用户名: 密码: 验证码:
无铅钎料熔体热力学性质研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无铅锡基钎料是为适应当前环保要求而开发的具有广阔市场应用前景的绿色环保钎料。目前关于无铅钎料合金的研究开发已向多元合金化的方向发展,组元间的相互作用变得更为复杂,单纯用实验的“试凑”的方法难以进行系统化研究,而合金熔体热力学理论是研究合金熔体系统材料组成与相互作用的一门基础科学,是进行材料研究的重要基础理论。由于高温实验的复杂性和精确度的不确定性,通过实验直接测定合金热力学性质受到很大限制,所以目前对三元及多元钎料合金体系的热力学数据实验测定有限,至今仍有大量的热力学数据还未测定,而已开发的无铅钎料合金体系的热力学商用数据库价格昂贵,难以直接进行应用。因此借助合金熔体热力学理论计算来预测钎料合金的热力学性质,从而指导无铅钎料的研究开发,是十分必要和有意义的。
     论文主要运用Miedema模型,并结合Chou模型,系统的对主要无铅锡基钎料合金体系熔体热力学参数进行计算、分析及评价,并运用熔体热力学理论对无铅钎料的润湿性、熔化温度、表面张力、界面组织等基础内容进行理论分析。
     分别运用Miedema模型和MAEAM模型对主要锡基二元钎料合金体系形成焓进行计算,其中Miedema模型计算值与实测值相差幅度基本在2KJ mol-1以内,具有较好的预测效果,MAEAM模型能够根据具体合金结构进行热力学计算,但预测值明显偏小;而运用Miedema模型与Chou模型相结合的方法对三元锡基钎料合金钎料体系自由能进行计算表明,计算模型具有较高的准确率。
     以自由体积理论为基础,运用Miedema模型对二元锡基合金超额熵进行计算,但计算值与实测值存在较大偏差,预测结果无法在较高温度下的热力学计算中应用。
     以Miedema模型为基础,对主要的二元及三元无铅钎料合金体系组元的活度及活度系数、活度相互作用系数进行计算,发现活度系数的计算结果基本上能够反映溶质原子和溶剂原子间的相互作用情况,但当组元间相互作用情况过于复杂时,由于Miedema模型本身的局限性,预测值可能会出现较大偏差;而对三元无铅钎料合金体系的活度相互作用系数的计算结果进行理论分析,认为预测模型具有较好的准确性。
     通过实验研究了微量元素Pb对Sn-9Zn合金钎料的润湿性的影响,发现Pb可促使Sn-9Zn钎料合金的润湿角下降,润湿面积增大,润湿性得到改善。基于Butler方程,利用Miedema模型结合Chou模型对Sn-Zn、Sn-Pb及Sn-Zn-Pb液态钎料合金体系的表面张力进行计算,模型计算预测值与实测数据在数值大小及变化趋势上均十分相近;同时无论Pb是在全范围内,还是在富Sn端,Pb均使钎料合金表面张力得到下降,从而使Sn-Zn-Pb系三元钎料合金润湿性得到改善。
     通过实验研究了微量稀土元素La对Sn3.OAg0.5Cu钎料组织、钎料与Cu基体焊合后界面组织及显微硬度影响,发现La未改变钎料合金的物相构成,但可显著细化钎料组织,钎料/Cu处界面的Cu6Sn5化合物厚度减小,界面形貌变为平坦;同时使Sn3.OAg0.5Cu钎料显微硬度提高14.3%,达到为25HV。通过从活度系数与活度相互作用系数两个方面对Sn-Ag-Cu-La四元合金体系热力学性质进行计算,认为La与Sn、Ag及Cu间强的相互作用趋势,致使钎料组织发生显著细化,同时降低Cu6Sn5/Cu的Cu6Sn5金属间化合物长大驱动力。
     通过实验探讨了外加磁场对Sn-9Zn钎料熔化温度的影响,发现0.45T的稳恒静磁场可使Sn-9Zn钎料合金熔化温度下降近2℃,其原因为外加磁场对钎料合金熔体做负功,使原子由液相向固相迁移过程中所需克服的势垒比没有磁场作用时有所增加,致使钎料熔点得到下降。
To meet the requirement of environmental protection, lead-free solder is developed with promising market potential as environment friendly solder. At present, investigation about lead-free solder alloy is tendency of multicomponent alloy, the interaction among components of the solder becomes more complex, experimental "trial and error" approach is difficult to systematically fulfill solder study. On the other hand, alloy molten thermodynamics is fundamental science of component systems, material composition and interaction for alloy molten, which is an important basic theory for material researching and development. Because of the complexity and equipment of experiment being very difficult to guarantee good accuracy under high-temperature, high-temperature experiment is still limited in testing thermodynamics property of alloy molten at present. Therefore, thermodynamic data about ternary and multi-components solder alloy system experimentally determined are limited, and much thermodynamic data has not been determined. On the other hand, business thermodynamic database about lead-free solder alloy is very expensive and it is difficult to apply directly in study. Therefore, with the theoretical calculations, it is very necessary and meaningful to predict thermodynamic properties of molten solder alloy, and to guide the study about lead-free solder as well.
