用户名: 密码: 验证码:
红外激光纳米增益材料制备及大功率激光输出特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光增益介质一般包括固体(例如Nd~(3+):YAG、Yb~(3+):YAG)、半导体(例如GaAs、InP)、液体(例如有机染料溶液、掺Nd~(3+)无机液体)、气体(例如CO_2、He-Ne)等。传统上,这些增益介质都是体材料或块材料。近年来,半导体纳米晶体材料(量子点)作为激光增益介质得到了人们的极大关注。量子点由于其特殊的量子限域效应、量子尺寸效应等,使得其展现出与普通体材料完全不同的光学、电学特性,例如其发光谱由连续谱变为分立的离散谱、发光波长与其尺寸有关、明显的斯托克斯频移,等等,使得其在光电子增益型器件(光放大器、激光器)、太阳能电池、生物医学、示踪剂等方面开拓了极为广阔的应用前景。
     本文主要围绕先进制造技术中的加工源――激光器开展工作。由于激光加工光源通常为红外激光器,因此,本文从红外激光增益介质材料制备入手,制备了PbSe量子点玻璃和量子点光纤。提出了新型的波长可调谐的光纤激光器――PbSe量子点光纤激光器(QDFL),分析了其动力学机理,进行了数值计算和模拟,得到了量子点光纤激光具有掺杂饱和浓度低、光纤饱和长度短、泵浦效率高等特点,然而,光纤温升较为明显。同时,针对目前普遍存在的大功率横流CO_2激光光束质量问题展开研究,理论分析了其横模的形成机理,建立了较为完整的激光能级粒子数速率方程,进行了数值计算和模拟,得到了电极结构和气体流速是影响激光横模和功率主要因素的结论。主要工作如下:
     1.采用ZnSe代替Se作为PbSe量子点的硒源,通过高温熔融-热处理法,成功制备了较高浓度的PbSe量子点硅酸盐玻璃。通过X射线衍射(XRD)、透射电子显微镜(TEM)、荧光光谱(PL)等方法对PbSe量子点玻璃进行表征。结果表明,制备的PbSe量子点在玻璃中的含量高,且PL峰值强度和FWHM大。同时探索不同热处理条件对量子点尺寸和荧光发射的峰值波长、半高宽和辐射强度的影响。
     2.采用高温熔融-热处理法尝试制备PbSe量子点碲酸盐玻璃。通过XRD等方法进行检测,结果表明,碲酸盐玻璃中没有PbSe量子点晶体析出。我们总结分析了实验结果,并对形成原因做了探讨。
     3.采用熔融拉丝法,将PbSe量子点硅酸盐玻璃拉制成量子点光纤。用光学显微镜、XRD和TEM等方法对其进行了观测与分析。结果表明,制备的光纤直径均匀、表面光滑、直径与普通光纤接近(125μm)。通过热处理后,光纤中含有一定量的PbSe量子点,其机械性能与普通的SiO_2光纤差不多。
     4.利用PbSe量子点作为光纤激光增益介质,基于PbSe量子点的吸收和发射谱,建立了二能级系统的粒子数速率方程、光传播方程和热传导方程,并数值求解之,探索了不同泵浦方式对QDFL输出功率的影响,分析了QDFL的温度分布特点,发现QDFL的温度远高于传统的掺镱光纤激光器,提出了改善QDFL热效应的方案。
     5.针对大功率横流CO_2激光器管板式电极结构,由麦克斯韦方程给出电场空间分布,据此求解时空分布的激光能级粒子数速率方程,得到了激光强度的横向分布。实验测量了激光横模,实验结果与数值模拟得到的激光能量分布基本一致。结果表明电极结构决定了激光横模峰值大小,而气体流动速率影响激光增益峰值和峰值沿气流方向出现的位置。
     本文的工作为探索和发现新的红外激光增益介质,探讨其激射产生的机理,从而为今后进一步实际研制新型量子点红外激光器提供依据。对大功率CO_2横模机理的分析和研究,有助于改善和控制激光横模,提高激光模式的稳定性,从而提高激光加工的质量。
Laser gain media generally include solids (such as Nd~(3+):YAG, Yd~(3+):YAG),semiconductors (such as GaAs, InP), liquids (such as organic dye solution, Nd~(3+)dopedinorganic solution), and gases (such as CO_2, He-Ne). Conventionally, these gain media arebulk materials. Recently, semiconductor nanocrystal materials, i.e., quantum dots (QDs),which are used as laser gain media, have been attracting considerable attention in the world.Due to quantum confinement effects and quantum size effects, QDs exhibit unique optical andelectrical properties, for instance, discrete emission spectra, tunable emission wavelengths,and obvious Stokes shifts. Then, QD shows widely prospective applications in optoelectronicgain devices (optical amplifiers and lasers), solar cells, biomedical fluorescence probes, andtracers.
