽内源激素的动态变化.林业科学,48(7):61~65
    吴敏,张文辉,周建云,马闯,马莉薇.2011.秦岭北坡不同生境栓皮栎种子雨和土壤种子库动态.应用生态学报,22(11):2807~2814
    吴明作,刘玉萃,姜志林.2001.栓皮栎种群生殖生态与稳定性机制研究.生态学报,21(2):225~230
    吴姗,骆耀平.2000.植物激素常用提取分离和鉴定方法及在茶树上的应用.福建茶叶,2:5~8
    吴燕,何祥博,刘雪华.2008.陕西佛坪自然保护区大熊猫主食竹巴山木竹林间伐后的质量状况分析.林业调查规划,33(5):63~70
    伍业钢,李哈滨.1992.景观生态学的理论发展.刘建国现代生态学博论.北京:中国科学技术出版社,30~39
    吴征镒.中国植被.北京:科学出版社,1980:261~262
    肖智勇,李根前,代光辉,李孙玲,李甜江.2011.黄土高原不同坡向中国沙棘种群生物量投资与分配.东北林业大学学报,39(5):44~46
    谢君,张义正.2001.植物内源激素的反相高效液相色谱法测定.分析测试学报,20(1):60~62
    胥晓,苏智先,严贤春.2005.坡向对四川冶勒红豆杉种群分布格局的影响—基于斑块信息的分析.应用生态学报,16(6):985~990
    薛瑶芹,张文辉,周建云,杨保林,周民建.2011.秦岭南坡不同生境条件下栓皮栎伐桩萌芽特性.林业科学,47(7):57~64
    薛瑶芹,张文辉,马莉薇,马闯,周建云.2012.不同生境下栓皮栎伐桩萌苗的生长特征及在种群更新中的作用.林业科学,48(7):23~29
    闫恩荣,王希华,施家月,王希波,王良衍.木本植物萌枝生态学研究进展.应用生态学报,2005,16(12):2459~2464
    杨秋生,籍越.1996.保鲜液对郁金香切花寿命和内源激素含量的影响(简报).植物生理学通讯,6:416~419
    叶镜中.2007.杉木萌芽更新.南京林业大学学报(自然科学版),31(2):1~4
    伊力塔,韩海荣,马钦彦,康峰峰,豪树奇.2006.灵空山辽东栎萌芽更新的灰色关联分析.山西林业科技,1:23~25
    伊力塔,韩海荣.2007.山西灵空山林区辽东栎萌芽更新规律研究.林业资源管理,4:57~61
    张长庆,张文辉.2009.黄土高原不同立地条件下刺槐人工林种群的无性繁殖与更新.西北农林科技大学学报(自然科学版),37(1):135~144
    张文辉,卢志军.2002.栓皮栎种群的生物学生态学特性和地理分布研究.西北植物学报,22(5):1093~1101
    张文辉,卢志军,李景侠,刘国彬.2003.秦岭北坡栓皮栎种群动态的研究.应用生态学报,14(9):1427~1432
    张远彬,王开运,鲜骏仁.2006.岷江冷杉林林窗小气候及其对不同龄级岷江冷杉幼苗生长的影响.植物生态学报,30(9):942~946
    赵波.2010.陕西商州核桃产业发展问题的思考.陕西农业科学,3:114~117
    郑万钧.1985.中国树木志(2卷).北京:中国林业出版社,23~30
    钟章成.1995.植物种群的繁殖对策.生态学杂志,14(1):37~42
    中国森林编辑委员会.2000.中国森林.第三卷.北京:中国林业出版社,1190~1198
    周民建,张文辉,周建云.2010.秦岭北坡不同林龄栓皮栎种子雨与种子库动态.安徽农业科学,38(26):14374~14376
    Aiken L S, West S G, Pitts S G.2003. Multiple linear regression. In Handbook of Psychology Volume2~Research Methods in Psychology, SchinkaJA, VelicerWF (eds). Wiley: Hoboken, NJ:481~507
    Ashish P, Latif K M, Kumar D A.2010. Effect of stump girth and height on resprouting ofRhododendron arboreum; following disturbance in temperate mixed broad leaved forest of ArunachalPradesh, India. Journal of Forestry Research,21:433~438
    Atwood C J, Fox T R, Loftis D L.2009. Effects of alternative silviculture on stump sprouting in thesouthern Appalachians. Forest Ecology and Management,257:1305~1313
    Beaudet M, Messier C.2008. Beech regeneration of seed and root sucker origin: A comparison ofmorphology, growth, survival, and response to defoliation. Forest Ecology and Management,255:3659~3666
    Bell T L, Pate J S, Dixon K W.1996. Relationships between fire response, morphology, root anatomyand starch distribution in Southwest Australian Epacridaceae. Annals of Botany,77:357~364
    Bell T L, Ojeda F.1999. Underground starch storage in Erica species of the Cape FloristicRegion—differences between seeders and resprouters. New Phytologist,144:143~152
    Bell D T.2001. Ecological response syndromes in the flora of southwestern Western Australia:Fireresprouters versus reseeders.Botanical Review,67:4l7~440
    Bellingham P J, Sparrow A D.2000. Resprouting as a life history strategy in woody plantcommunities. Oikos,89:409~416
    Bond W J, Midgley J J.2001. Ecology of sprouting in woody plants: the persistence niche. Trends inEcology and Evolution,16:45~51
    Bosela M J, Ewers F W.1997. The mode of origin of root buds and root sprouts in the clonal treeSassafras albidum (Lauraceae). American Journal of Botany,84(11):1466~1481
    Bowen B J, Pate J S.1993. The significance of root starch in post~fire shoot recovery of the resprouterStirlingia latifolia R. Br.(Proteaceae). Annals of Botany,72:7~16