     In this paper, using Miedema model, combined with Chou model, molten thermodynamic parameters of major lead-free Tin-based solder alloy system was calculated, analyzed and evaluated. And wettability, melting temperature, surface tension, and interfacial microstructure about lead-free solder was theoretically analyzed from theory of molten thermodynamic as well.
     Formation enthalpy for major binary tin-based solder alloy system was calculated, using Miedema model and MAEAM, respectively, in which, difference between predicted value from Miedema model and measured values is less than2KJ mol"1,which indicate that Miedema model, has a good prediction. In spite of relating to specific alloy structure, thermodynamic calculated value from MAEAM model is significantly less than that of measurement. Moreover, free energy for the ternary tin-based solder alloy system was calculated, using Miedema model, combined with Chou model, the calculation model has higher accuracy.
     Based on free volume theory, excess entropy of binary Tin-based alloys were calculated, using Miedema model, and found that model has a greater deviation between the calculated values and measured values.Therefore, predicted values can not apple in the thermodynamic calculations about higher temperatures condition.
     Based on the Miedema model, activity, activity coefficient and activity interaction coefficients of component for major binary and ternary lead-free solder alloy system were calculated and found that the activity coefficient from calculations can basically reflect the interaction between solute atoms and solvent atoms. When element interaction among the components of the solder, is too complicated, due to the limitations of Miedema model itself, predictive value could be greater of the deviation, however, based on calculating and theoretical analysis about activity interaction coefficient of the ternary lead-free solder alloy system, the prediction model has good precision.
     Effect of trace elements Pb on wettability of Sn-9Zn solder was investigated through experiments, and found that Pb can decrease wetting angle of Sn-9Zn solder alloy, and increase wetting area, which improve wettability of Sn-9Zn solder. Based on Butler equation, surface tension liquid solder of Sn-Zn, Sn-Pb and Sn-Zn-Pb solder alloy systems was calculated using Miedema model with Chou model, values calculated the model is very similar to measured values not only in the magnitude aspect but also trend in aspect. Based on the calculating from whole range of Pb and Sn-rich side in the Sn-Zn solder, Pb can decline surface tension of the solder, which improve wettability of Sn-Zn-Pb solder ternary alloy system.
     Effect of trace rare earth elements La on microstructure, interfacial microstructure between the solder and Cu substrate and microhardness for Sn3.OAgO.5Cu solder was investigated through experiments, and found that La do not change component phase of the solder, however, microstructure of the solder significantly fine and thickness of Cu6Sn5compounds the solder/Cu at the interface decrease, the interface morphology becomes flat at the same time. Moreover, microhardness of Sn3.OAgO.5Cu solder increased14.3%, reaching to25HV. From the component activity coefficient and activity interaction coefficient, thermodynamic properties of Sn-Ag-Cu-La quaternary alloy system was calculated and find that strong interaction trend between La and the component of Sn, Ag and Cu respectively, can significant fine microstructure of the solder, and reduce the growth driving force of intermetallic compounds for Cu6Sn5of Cu6Sn5/Cu interface at same time.
     Effect of the external magnetic field on melting temperature for Sn-9Zn solder was investigated through experiments, and found that0.45T static steady magnetic field can drop melting temperature of Sn-9Zn solder alloy to nearly2℃.Comparing to no magnetic field to the solder, the potential barrier overcome by the atoms migration from the liquid phase to the solid phase is increase, which lead to the solder melting point drop.