     This dissertation is concentrated on the laser as a processing tool in the advancedmanufacturing technology. We begin with a preparation of the infrared (IR) lasing gain media,i.e., PbSe QD doped glasses and the QD fibers by using the high-temperature melting methoddue to usual energy source in laser processing is IR lasers. Following a QD doped fiber laser(QDFL) is proposed by analyzing its stimulated radiation mechanism, the lasing outputcharacteristics and temperature dependence in the fiber are simulated numerically. The resultsshow that QDFL has low saturated doping concentration, short saturated fiber length, andhigh pumping efficiency, however, temperature-rise effect can not be neglected. On the otherhand, in order to improve the beam quality of high power transverse-flow CO_2laser, we makea detailed analysis of forming laser transverse mode by establishing and numerically solvingthe lasing level-population rate equations. Obtained results show that the main factorsinfluencing the laser transverse mode and power are the electrode configuration and the gasflowing rate in the CO_2laser resonator.The study mainly includes the following aspects:
     1. Using ZnSe as the source of Se for PbSe QDs to replace Se, a silicate glass doped withhigh concentration PbSe QDs is successfully prepared by using the high-temperature meltingmethod. The X-ray diffraction (XRD), transmission electron microscopy (TEM), andfluorescence spectra (PL) show that QD concentration in the glass is higher than that ofelement Se for PbSe QDs in the same thermal treatment condition. Moreover, both the PLpeak intensity and the FWHM are also larger than that of element Se as the source of Se forPbSe QDs. Effect of thermal treatment conditions on the size of QDs, PL peak wavelength, peak intensity, and FWHM are also studied in chapter2.
     2. Some types of tellurite glasses doped with PbSe QDs are prepared in laboratory byusing the high-temperature melting method. However, the measured XRD shows that there isno crystal structure of PbSe QDs formed in such prepared glasses. The invalid causes of thismethod are analyzed in chapter3.
     3. The PbSe QD doped fiber is fabricated by using the melt-drawing method. Themeasurements of an optical microscope, XRD, and TEM show that the fiber has a fixeddiameter (about125μm, close to the ordinary fiber), smooth surface, and circular cross section.The fiber contains a certain amount of PbSe QDs after thermal treatment. Its mechanicalstrength comes near usual SiO_2fibers.
     4. A two-level model is established based on the observed single-peakphotoluminescence of PbSe QD used as the gain medium in the fiber. The optimal parameters(doping concentration, fiber length, and pumping power) of QDFL are determined bynumerically solving the rate equations, power-propagation equation, and heat conductionequation. The laser power and the temperature distribution under different pumpingconfigurations are analyzed. Comparing with the conventional Yd3+doped fiber laser, QDFLshows obvious the temperature rise effect of the fiber due to big absorption cross-section ofPbSe QD. Then, we propose an improvement in experiment to reduce the temperature riseeffect.
     5. The lasing transverse energy distribution of a high power tube-plate transverse-flowCO_2laser is simulated numerically by solving the spacetime-resolving rate equations derivedfrom the discharging field determined by the Maxwell equation. It shows that the simulatedlasing distribution agrees with the experimental observation. Moreover, there is evidence toshow that the electrode configuration in the CO_2laser resonator determines the peak value oflasing transverses modes, while the gas flowing rate determines the lasing gain peak and thepeak position along the gas flowing direction.
     The work in this dissertation can be helpful for the development of novel IR lasers bypreparing PbSe QD doped glasses, investigating the stimulated emission generated in the QDdoped glass, and the laser propagation in the QD doped fiber. Obtained results for thetransverse mode of high power CO_2laser can be advisable for controlling lasing transversemodes, improving lasing stability, and enhancing the processing quality when the laser is usedas a light source.
引文
[1] Thielsh R, Bohme T, Reiche R, et al. Quantum-size effects of PbS nanocrystallites in evaporatedcomposite films [J]. Nanostruct. Mater.,1998,10(2):131-149.
    [2] Woggon U. Optical properties of semiconductor quantum dots[M]. Berlin, New York: Springer,1997.
    [3] Wang X, Li Y D. Monodisperse nanocrystals: general synthesis, assembly, and their applications[J].Chem Comm,2007,28:2901-2910.
    [4]徐国财.纳米科技导论[M].北京:高等教育出版社,2005.
    [5] Takagahara T. Localization and energy transfer of quasi-two-dimensional excitons in GaAsAIAsquantum-well heterostructures [J]. Phys. Rev. B,1985,31(10):6552-6573.
    [6]黄纬. PbS掺杂量子点玻璃的超宽带红外发光和光放大[D].浙江:浙江大学,2008.
    [7] Kang I, Wise F W. Electronic structure and optical properties of PbS and PbSe quantum dots [J]. J. Opt.Soc. Am. B: Opt. Phys.,1997,14(7):1632-1646.
    [8]刘焕彬,陈小泉.纳米科学与技术导论[M].北京:化学工业出版社,2006.
    [9]李群.纳米材料的制备与应用技术[M].北京:化学工业出版社,2008.
    [10] Ivanov S A, Piryatinski A, Nanda J, et al. Type-Π core/shell CdS/ZnSe nanocrystals: Synthesis,electronic structures, and spectroscopic properties[J]. J. Am. Chem. Soc.,2007,129(38):11708-11719.
    [11]唐爱伟,滕枫,高银浩,等.水相中CdSe与核/壳CdSe/CdS量子点的制备与发光特性研究[J].无机材料学报,2006,21(2):322-328.
    [12] Sedova I V, Lyublinskaya O G, Sorokin S V, et al. CdSe/ZnSe quantum dot structures grown bymolecular beam epitaxy with a CdTe submonolayer stressor[J]. Semiconductors,2007,41(11):1345-1350.