    Chazdon R L, Pearcy R W.1991. The importance of sunflecks for forest understory plants. Bio Sci,41(11):760~766
    Cǒté M, Ferron J, Gagnon R.2003. Impact of seed and seedling predation by small rodents on earlyregeneration establishment of black spruce. Canadian Journal of Forest Research,33:2362~2371
    Cruz A, Pérez B, Quintana J R, Moreno J M.2002. Resprouting in the Mediterranean type shrub Ericaaustralis affected by soil resource availability. Journal of Vegetation of Science,13(5):641~650
    Del Tredici P.2001. Sprouting in temperate trees: A morphological and ecological review. BotanicalReview,67:121~140
    Dokrak M, Utis K, Hiroshi T, Nakashizuka T.2002. The effects of drought and fire on seed andseedling dynamics in a tropical seasonal forest in Thailand. Plant Ecology,161:41~57
    Domanki R, Kolzowskin T T.1968. Variation in kinetinlike activity in buds of Betula and Populusduring release from dormancy. Canadian Journal of Botany,46:397~403
    Ducrey M, Turrel M.1992. Influence of cutting methods and dates on stump sprouting in Holm oak(Quercus ilex L.) coppice. Annals Forest Science,49:449~464
    Evans V.1971. Flower induction and the florigen concept. Annul Review of Plant Physiol,22:365~394
    Falster D S, Westoby M.2005. Tradeoffs between height growth rate, stem persistence and maximumheight among plant species in a post~fire succession. Oikos,111:57~66
    Gardiner E S, Helmig L M.1997. Development of water oak stump sprouts under a partial overstory.New Forests,14:55~62
    Goto Y, Yoshitake T, Okano M, Shimada K.1996. Seedling regeneration and vegetative resproutingafter fires in Pinus densiflora forests. Vegetatio,122:157~165
    Guariguata M R.1998. Response of forest tree saplings to experimental mechanical damage inlowland Panama. Forest Ecology and Management,102:103~111
    Hamberg L, Malmivaara-L ms M, L fstr m I, Vartiam ki H, Valkonen S and HantulaJ.2011.Sprouting of Populus tremula L. in spruce regeneration areas following alternative treatments. EuropeanJournal of Forest Research,130:99~106
    Harrington C A.1984. Factors influencing initial sprouting of red alder. Canadian Journal of ForestResearch,14:357~361
    Hoffmann W A.1998. Post-burn reproduction of woody plants in a neotropical savanna: the relativeimportance of sexual and vegetative reproduction. Journal of Applied Ecology,35:422~433
    Imanishi A, Morimoto J, Imanishi J, Shibata S, Nakanishi A, Osawa N, Sakai S.2010. Sproutinitiation and growth for three years after cutting in an abandoned secondary forest in Kyoto, Japan.Landscape and Ecological Engineering,6:325~333
    Jobidon R.1997. Stump height effects on sprouting of mountain maple, paper birch and pin cherry-10year results. The forestry chronicle,73(5):590~595
    Johansson T.1992. Sprouting of10-to50-year-old Betula pubescens in relation to felling time. ForestEcology and Management,53:283~296
    Johansson T.2008. Sprouting ability and biomass production of downy and silver birch stumps ofdifferent diameters. Biomass and Bioenergy,32:944~951
    Johnson P S.1975. Growth and structural development of red oak sprout clumps. Forest Science,21(4):413~418
    Johnson P S.1993. Sources of oak reproduction. In: Loftis, D. and McGee, C.E.(Eds). OakRegeneration: Serious Problems, Practical Recommendations. USDA Forest Serv., Southeast. Forest Exp.Sta., Gen. Tech. Rep. SE-84.112~131pp
    Jones R H, Raynal D J.1986. Spatial distribution and development of root sprouts in Fagusgrandifolia (Fagaceae). American Journal of Botany,73(12),1723~1731