引文
[1]刘晓英.Sn基复合无铅钎料的研究: (博士学位论文).大连:大连理工大学,2010.
    [2]张虹, 白书欣.无铅钎料的研究与开发.材料导报,1998,12(2):20-22.
    [3]吴敏.无铅锡基环保焊料研究: (硕士学位论文).昆明:昆明理工大学,2004.
    [4]Suganuma K.无铅电子封装发展现状.电子业专用设备,2004,119(12):8-15.
    [5]商延赓.Sn基无铅钎料组织、性能和界面反应行为的研究: (博士学位论文).长春:吉林大学,2007.
    [6]Yen Y W, Chou W T, Tseng Y, et al. Investigation of dissolution behavior of metallic substrates and intermetallic compound in molten lead-free solders. Journal of Electronic Materials,2008, 37 (1):73-83.
    [7]Lin X Q, Luo L. Void evolution in sub-100-micron Sn-Ag solder bumps during multi-reflow and aging and its effects on bonding reliability. Journal of Electronic Materials,2008,37 (3): 307-313.
    [8]孙鹏.电子封装中无铅焊点的界面演化和可靠性研究: (博士学位论文),上海:上海大学,2007.
    [9]Hirose A. Yanagawa H, Ide E, et al. Joint strength and interfacial microstructure between Sn-Ag-Cu and Sn-Zn-Bi solders and Cu substrate. Science and Technology of Advanced Materials,2004,5:267-276.
    [10]Duan L L, Yu D Q, Han S Q, et al. Microstructure evolution of Sn-9Zn-3Bi solder/Cu joint during long-term aging at 170℃. Journal of Alloys and Compounds,2004,381:202-207.
    [11]Wang M C, Yu S P, Chang T C, et al. Kinetics of intermetallic compound formation at the 91Sn-8.55Zn-0.45A1 lead-free solder alloy/Cu interface. Journal of Alloys and Compounds, 2004,381:162-167.
    [12]Suganuma K, Niihara K. Wetting and interface microstructure between Sn-Zn binary alloys and Cu. Journal of Materials Research,1998,13(10):2859-2865.
    [13]李凤辉.SnAgCu/Cu界面金属间化合物长大规律: (硕士毕业论文),北京:.北京工业大学,2007.
    [14]Mohanty U S, Lin K W. Effect of A1 on the electrochemical corrosion behaviour of lead-free Sn-8.5Zn-XAg-0.1AI-0.5Ga solder in 3.5% NaCl solution. Applied Surface Science,2006,252: 5907-5916.
    [15]李晓燕,雷永平,夏志东,等.Ag含量对Sn-Zn-Ag无铅钎料腐蚀性能的影响.电子工艺技术,2006,27(2),3.70-72,77.
    [16]Oulfajritea H, Sabbarb A, Boulghallata M, et al. Electrochemical behavior of a new solder material(Sn-In-Ag). Materials Letters,2003,57:4368-4371.
    [17]Chang TC, Wang J W, Wang M C, et al. Solderability of Sn-9Zn-0.5Ag-l In lead-free solder on Cu substrate. Part1. Thermal properties, microstructure, corrosion and oxidation resistance. Journal of Alloys and Compounds.2006,422:239-243.
    [18]樊志罡.无铅钎料的电化学腐蚀行为研究:(硕士学位论文).大连:大连理工大学,2007.
    [19]赵宁.无铅钎料的液态结构与钎焊界面反应及其相关性研究: (博士学位论文).大连:大连理工大学,2008.
    [20]陈红圣.Sn-Bi系合金熔体结构转变及其对凝固和润湿性的影响:(硕士学位论文).合肥:合肥工业大学,2008.
    [21]黄惠珍.Sn-9Zn无铅电子焊料及其合金化改性研究:(博士学位论文).南昌:南昌大学,2006.
    [22]Wu C M L, Law C M T, Yu D Q, et al. The wettability and microstructure of Sn-Zn-RE alloys. Journal of Electronic Materials,2003,32(2):63-69.
    [23]于大全,赵杰,王来.稀土元素对Sn-9Zn合金润湿性的影响.中国有色金属学报,2003,13(4):1001-1004.