    [13] Karczewski G, Mackowshi S, Kutrowski M, et al. Photoluminescence study of CdTe/ZnTeself-assembled quantum dots [J]. Appl. Phys. Lett.,1999,74(20):3011-3013.
    [14] Roventa E, Alexe G, Kroger R, et al. Structural investigations of spatial correlation of CdSe/ZnSequantum dot stacks grown by molecular beam epitaxy[J]. J. Crystal Growth,2005,278(1-4):316-319.
    [15] Xin S H, Wang P D, Yin A, et al. Formation of self-assembling CdSe quantum dots on ZnSe bymolecular beam epitaxy [J]. Appl. Phys. Lett.,1996,69(25):3884-3886.
    [16] Kim T W, Yoo K H, Kim G H, et al. Transition behavior from uncoupled to coupled multiple stackedCdSe/ZnSe self-assembled quantum-dot arrays[J]. Solid State Commun.,2005,133(3):191-195.
    [17]王海龙,秦文华,赵传华. InAs/GaAs自组装量子点结构的能带不连续量[J].光电子·激光,2007,18(1):74-77.
    [18]孔梅影,曾一平,李晋闽. MBE InGaAs/GaAs量子点及其红外吸收波长调制[J].半导体学报,2003,24(z1):78-80.
    [19]王克新.渐逝波耦合式半导体量子点放大光纤的研究[D].上海:上海大学,2007.
    [20] Curri M L, Agostiano A, Manna L, et al. Synthesis and characterization of CdS nanoclusters in aquaternary microemulsion: the role of the cosurfactant[J]. J. Phys. Chem. B,2000,104(35):8391-8397.
    [21] Petit C, Pileni M P. Synthesis of cadmium sulfide in situ in reverse micelles and in hydrocarbon gels[J]. J. Phys. Chem.,1988,92(8):2282-2286.
    [22]王克新,庞拂飞,王廷云.渐逝波耦合半导体量子点光纤放大器[J].中国激光,2007,34(3):398-401.
    [23] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites [J]. J. Am. Chem. Soc.,1993,115(19):8706-8715.
    [24] Peng Z A, Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO asprecursor [J]. J. Am. Chem. Soc.,2001,123(1):183-184.
    [25] Liu Y C, Kim M, Wang Y J, et al. Highly luminescent, stable, and water-soluble CdSe/CdS core shelldendron nanocrystals with carboxylate anchoring groups[J]. Langmuir,2006,22(14):6341-6345.
    [26] Peng X G, Schlamp M C, Kadavanich A V, et al. Epitaxial growth of highly luminescent CdSe/CdScore/shell nanocrystals with photostability and electronic accessibility[J]. J. Am. Chem. Soc.,1997,119(30):7019-7029.
    [27] Nazzal A Y, Wang X Y, Qu L H, et al. Environmental effects on photoluminescence of highlyluminescent CdSe and CdSe/ZnS core/shell nanocrystals in polymer thin films[J]. J. Phys. Chem. B,2004,108(18):5507-5515.
    [28] Yu W W, Falkner J C, Shih B S, et al. Preparation and characterization of monodisperse PbSeSemiconductor nanocrystals in a noncoordinating solvent[J]. Chem. Mater.,2004,16(17):3318-3322.
    [29] Sargent E H. Infrared quantum dots[J]. Advanced Mater.,2005,17(5):515-522.
    [30] Qu L H, Peng Z A, Peng X G. Alternative routes toward high quality CdSe nanocrystals [J]. Nano Lett.,2001,1(6):333-337.
    [31] Peng X G, Wickham J, Alivisatos A P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystalgrowth:“Ffocusing” of Ssize distributions[J]. J. Am. Chem. Soc.1998,120(21):5343-5344.
    [32] Li Q, Ding Y, Shao M W, et al. Sonochemical synthesis of nancrystalline lead chalcogenides:PbE(E=S,Se,Te)[J]. Mater. Research Bulletin,2003,38(3):539-543.
    [33]姜立萍,张剑荣,王骏,等.超声电化学制备PbSe纳米枝晶[J].无机化学学报,2002,18(11):1161-1164.
    [34] Yang Y J. A novel eletrochemical preparation of PbS nanoparticles[J]. Mater. Sci. and Engineering B,2006,131(1-3):200-202.
    [35] Takada T, Yano T, Yasumori A, et al. Preparation of PbS quantum dot materials by the sol-gelprocess[J]. J. the Ceramic Society of Japan,1993,101(1):73-75.
    [36] Xiang W D, Tang S S, Zhang X Y, et al. Glasses doped with PbS nanocrystals[J]. J. alloys andcompounds,2009,471(1-2):498-501.
    [37] Huang J B, Dai Q H, Gui L L. Study on PbS/SiO2quantum dot-glass prepared by sol-gel method[J].Acta Scientiarum Naturalium Universitatis Pekinensis,1999,35(2):183-190.
    [38]向卫东,唐珊珊,张希艳.溶胶-凝胶发制备PbS量子点玻璃的研究[J].物理学报,2008,57(7):4607-4611.
    [39] Borrelli N F, Smith D W. Quantum confinement of PbS microcrystals in glass [J]. J. Non-Crys. Solids,1994,180(1):25-31.
    [40] Dantas N O, Silva R S, Qu F. Optical properties of PbSe and PbS quantum dots embedded in oxidglass[J]. Phys. Stat. Sol.,2002,232(1):177-181.