    Jones R H, Raynal D J.1988. Root sprouting in American beech (Fagus grandifolia): Effects of rootinjury, root exposure, and season. Forest Ecology and Management,25(2),79~90
    Jonsson B.1999. Stand establishment and early growth of planted Pinus sylvestris and Picea abiesrelated to microsite conditions. Scandinavian Journal of Forest Research,14(5):425~440
    Kammesheidt L.1998. The role of tree sprouts in the restoration of stand structure and speciesdiversity in tropical moist forest after slash~and~burn agriculture in Eastern Paraguay. Plant Ecology,139:155~165
    Kammesheidt L.1999. Forest recovery by root suckers and above-ground sprouts after slash-and-burnagriculture, fire and logging in Paraguay and Venezuela. Anglais. Journal of Tropical Ecology,15:143~157.
    Kaupi A, Rinne P, Ferm A.1988. Sprouting ability and significance for coppicing of dormant buds onBetula pubescens Ehrh. Stumps. Scandinavian Journal of Forest Research,3:343~354
    Keeley J E, Keeley M B, Bond W J.1998. Stem demography and postfire recruitment of a resproutingserotinous conifer. Journal of Vegetation Science,10:69~76
    Kennard D K, Gould K, Putz F E, Fredericksen T S, Morales F.2002. Effect of disturbance intensityof regeneration mechanisms in a tropical dry forest. Forest Ecology and Management,162:197~208
    Khan M L, Tripathi R S.1986. Tree regeneration in a disturbed sub-tropical wet hill forest ofnorth-east India: Effect of stump diameter and height on sprouting of four tree species. Forest Ecology andManagement,17:199~209
    Khan M L, Tripathi R S.1989. Effects of stump diameter, stump height and sprout density on thesprout growth of four tree species in burnt and unburnt forest plots. Acta Oecologica Oecol Applic,10(4):303~316
    Ky-Dembele C, Tigabu M, Bayala J, Ouédraogo S J, Odén P C.2007. The relative importance ofdifferent regeneration mechanisms in a selectively cut savanna-woodland in Burkina Faso, West Africa.Forest Ecology and Management,243:28~38
    Larsen D R, Johnson P S.1998. Linking the ecology of natural oak regeneration to silviculture. ForestEcology and Management,106:1~7
    Lasso E, Engelbrecht BM J, Dalling J W.2009. When sex is not enough: ecological correlates ofresprouting capacity in congeneric tropical forest shrubs. Oecologia,161:43~56
    Lockhart B R, Chambers J L, Wharton K L.2002. Stump sprouting2years after thinning in acherrybark oak plantation. Gen. Tech. Rep. SRS-48. Asheville, NC: U.S. Department of Agriculture, ForestService, Southern Research Station,390~394
    Lockhart B R, Chambers J L.2007. Cherrybark oak stump sprout survival and development fiveyears following plantation thinning in the lower Mississippi alluvial valley, USA. New Forests,33:183~192
    Luoga E J, Witkowski ETF, Balkwill K.2004. Regeneration by coppicing (resprouting) of Miombo(African savanna) trees in relation to land use. Forest Ecology and Management,189:23~35
    McEvoy P M, McAdam J H, Mosquera-Losada M R, Rigueiro-Rodríguez A.2006. Tree regenerationand sapling damage of pedunculate oak (Quercus robur) in a grazed forest in Galicia, NW Spain. Acomparison of continuous and rotational grazing systems. Agroforestry System,66:85~92
    Midgley J J.1996. Why the world’s vegetation is not totally dominated by resprouting plants; becauseresprouters are shorter than reseeders. Ecography,19:92~95
    Miller P M and Kauffman J B.1998. Seedling and sprout response to slash-and-burn agriculture in atropical deciduous forest. Biotropica,30(4):538~546