    [24]Wu C M L, Law C M T, Yu D Q, et al. The properties of Sn-9Zn lead-free solder alloys doped with trace rare earth elements. Journal of Electronic Materials,2002,31:921-927.
    [25]Wei X, Huang H, Zhou L. et al. Effect of micro-alloying on wettability. oxidation and solidification morphology of Sn-9Zn alloy. Journal of Rare Earths,2005,23:220-223.
    [26]Lee Y G, Duh J G. Phase Analysis in the Solder Joint of Sn-Cu Solder/IMCs/Cu Substrate. Materials Characterization,1999,42(2):143-160.
    [27]Contini G, Castro V D, Motta N. Formation of a two-dimensional alloy/surface phase:Auger and STM study of Cu(Sn). Surface Science,1998,405(2-3):509-513.
    [28]Yen Y W, Chen S W. Phase equilibria of the Ag-Sn-Cu ternary system[J]. Journal of Materials Research,2004,19(8):2298-2305.
    [29]蔡积庆编译.添加镍的Sn-Cu系无铅焊料(1).印制电路信息,2011, (8):68-70.
    [30]蔡积庆编译.添加镍的Sn-Cu系无铅焊料(2).印制电路信息,2011, (9):68-70.
    [31]Duan N, Scheer J, Bielen J. The influence of Sn-Cu-Ni(Au)and Sn-Au intermetallic compounds on the solder joint reliability of flip chips on low temperature co-fired ceramic substrates. Microelectronics Reliability,2003,43(8):1317-1327.
    [32]Lin C H, Chen S W, Wang C H. Phase equilibria and solidification properties of Sn-Cu-Ni alloys. Journal of Electronic Materials,2002,31(9):907-915.
    [33]石素琴,董占贵,钱乙余.软钎焊钎料的最新发展动态.电子工艺技术,2000,21(11):231-234.
    [34]张宏,汤文明,吴玉程.机械合金化合成Sn-Cu二元合金粉体.材料热处理学报,2010,31(11):27-33.
    [35]Mackay C A, Von Voss W D. Effect of compositional changes and impurities on wetting properties of eutectic Sn-Bi alloy used as solder. Materials Science and Technology,1985,1(3):240-284.
    [36]张富文,徐骏,胡强,等Sn-3.0Bi-0.5Cu低温无铅钎料的微观组织及其力学性能.中国有色金属学报,2009,19(10):1782-1788.
    [37]徐骏,胡强,林刚,等.Sn-Bi系列低温无铅焊料及其发展趋势.电子工艺技术,2009,30(1):2-6.
    [38]樊艳丽.Ni和B含量对Sn2.5AgO.7CuO.1RE无铅钎料钎焊接头蠕变特性的影响:(硕士学位论文).洛阳: 河南科技大学,2006.
    [39]曾秋莲,王中光,冼爱平,等.无铅钎料Sn-3.8Ag-0.7Cu的低周疲劳行为.材料研究学报,2004,18(1):11-17.
    [40]丁学勇,范鹏,罗利华,等.合金熔体热力学模型、预测值及其软件开发.沈阳:东北大 学出版社,1998.
    [41]Hildebrand J H. Carter J M. The influence on the ideal solution laws of the distribution of polarity within the molecule. Proceedings of the National Academy of Sciences,1930,16(4): 285-288.
    [42]Wanger C. Thermodynamics of Alloys. Addison-Wesley, Reading, Massachusetts.1952: 51-53.
    [43]Darken L S. Thermodynamics of binary metallic solutions. Transactions of the Metallurgical Society of AIME,1967,239:80-89.
    [44]李文超,魏寿昆,张玉清,等.冶金物理化学发展趋势及优先研究方向.中国科学基金,1992,4:11-17.
    [45]Shimoji M, Niwa k. Statistical thermodynamics model of liquid metallic solutions. Acta Metallurgiica,1957,5:496-501.
    [46]Lupis C H. On the use of polynomials for the thermodynamics of dilute metallic solutions. Acta Metallurgica,1968,16:1365-1375.
    [47]Wilson G M. A new expression for the excess free energy of mixing. Journal of the American Chemical Society,1964,64(2):127-130.