    [41] Dantas N O, Qu F, Monte A F G, et al. Optical properties of Ⅳ-Ⅵ quantum dots embedded in glass:size-effects[J]. J. Non-Crys. Solids,2006,352(32-35):3525-3529.
    [42] R. S. Silva, P. C. Morais, A. M. Alcalde, et al. Optical properties of PbSe quantum dots embedded inoxide glasses[J]. J. Non-Crys. Solids,2006,352(32-35):3522-3524.
    [43] Jieun Chang, Chao Liu, Jong Heo. Optical properties of PbSe quantum dots doped in borosilicateglass[J]. J. Non-Crys. Solids,2009,355(37-42):1897-1899.
    [44] E. V. Kolobkova, A. A. Lipovskii, V. D. Petrikov, et al. Fluorophosphate glasses containing PbSequantum dots[J]. Glass Phys. Chem.,2002,28(4):246-250.
    [45] Kolobkova E V, Lipovskii A A, Petrikov V D, et al. Fluorophosphate glass with quantum dots based onlead sulfide[J]. Glass Phys. Chem.,2002,28(4):251-255.
    [46] V. G. Melekhin, E. V. Kolobkova, A. A. Lipovskii, et al. Fluorophosphate glasses doped with PbSequantum dots and their nonlinear optical characteristics[J]. Glass Phys. Chem.,2008,34(4):351-355.
    [47]程成,江慧绿,马德伟.熔融法制备PbSe量子点钠硼铝硅酸盐玻璃[J].光学学报,2011,31(2):0216005.
    [48] Cheng Cheng, Jiang Huilü, Ma Dewei, et al. An optical fiber glass containing PbSe quantum dots[J].Optics Communications,2011,284(19):4491-4495.
    [49]江慧绿,程成,马德伟. PbSe量子点掺杂玻璃的制备及表征[J].光电子·激光,2011,22(6):872-875.
    [50]汪小燕. CdSe、CdSe/ZnS和PbSe量子点光学特性研究及PbSe量子点光纤放大器预研[D].浙江:浙江工业大学,2006.
    [51]张庆豪.硒化镉和硒化铅量子点的光谱特性及量子点光纤灌装实验[D].浙江:浙江工业大学,2008.
    [52]程成,程潇羽.光纤放大原理及器件优化设计[M].北京:科学出版社,2011.
    [53]周炳琨,高以智,陈倜嵘,等.激光原理[M].北京:国防工业出版社,2007.
    [54] Fafard S, Hinzer K, Raymond S, et al. Red-emitting semiconductor quantum dot lasers [J]. Science,1996,274(5291):1350-1353.
    [55] Harris L, Ashmore A D, Mowbray D J, et al. Gain characteristics of InAs/GaAs self-organizedquantum-dot lasers[J]. Appl. Phys. Lett.,1999,75(22):3512-3514.
    [56] Sugawara M, Mukai K, Nakata Y. Light emission spectra of columnar-shaped self-assembledInGa/GaAs quantum-dot lasers: Effect of homogeneous broadening of the optical gain on lasingcharacteristics[J]. Appl. Phys. Lett.,1999,74(11):1561-1563.
    [57] Qian J J, Ye X L, Xu B, et al. Optical characteristics of1.08μm InAs/GaAs quantum-dot laserdiodes[J]. J. Functional Mater. and Devices,2000,6(3):243-247.
    [58] Klimov V I, Mikhailovsky A A, Xu S, et al. Optical gain and stimulated emission in nanocrystalquantum dots[J]. Science,2000,290(5490):314-317.
    [59] Klimov V I, Mikhailovsky A A, McBranch D W, et al. Quantization of multiparticle Auger rates insemiconductor quantum dots[J]. Science,2000,287(5455):1011-1013.
    [60]程成,张航.半导体纳米晶体PbSe量子点光纤放大器[J].物理学报,2006,55(8):4139-4144.
    [61] Kyhm K, Kim S M, Kim J H, et al. Optical gain in CdSe nanocrystals[J]. J. Luminescence,2007,122(2):808-811.
    [62] Gindele F, Westphaling R, Woggona U, et al. Optical gain and high quantum efficiency of matrix-free,closely packed CdSe quantum dots[J]. Appl. Phys. Lett.,1997,71(15):2181-2183.
    [63] Liu K, Schmedakec T A, Daneshvar K, et al. Interaction of CdSe/ZnS quantum dots: amongthemselves and with matrices[J]. Microelec. J.,2007,38(6-7):700-705.
    [64] Strabβurg M, Ledentsov N N, Hoffmann A, et al. Gain studies and lasing in excitonic waveguidesofII-VI submonolayer structures[J]. Phys. E,1998,2(1-4):542-546.
    [65] Kyhm K, Kim J H, Kim S M, et al. Gain dynamics and excitonic transition in CdSe colloidal quantumdots[J]. Opt. Mater.,2007,30(1):158-160.
    [66] Schunemann P G,Zawilski K T, Pollak T M. Horizontal gradient freeze growth of AgGaGeS4andAgGaGe5Se12[J]. Jounal of Crystal Growth,2006,287(2):248-251.
    [67]张国春,王国富,官向国,等.激光非线性复合功能晶体的研究和发展[J].无机材料学报,2001,16(5):769-776.