    Miura M and Yamamoto S-I.2003. Structure and dynamics of a Castanopsis cuspidata var. sieboldiipopulation in an old-growth, evergreen, broad~leaved forest: The importance of sprout regeneration.Ecological Research,18:115~129
    Mostacedo B, Putz F E, Fredericksen T S, Villca A, Palacios T.2008. Contributions of root andstump sprouts to natural regeneration of a logged tropical dry forest in Bolivia. Forest Ecology andManagement,258:978~985
    Paciorek C J, Condit R, Hubbell S P, Foster R B.2000. The demographics of resprouting in tree andshrub species of a moist tropical forest. Journal of Ecology,88:765~777
    Pate J S, Froend R H, Bowen B J, Hansen A, Kuo J.1990. Seedling growth and storage characteristicsof seeder and resprouter species of Mediterranean-type ecosystem of SW Australia. Annals of Botany,65:555~601
    Randall C K, Duryea M L, Vince S W and English R J.2005. Factors influencing stump sprouting bypondcypress (Taxodium distichum var. nutans (Ait.) Sweet). New Forests,29:245~260
    Rong L, Wenhui Z, Jingfeng H and Jianyun Z.2013. Survival and development of Liaodong oakstump sprouts in the Huanglong Mountains of China six years after three partial harvests. New Forests,44(1):1~12
    Rydberg D.2000. Initial sprouting, growth and mortality of European aspen and birch after selectivecoppicing in central Sweden. Forest Ecology and Management,130(1~3):27~35
    Sakai A, Sakai S, Akiyama F.1997. Do sprouting tree species on erosion-prone sites carry largereserves of resources? Annals of Botany,79:625~630
    Silla F, Fraver S, Lara A, Allnutt TR, Newton A.2002. Regeneration and stand dynamics of Fitzroyacupressoides (Cupressaceae) forests of southern Chile’s central depression. Forest Ecology andManagement,165(1-3):213~224
    Sim es C G, Marques M C M.2007. The Role of Sprouts in the Restoration of Atlantic Rainforest inSouthern Brazil. Restoration Ecology,15:53~59
    Sork V L. l984.Examination of seed dispersal and survival in red oak,Quercusr rubra (Fagaceae),using metal—tagged acoms. Ecology,65:1020~1022
    Suh M H, Lee D K.1998. Stand structure and regeneration of Quercus mongolica forests in Korea.Forest Ecology and Management,106(1):27~34
    Teketay D.1997. Seedling populations and regeneration of woody species in dry Afromontane forestsof Ethiopia. Forest Ecology and Management,98:149~165
    Vázquez-Yanes C, Orozco-Segovia A.1993. Patterns of Seed Longevity and Germination intheTropical Rainforest.Annual Review of Ecology and Systematics,24:69~87
    Ward R T.1961. Some aspects of regeneration habits of the American Beech. Ecology,42(4),828~832
    Winkler E, Fischer M.2002. The role of vegetative spread and seed dispersal for optimal life historiesof clonal plants: a simulation study. Evolutionary Ecology,15:281~301
    Wu L, Shinzato T, Chen C, Aramoto M.2008. Sprouting characteristics of a subtropical evergreenbroad-leavedforest following clear-cutting in Okinawa, Japan. New Forests,36:239~246
    Xue Y Q, Zhang W H, Zhou J Y, Ma C, Ma L W.2013. Effects of stump diameter, stump height, andcutting season on Quercus variabilis stump sprouting. Scandinavian Journal of Forest Research,28(3):223~231
    Yamada T, Suzuki E.2004. Ecological role of vegetative sprouting in the regeneration ofDryobalanops rappa, an emergent species in a bornean tropical wetland forest. Journal of TropicalEcology,20:377~384

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700