    [48]Hardy H K A. Sub-regular solution model and its application to some binary systems. Acta Metallurgia,1953,1:202-209.
    [49]Guggenheim E A. Mixture, Oxford University Press, Oxford,1952.
    [50]周国治.新一代的溶液几何模型及其今后的展望.金属学报,1997,33(2):126-131.
    [51]Kohler F. Zur Berechnung der thermodynamischen Daten eines ternaren Systems aus den zugehorigen binaren Systemen. Monatshefte furChemie/Chemical Monthly,1960,91(4): 738-740.
    [52]Toop G W. Predicting ternary activities using binary data. Transactions of the Metallurgical Society of AIME,1965,223:850-855.
    [53]周鸿翼.镁合金的热力学性质计算研究: (硕士学位论文).重庆:重庆大学,2006.
    [54]高峰.部分无铅焊料体系的热力学与动力学研究: (博士学位论文).厦门:厦门大学,2009.
    [55]王磊.无铅焊锡开发研究的动向.材料与冶金学报,2002,01: 9-14,44.
    [56]顾小颜.无铅钎料润湿性试验研究: (硕士学位论文),北京:北京航空航天大学,2006.
    [57]陈志刚,夏志东,史耀武.热力学计算在无铅钎料合金设计中的应用.电子工艺技术,2002,.2:77-82
    [58]Ohnurna I, Liu X J, Ohtani H, et al. Thermodynamic database for phase diagrams in micro-soldering alloys. Materials and Geoenvironment,1999,28:1163-1170.
    [59]Moon K W, Boettinger W J, Kattner U R. Experiment and thermodynamic assessment of Sn-Ag-Cu solder alloys. Journal of Electronic Materials,2000,29(10):1122-1136.
    [60]Yoon S W, Soh J R, Lee H M. Thermodynamics-aid alloy design and evolution of Pb-Free solder, Sn-Bi-In-Zn system. Acta Materialia,1997,45(3):951-960.
    [61]柳春雷.部分无铅焊料体系的相平衡及界面反应研究: (硕士学位论文).长沙:中南大学,2002.
    [62]Liu H S, Liu C L, Wang C, et al. Thermodynamic modeling of the Au-In-Sb ternary system. Journal of Electronic Materials,2003,32(2):81-88.
    [63]Xie Y, Qiao Z. Thermodynamic reoptimization of the Ag-Sn system. Journal of Phase Equilibria,1996,17(3):208-250.
    [64]Korhonon T M, Kivilahti J K. Thermodynamics of the Sn-In-Ag Solder system. Journal of Electronic Materials.1998,27(3):149-158.
    [65]Zhao G W, LiXZ, XuDM, et al. Thermo-Calc based multi-component micro-segregation model and solidification paths calculations. China Foundry,1985 (9):269-274.
    [66]Borgenstam A, Engstrom A, Hoglund L,et al. DICTRA, a tool for simulation of diffusional transformations in alloys. Journal of Phase Equilibria,2000,21(3):269.
    [67]Yoon S W, Son J R, Lee H M, et al. Thermodynamics-aided alloy design and evaluation of Pb-free solder, Sn-Bi-In-Zn system. Acta Materialia,1997,45(3):951-960.
    [68]王国勇.电子无铅软钎料性能的研究: (硕士学位论文).成都:四川大学,2002.
    [69]张邦维,胡望宇,舒小林著.嵌入原子方法理论及其在材料科学中的应用—原子尺度材料设计理论.长沙:湖南大学出版社,2003.
    [70]郑志刚.合金热力学性质的Miedema理论计算: (硕士学位论文).南宁:广西大学
    [71]Kaufman L. Estimation of enthalpies of mixing of transition elements by Miedema Model. CALPHAD,1977,1:300.
    [72]Akira T, Akihisa I. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions,2005,46(12):2817-2829.
    [73]范鹏,周国治.由组元的物性参数预测金属熔体的热力学性质.金属学报,1999,35(4):421-426.
    [74]王达健,戴永年.由Miedema生成热关联多元体系组元的活度系数.昆明理工大学学报,1996,21:75-79.
    [75]Zhang B W, OuyangY F, Liao S Z, et al. EAM approach to enthalpy of formation of alkali metal alloys. Transactions of Nonferrous Metals Society of China,1996,6(4):52-56.