    [68]李斌,姚建铨,丁欣等.高效腔外频率变换紫外激光器[J].强激光与粒子束,2011,23(2):290-292.
    [69] Zeller P, Peuser P. Efficient, multiwatt, continuous-wave laser operation on the4F3/2→4I9/2transition ofNd:YVO4and Nd:YAG[J]. Opt Lett,2000,25(1):34-36.
    [70] Shen D Y, Abdolvand A, Cooper L J, et al. Efficient Ho:YAG laser pumped by a cladding-pumpedtunable Tm:silica-fibre laser[J]. Appl. Phys. B,2004,79(5):559-561.
    [71] Dergachev A, Darrell Armstrong, Arlee Smith, et al.3.4μm ZGP RISTRA nanosecong opticalparametric oscillator pumped by2.05μm Ho:YLF MOPA system[J]. Optics Express,2007,15(22):14404-14413.
    [72] Yang Y, Wang M Q, Qian G D, et al. The influence of oscillator configurations on performance ofsolid-state dye laser medium prepared by a new mould fabrication technology[J]. Materials Letters,2002,57(3):660-665.
    [73]张明,仁杰,洪治,等.不同谐振腔分布合成法制备的固态染料P567可调谐激光器[J].光子学报,2004,33(11):1304-1307.
    [74]廖均梅,李育德,李忠华,等.可调谐TEA CO2激光器多频输出[J].强激光与粒子束,2009,21(10):1459-1461.
    [75] Karapuzikov A I, Malov A N, Shertov I V. Tunable TEA CO2laser for long-range DIAL lidar[J].Infraed Phys. Technol.,2000,41(2):77-85.
    [76] Marray C B, Sun S, Gaschler W, et al. Colloid synthesis of nanocrystal and nanocrystal superlattices[J].IBM J Res&Dev,2001,45(1)47-56.
    [77] Kang I. Electronic structure and optical properties of lead sulphide and lead selenide nanocrystalquantum dots[D]. Michigan:Bell&Howell Information Company,1998.
    [78] Giessen H, Hoos F, Teipel J. White light lasers and their applications[J]. Themenheft Forschung:Phtonics,2005,2(11):86-91.
    [79] Patel C K N, Faust W L, McFarlane R A. CW laser action on rotational transitions of the Σ+u Σ+gvibrational band of CO2[J]. Bull. Am. Phys. Soc.,1964,9(1):500-533.
    [80] Patel C K N. Continuous-wave laser action on vibrational-rotational transitions of CO2[J]. Phys. Rev.,1964,136(5A):A1187-A1193.
    [81] Patel C K N. Interpretation of CO2optical maser experiments[J]. Phys. Rev. Lett.,1964,12(21):588-590.
    [82] Legay F, Legay-Sommaire N. Sur les possibilities de realization dún maser optique utilisant lénergiede vibration des gaz excites par lázote active[J]. C.R.Acad.Sci.,1964,259B(6):99-102.
    [83] Patel C K N. Selective excitation through vibrational energy transfer and optical maser action inN2-CO2[J]. Phys.Rev.Lett.,1964,13(21):617-619.
    [84] Patel C K N. CW high power N2-CO2laser[J]. Appl.Phys.Lett.,1965,7(1):15-17.
    [85] Patel C K N. CW laser action in N2O(N2-N2O system)[J]. Appl.Phys.Lett.,1965,6(1):12-13
    [86] Moeller G, Dane Rigden J. High-power laser action in CO2-He mixtures[J]. Appl. Phys. Lett.,1965,7(10):274-276.
    [87] Patel C K N, Tien P K, Mcfee J H. CW high-power CO2-N2-He laser[J]. Appl. Phys. Lett.,1965,7(11):290-292.
    [88] Cool T A, Shirley J A. Gain measurements in a fluid mixing CO2laser system[J]. Appl. Phys. Lett.,1969,14(2):70-72.
    [89] Hill A E. Uniform electrical excitation of large-volume high-pressure near-sonic CO2-N2-Heflowstream[J]. Appl. Phys. Lett.,1971,18(5):194-197.
    [90]徐啟阳,王新兵.高功率连续CO2激光器[M].北京:国防工业出版社,2000.
    [91] Jelvani S, Amiri H, Pazokian H, et al. Effect of argon on the performance of a fast-axial flow CO2laser[J]. Quantum Electronics,2011,41(1):17-19.
    [92] Jelvani S, Saeedi H, Koushki A M. Theoretical analysis of the dynamics of a fast axial flow (FAF)continuous wave (CW) CO2laser[J].Lasers in Engineering,2011,21(5-6):289-303.
    [93] Koushki A M, Jelvani S. Optimization of gas flow velocity for maximum output of a fast-axial-flowCW CO2laser using genetic algorithms[J]. Iranian Journal of Physics Research,2010,11(3):259-264.
    [94] Jelvani S, Pazokian H, Mollabashi M, et al. Experimental investigation of operational characteristicsof a fast-axial flow CO2laser[J]. Lasers in Engineering,2008,18(3-4):145-152.
    [95] Jelvani S, Naeimi S A, Dehghan G, et al. Effect of anode number on the operating parameters of afast-axial-flow CO2laser[J]. Optical Engineering,2006,45(10):104201.
    [96] Jelvani S, Saeedi H. Numerical investigation of a fast-axial-flow CW CO2laser[J]. Optics and LaserTechnology,2008,40(3):459-465.