    [76]Zhang B W, OuyangY F, Liao S Z, et al. Enthalpies of formation of binary transition hcp metal based alloys calculated by analytic embedded atom method model. Materials Science and Technology,1999,15(4):331-335.
    [77]侯育花.A1基金属间化合物的热力学性质及点缺陷的EAM研究: (硕士学位论文).南宁:广西大学,2008.
    [78]舒小林.金属间化合物物理性能、点缺陷及扩散的改进分析型EAM模型研究: (博士学位论文).长沙:湖南大学,2001.
    [79]吴玉蓉.稀土镁合金的热力学及固溶特性的理论模拟: (博士学位论文).长沙:湖南大学,2007.
    [80]Chou K C, Wei S K. New generation solution model for prediction thermodynamic properties of a multicomponent system from binaries. Metallurgical and Materials Transactions B,1997, 28:439-445.
    [81]王海川.铁合金熔体热力学性质研究: (博士学位论文).北京:北京科技大学,2000.
    [82]Tanaka T, Gokcen N A, Neuschutz D, et al. Estimation of Partial excess Gibbs energy of solutions in infinitely dilute liquid iron base binary alloys. Steel Research,1991,62(9):385-389.
    [83]Tanaka T, Gokcen N A, MoritaZ, et al. Thermodynamic relationship between enthalpy of mixing and excess entropy in liquid binary alloys. ZMetallkd,1993,84:192-200.
    [84]陈星秋,李海兰,丁学勇,等.固态二元合金超额热力学函数的计算方法.东北大学学报,2001,22(3):299-302.
    [85]陈星秋,丁学勇,刘新,等.二元合金熔体组元活度计算式的改进.金属学报,2000,36(5):492-496.
    [86][日]长崎诚三,平林真(刘安生译).二元合金状态图集.北京:冶金工业出版社,2004.
    [87]欧阳义芳.二元合金热力学性质的嵌入原子方法及MIEDEMA理论研究: (博士学位论文).长沙:中南工业大学,1996.
    [88]张建民,吴喜军,黄育红,等.FCC金属层错能的EAM法计算.物理学报,2006,55(1):393-397.
    [89]刘洋.电脉冲对Pb-Sn合金熔体作用研究: (硕士学位论文).锦州:辽宁工学院,2007.
    [90]蒋光锐,刘涯,李言祥,等.多元合金熔体组元活度系数计算方法的改进.金属学报,2007,43(5):503-508.
    [91]Chou K C. A general solution model for prediction ternary thermodynamic properties. CALPHAD,1995,19,315-325.
    [92]梁英数,车荫昌.无机物热力学数据手册.沈阳: 东北大学出版社,1994.
    [93]Marjanovic S, Manasuevic D, Zivkovic D, etal. Calculation of thermodynamic properties for ternary Ag-Cu-Sn system, Materials and Geoenvironment,2009,56 (1):30-37.
    [94]甄强,李文超.新一代几何模型(周模型)与对称和非对称模型的应用比较.金属学报,1999,35(7):748-750.
    [95]Karlhuber S, Mikula A, Sommer F.金-锡-锌三项合金体系热力学研究.国外锡工业,1997,25(3):28-37.
    [96]陈凤鴒.无铅焊料合金之热力学性质研究:(硕士学位论文).台湾:国立清华大学,2006.
    [97]Gandova V, Romanowska J, vassilev G. Comparison between Sn-Ni-Zn liquid phase thermodynamic assessments performed by the CALPHAD method and by geometrical models. Materials and Geoenvironment,2010,57 (4):441-452.
    [98]Marjanovic S, Manasuevic D, Zivkovic D, et al. Calculation of thermodynamic properties for ternary Ag-Cu-Sn system. Materials and Geoenvironment,2009,56 (1):30-37.
    [99]Kopyto M, Garzel G, Zabdy L A. Thermodynamic properties of the liquid Bi-Cu-Sn lead-free solder alloys. Journal of Mining and Metallurgy,2009,45(1):95-100.
    [100]Dmitri V, Malakhow, Liu X J, et al. Thermodynamic Calculation of Phase Equilibria of the Bi-Sn-Zn System. Journal of Phase Equilibria,2000,21 (6):514-520.
    [101]吴敏.微量铅在无铅工艺中行为研究.辽宁省教育厅科研项目申报书,2006.
    [102]Moon K W, William J, Boettinger, et al. The effect of Pb contamination on the solidification behavior of Sn-Bi Solders. Journal of Electronic Materials,2001,30(1):45-52.
    [103]Atso Forsten, Hector Steen, Ian Wilding, et al. Development and validation of lead-free wave soldering process. Soldering & Surface Mount Technology,2000,12(3):29-34.
    [104]Zhu Q N, Sheng M, Luo L. The effect of Pb contamination on the microstructure and mechanical properties of SnAg/Cu and SnSb/Cu solder joints in SMT. Soldering & Surface Mount Technology,2000,12(3):19-23.
    [105]陈鸿志.添加微量铅在无铅合金焊料与铜基材之界面反应影响与机械性质研究:(博士学位论文).台北,国立台湾科技大学,2006.
    [106]Zhang L, Xue S B, Gao L L, et al. Development of Sn-Zn lead-free solders bearing alloying elements. Journal of Materials Science-Materials in Electronics,2010,21:1-15.
    [107]Zhao H, Wang H Q, Sekulic D P, et al. Spreading kinetics of liquid solders over an intermetallic solid surface. Part2:Lead-free solders. Journal of Electronic Materials,2009,38 (9): 1846-1854.
    [108]Tsai Y L, Hwang W S. Pasty ranges and latent heat release modes for Sn-9Zn-xAg lead-free solder alloys. Materials Transactions,2004,45 (6):1949-1957.
    [109]Hidaka N, Watanabe H, Yoshiba M. Creep behavior of lead-free Sn-Ag-Cu+Ni-Ge solder alloys. Journal of Electronic Materials,2009,38 (5):670-677.
    [110]Ma H T, Suhling J C. A review of mechanical properties of lead-free solders for electronic packaging. Journal of Materials Science,2009,44:1141-1158.
    [111]邹僖.钎焊.北京:机械工业出版社,1997.
    [112]Butler J A V. The thermodynamics of the surfaces of solutions.378-375.
    [113]严丽君.熔体表面张力的模拟计算及其应用: (博士学位论文).北京:北京科技大学,2000.
    [114]谢允安.Ag-In-Sn-Zn四元无铅钎料合金热力学与表面张力:(博士学位论文).北京:北京科技大学,1999.
    [115]郝士明,蒋敏,李洪晓.材料热力学.北京:化学工业出版社,2010.
    [116]袁章福,柯家骏,李晶.金属及合金的表面张力.北京:科学出版社,2006.
    [117]Anderson I E. Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free electronic solder applications, Journal of Materials Science - Materials in Electronics,2007,18:55-76.
    [118]Hidaka N, Watanabe H, Yoshiba M. Creep behavior of lead-free Sn-Ag-Cu+Ni-Ge solder alloys. Journal of Electronic Materials,2009,38 (5):670-677.
    [119]陈国海.新型无铅焊料合金Sn-Ag-Cu-In的研究.电子元件与器材,2003,22(4):36-38.
    [120]杜挺.稀土元素在金属材料中的一些物理化学作用.金属学报,1997,33(1):69-77.
    [121]Du T. Thermodynamic behaviour of Fe-S-RE, Fe-Csat. -S-RE, Ni-S-RE, Cu-S-RE solutions. Journal of Materials Science and Technology,1993,9:68-70.
    [122]黄义红.稀土对合金性能及显微结构的影响.稀有金属与硬质合金,1999,137(6):15-18.
    [123]薛松柏.稀土元素铈在银基钎料中的作用及热力学行为研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2002.
    [124]朱颖,康慧,曲平,等.Sn-Pb-RE钎料的塑性变形抗力研究.中国稀土学报,1999,17(2):145-148.
    [125]马鑫.稀土对近共晶Sn60-Pb40软钎料合金凝固组织及高温力学性能的影响.中国稀土学报,2000,18(2):135-137.
    [126]Hao H, Tian J, Shi Y W, et al. Properties of Sn3.8Ag0.7Cu solder alloy with trace rare earth element Y additions. Journal of Electronic Materials,2007,36 (7):766-774.