    [97] Patil G C, Nilaya J P, Biswas D J. Repetitive operation of switchless transverse flow transverselyexcited atmosphere CO2lasers[J]. Review of Scientific Instruments,2011,82(9):093107.
    [98] Biswas P, Nilaya D J, Prasad J P, et al. Switch-less operation of a TEA CO2laser[J]. Optics Express,2005,13(23):9636-9638.
    [99] Nilaya J P, Raote P, Patil G, Biswas D J. Switching of a TEA CO2laser with its own UV emittingparallel spark channels[J]. Optics Express,2007,15(1):129-136.
    [100] Patil G C, Raote P, Nilaya J P, et al. On the operation of switch-less transversely excited atmosphereCO2lasers in the oscillator and amplifier configurations[J]. Pramana-Journal of Physics,2010,75(5):901-906.
    [101] Zhang L L, Qu Y C, Zhao W J, et al. A miniature tunable TEA CO2laser using isotope13C16O2and12C16O2[J]. Laser Physics,2008,18(9):1021-1024.
    [102] Wu J, Ke C J, Wang D L, et al. Mathematical modeling of tunable TEA CO2lasers[J]. Optics andLaser Technology,2007,39(5):1033-1039.
    [103] Monobe H, Shimizu Y. Anisotropic photoconduction of triphenylene-based DLC in aligned domainsby wavelength tunable CO2laser irradiation[J]. Molecular Crystals and Liquid Crystals,2011,542(SI):151-157.
    [104] Yu Y N, Wan C Y, Lv Y, et al. A3kW average power tunable TEA CO2laser[J]. Optics and LaserTechnology,2005,37(7):560-562.
    [105]程成,马行超,许周速,等.高功率横流CO2激光横模随时间变化的测量[J].中国激光,2008,35(4):549-554.
    [106] Cheng Cheng, Xu Zhousu. Experiment determination of after-operating gas compositions in atransverse-flow CW high power CO2laser[J]. Opt Laser Technol,2005,37(4):293-297.
    [107] Martin G G, Ignacio J R, Violeta D A, et al. An analytical approach to the design of electrodes inhigh-power fast-transverse-flow CO2lasers[J]. Opt Laser Technol,2005,37(8),615-622.
    [108]陈钢,许周速,程成.管板式电极结构对大功率横流CO2激光横模的影响[J].中国激光,2010,37(4):944-949
    [109]程成.气体激光动力学及器件优化设计[M].北京:机械工业出版社,2008.
    [110] Snittzer E. Optical master action of Nd3+in a barium crown glass [J]. Phys. Rev. lett.,1961,7(12):441-446.
    [111] Koester C J, Snittzer E. Amplification in a fiber laser [J]. Appl. Opt.1964,3(10):1182-1186.
    [112] Snittzer E. Neodymium glass laser[A]. Proceeding of the Third International Conference on SolidState Lasers[C]. Paris, France,1963,999-1019.
    [113] Mears R J, Reekie L, Poole S B, et al. Neodymium-doped silica single-mode fiber laser[J]. Electron.Lett.,1985,21(19):738-740.
    [114] Jauncey L M, Reekie L, Mears R J, et al. Narrow-linewidth fiber laser with integral fiber grating[J].Electron. Lett.,1986,22(19):987-989.
    [115] Po H, Cao J D and Lalibertc B M. High power neodymium-doped single transverse mode fiberlaser[J]. Electron. Lett.,1993,29(17):1500-1501.
    [116] Pask H M, Archambault J L, Hanna D C. Operation of cladding-pumped Yb3+-doped silica fiberlasers in1-um region[J]. Electron. Lett.,1994,30(11):863-865.
    [117] Dominic V, Maccormack S, Waarts R.110W fiber laser[J]. Electron. Lett.,1999,35(14):1158-1160.
    [118] Jeong Y, Sahu J K, Baek S, et al. Cladding-pumped ytterbium-doped large-core fiber laser with610Wof output power[J]. Opt. Commun,2004,234:315-319.
    [119] Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with1.36kWcontinuous-wave output power[J]. Opt. Exp,2004,12(25):6088-6092.
    [120] Khajavikhan M, Hoyerleitzel A, Leger J R. Efficient conversion of light from sparse laser arrays intosingle-lobed far fieldusing phase structures[J]. Opt. Lett,2008,33(20):2377-2379.
    [121] Madasamy P, Jander DR, Brooks C D, et al. Dual-grating spectral beam combination of high-powerfiber lasers[J]. Selected Topics in Quantum Electronics, IEEE Journal of,2009,15(2):337-343.
    [122] Xue Y, He B, Zhou J, et al. Array size scaling of passive coherent beam combination in fiber laserarray[J]. Chinese Optics Letters,2012,10(1):011401.
    [123] Seise E, Klenke A, Breitkopf S, et al.88W0.5mJ femtosecond laser pulses from two coherentlycombined fiber amplifiers[J].2011,36(19):3868-3860.
    [124] Zhang M, Kelleher E J R, Obraztsova E D, et al. Nanosecond pulse generation in lumped normallydispersive all-fiber mode-locked laser[J]. IEEE Photonics Technology Letters,2011,23(19):1379-1381.