    [127]Dong W X, Shi Y W,Xia Z D, et al. Effects of Trace Amounts of Rare Earth Additions on Microstructure and Properties of Sn-Bi-Based Solder Alloy. Journal of Electronic Materials, 2008,37 (7):982-991.
    [128]Law C M T, Wu C M L, Yu D Q, et al. Microstructure, solderability, and growth of intermetallic compounds of Sn-Ag-Cu-RE lead-free solder alloys. Journal of Electronic Materials,2009,38 (11):2353-2361.
    [129]Liu M, Xian A P. Tin whisker growth on the surface of Sn-0.7Cu lead-free solder with a Rare Earth (Nd) addition. Journal of Electronic Materials,2009,8,26.
    [130]Islam R A, Wu B Y, Alam M O. et al. Investigations on microhardness of Sn-Zn based lead-free solder alloys as replacement of Sn - Pb solder.Journal of Alloys and Compounds, 2005:392:149-158.
    [131]薛松柏,陈燕,吕晓春.Sn-Ag-Cu-Ce无铅钎料合金体系的热力学计算及预测.焊接学报,2005,26(5):20-22.
    [132]薛松柏,陈燕,吕晓春.Sn-Ce-Me 无铅钎料合金活度相互作用系数的计算及应用.焊接学报,2005,26(4):45-47,80.
    [133]薛松柏,马鑫,钱乙余,等.镧与Sn-Pb合金体系中组元的相互作用关系.中国稀土学报,2000,18(4):334-336.
    [134]Kim S J, Kim K S, Suganuma K, et al. Interfacial reactions of Si die attachment with Zn-Sn and Au-20Sn high temperature lead-free solders on Cu substrates. Journal of Electronic Materials, 2009,38 (6):873-883.
    [135]Xu R L, Liu Y C, Han Y J, et al. The formation and evolution of intermetallic compounds formed between Sn-Ag-Zn-In lead-free solder and Ni/Cu substrate. Journal of Materials Science-Materials in Electronics,2009,20:675-679.
    [136]李晓延,严永长,史耀武.金属间化合物对SnAgCu/Cu界面破坏行为的影响.机械强度,2005,27(5):666-671.
    [137]莊东汉,吴醒非,黄贵伟,等.钎焊接点界面反应生成金属间形态及其动力学.界面科学杂志,2004,26:71-78.
    [138]夏阳华.无铅电子封装中的界面反应及焊点可靠性: (博士学位论文),上海:中国科学院研究生院微系统与信息技术研究所,2006.
    [139]杨志.新型Sn-Ag-Bi-Cu-In钎料合金研究:(硕士学位论文),昆明:昆明理工大学,2006.
    [140]段莉蕾.无铅钎料接头界面化合物层生长及元素扩散行为: (硕士学位论文),大连:大连理工大学,2004.
    [141]孙鹏.电子封装中无铅焊点的界面演化和可靠性研究: (博士学位论文),上海:上海大学,2009.
    [142]马鑫,钱乙余,Yoshida F.镧对Cu6Sn5长大驱动力及焊点可靠性的影响.中国稀土学报,2001,19(4):354-356.
    [143]班春燕.电磁场作用下铝合金凝固理论基础研究: (博士学位论文),沈阳:东北大学,2002.
    [144]刘政军,吴晓峰,程明华,等. 电磁作用对镁合金焊缝金属组织性能的影响.沈阳工业大学学报,2008,30(6): 643-646.
    [145]Eckert S, Nikrityuk P A, Rabiger D, et al. Efficient melt stirring using pulse sequences of a rotating magnetic field:Part Ⅰ. Flow field in a liquid metal column. Metallurgical and Materials Transactions B,2007,28B:977-988.
    [146]胡炎祥.基于电磁搅拌的无铅互连新方法的初步研究: (硕士学位论文),武汉:华中科技大学,2006.
    [147]陈光进.化工热力学.北京:石油工业出版社,2006.
    [148]王晖.强磁场对合金中析出相凝固行为的影响:(博士学位论文),上海:上海大学,2002.
    [149]郝士明.材料热力学.北京:化学工业出版社,2003.
    [150]李先芬.共晶系和匀晶系二元合金熔体结构转变及其对凝固的影响: (博士学位论文)合肥:合肥工业大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700