    [125] Deng D, Zhan L, Gu Z, et al.70-femtosecond gaussian pulse generation in a dispersion-managederbium-doped fibre laser[J]. Journal of Modern Optics,2011,58(7):625-630.
    [126] Denisov V I, Nyushkov B N, Pivtsov V S. Self-mode-locked all-fibre erbium laser with a lowrepetition rate and high pulse energy[J]. Quantum Electronics,2010,40(1):25-27.
    [127] Dong J L, Xu W C, Luo Z C, et al. Tunable and switchable dual-wavelength passively mode-lockedfiber ring laser with high-energy pulses at a sub-100kHz repetition rate[J]. Optics Communications,2011,284(24):5719-5722.
    [128] Yang L M, Wan P, Protopopov V, et al.2μm femtosecond fiber laser at low repetition rate and highpulse energy[J]. Optics Express,2012,20(5):5683-5688.
    [129] Meng Y, Zhang S, Wang X, et al. Tunable double-clad ytterbium-doped fiber laser based on adouble-pass MachZehnder interferometer[J]. Optics and Lasers in Engineering,2012,50(3):303-307.
    [130] Hemming A, Jackson S D, Sabella A, et al. High power, narrow bandwidth and broadly tunable Tm3+,Ho3+-co-doped aluminosilicate glass fibre laser[J]. Electronics Letters,2010,46(24):1617-1618.
    [131] Ibarra-Escamilla B, Pottiez O, Zhou R, et al. Wavelength tunable high power laser using adouble-clad Er:Yb doped fiber[J]. Laser Physics,2011,21(11):1936-1940.
    [132] Yong W, Chang Q X, Hong P. Thermal effects in kilowatt fiber lasers[J]. IEEE Photonics TechnologyLetters,2004,16(1):63-65.
    [133] Sabaeian M, Nadgaran H, De Sario M, et al. Thermal effects on double clad octagonal Yb:glass fiberlaser[J]. Optical Materials,2009,31(9):1300-1305.
    [134] Chen H T, Yang H J, Zou X F, et al. Thermal effects of photonic-bandgap fiber laser[J]. Optik,2011,122(9):769-772.
    [135]陈吉欣,隋展,陈福深,等.高功率双包层光纤激光器受激拉曼散射和热效应的理论研究[J].中国激光,2006,18(9):1438-1442.
    [136]楼祺洪.高功率光纤激光器及其应用[M].合肥:中国科学技术大学出版社,2010.
    [137] Liu T, Yang Z M, Xu S H. Analytical investigation on transient thermal effects in pulse end-pumpedshort-length fiber laser[J]. Optics Express,2009,17(15):12875-12890.
    [138] Arkawa Y, Sakaki H. Multidimensional quantum well laser and temperature dependence of itsthreshold current[J]. Appl Phys Lett,1982,40(11):939-941.
    [139] Asada M, Miyamoto Y, Suematsu Y. Gain and the threshold of three dimensional quantum-boxlasers[J]. IEE J Quantum Electron,1986,QE-22(9):1915-1921.
    [140] Kirstaedter N, Ledentsov N N, Grundmann M, et al. Low threshold, large T0injection laser emissionfrom (InGaAs) quantum dots[J]. Electron Lett,1994,30(17):1416-1418.
    [141] Shoji H, Mukai K, Ohtsuka, et al. Lasing at three-dimensionally quantum-confined sublevel ofself-organised In0.5Ga0.5As quantum dots by current injection[J]. IEEE Photonics Technology Letters,1995,7(12):1385-1387.
    [142] Ledentsov N N, Shchukin V A, Grundmann M, et al. Direct formation of vertically coupled quantumdots in Stranski-Krastanow growth[J]. Phys, Rev. B,1996,54(12):8743-8750.
    [143]王占国,刘峰奇,梁基本,等.大功率In(Ga)As/GaAs量子点激光器[J].半导体学报,2000,31(8):827-829.
    [144] Tatebayashi J, Hatori N, Kakuma H, et al. Low threshold current operation of self-assembledInAs/GaAs quantum dot lasers by metal organic chemical vapour deposition[J]. Electronics Letters,2003,39(15):1130-1131.
    [145] Bimberg D, Kirstaetsov N, Grundmann M, et al. InAs-GaAs quantum dots: From growth to lasers [J].Physica Status Solidi (B) Basic Research,1996,194(1):159-173.
    [146] Alferow Zh I, Gardeev Y N, Zaitsev S V, et al. A low-threshold injection heterojunction laser basedon quantum dots, produced by gas-phase epitaxy from organometallic compounds [J].Semicond.,1996,30(2):197-200.
    [147] Maximov M V, Gardeev Y N, Zaitsev S V, et al. Quantum dot injection heterolaser with ultrahighthermal stability of the threshold current up to50℃[J]. Semicond.,1997,31:124-126.
    [148] Shernyakov Y M, Egorov A Y, Zhukov A E, et al. Quantum-dot cw heterojunction injection laseroperating at room temperature with an output power of1W[J]. Technical Physics Letters,1997,23(2):149-150.
    [149] Kovsh A R, Zhukov A E, Livshits D A, et al.3.5W CW operation of quantum dot laser[J]. ElectronicsLetters,1999,35(14):1161-1163.
    [150] Klimov V I, Mikhailovsky A A, Xu S, et al. Optical gain and stimulated emission in nanocrystalquantum dots [J]. Science,2000,290(5490):314-317.
    [151]程成,张航.半导体纳米晶体PbSe量子点光纤放大器[J].物理学报,2006,55(8):4139-4144.
    [152] Cheng Cheng, Zhang Hang. Characteristics of bandwidth, gain and noise of a PbSe quantumdot-doped fiber amplifier[J]. Optics Commun.,2007,277(2):372-378.
    [153]程成,吴寅飞. CdSe/ZnS量子点非饱和单模光纤激光器的数值建模[J].光学学报,2011,31(10):1014001.
    [154]程成,魏凯华. PbSe量子点光纤激光器的数值模拟[J].红外与激光工程,2010,39(5):815-818.
    [155] Cheng C, Yan H Z. Bandgap of the core-shell CdSe/ZnS nanocrystal within the temperature rang300-373K[J]. Physica E,2009,41(5):828-832.
    [156] Allan G, Delerue C. Confinement effects in PbSe quantum wells and nanocrystals[J]. Phys. Rev. B,2004,70(24):245321.
    [157] Heo J, Liu C. PbS quantum-dots in glass matrix for universal fiber-optic amplifier[J]. J. Mater. Sci.:Mater. Electron.,2007,18(S1): S135-S139.
    [158]程成,曾凤,程潇羽.较高掺杂浓度下CdSe/ZnS量子点光纤光致荧光光谱[J].光学学报,2009,29(10):2698-2704.
    [159]姜中宏.新型光功能玻璃[M].北京:化学工业出版社,2008.5
    [160]周亚训,陈芬,杨高波.掺铒碲酸盐玻璃基上转换光纤激光器的理论研究[J].中国激光,2009,36(7):1894-1899.
    [161]苏方宁,邓再德,姜中宏.上转换亚碲酸盐光纤激光器研究进展[J].功能材料,2005,36(5):655-657.
    [162] Mohanty D K, Rai V K, Dwivedi Y. Yb3+sensitized Tm3+upconversion in tellurite lead oxide glass[J].Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy,2012,89:264-267.
    [163] Desirena H, De La Rosa E, Salas P, et al. Red, green, blue and white light upconversion emission inYb3+/Tm3+/Ho3+co-doped tellurite glasses[J]. Journal of Physics D: Applied Physics,2011,44(45):455308.
    [164] Chen N K, Kuan P W, Zhang J, et al. Multicolor upconversion emissions in Tm3+/Er3+codopedtellurite photonic microwire between silica fiber tapers[J]. Optics Express,2010,188(25):25615-25626.
    [165]吴昭君,孙江亭,张家骅,等.新型掺铒碲酸盐玻璃光谱性质和热稳定性研究[J].光电子.激光,2008,19(8):1067-1071.
    [166]张鹏君,戴世勋,王艳玲,等. Er3+/Tm3+共掺碲酸盐玻璃光谱特性及能量传递[J].发光学报,2009,30(6):744-749.
    [167]江慧绿.熔融法制备PbSe量子点掺杂的硅酸盐光纤材料[D].杭州:浙江工业大学,2011.
    [168]周炳琨,高以智,陈倜嵘等.激光原理[M].北京:国防工业出版社,2000.
    [169]苏红新,阮双琛,等. F-P腔掺Yb3+双包层光纤激光器中的模式竞争[J].光子学报,2006,32(4):405-408.
    [170] O. Svelto. Principles of Lasers [M]. New York: Plenum Press,1998.
    [171] Hake R D, Phelps A V. Momentum-transfer and inelastic-collision cross sections for electrons inO2,CO, and CO2[J].Phys. Rev.,1967,158(5):70-84.
    [172] Phelps A V. Rotational and vibrational excitation of molecules by low-energy electrons[J]. Rev. ModPhys.,1968,40(2):399-410.
    [173] Boness M J W, Schulz G J. Vibrational excitation of CO2by electron impact[J].Phys. Rev. Lett.,1968,21(15),1031-1034.
    [174] Schulz G J. Measurement of excitation of N2, CO and He by electron impact[J]. Phys. Rev.,1959,116(5):1141-1147.
    [175] Penner S S. Quantitative Molecular Spectroscopy and Gas Emissivities[M]. Reading. Mass.: AddisonWesley Longman Publishing Co,1959.
    [176]李适民,黄维玲.激光器件原理与设计[M].北京:国防工业出版社,2005.
    [177]潘承志.二氧化碳激光器[M](内部读物),1975.
    [178] Gould G. Collision lasers[A]. John N. Howard. Applied Optics Supplement2: Chemical Lasers[C].Washington D.C.:A publication of the optical society of America, Inc.,1965.
    [179] Hocker L O, Kovacs M A, Rhodes C K, et al. Vibrational relaxation measurements in CO2using aninduced-fluorescence technique[J]. Phys. Rev. Lett.1966,17(5):233-235.
    [180] Kenneth Smith, Thomson R M. Computer Modeling of Gas Lasers[M]. New York and London:Plenum Press,1978.
    [181] Kuzumoto M, Tanka M, Yagi S. Practical model for gas temperature effects on CO2lasers[J]. IEEE J.Quan. Electron.,1991,27(3):471-475.
    [182] Manes K R, Seguin H J. Analysis of the CO2TEA laser[J]. J. Appl. Phys.,1972,34(12):5073-5078.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700