用户名: 密码: 验证码:
镁合金挤压铸造过程数值模拟技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前航空、航天、汽车等领域均对零部件的轻量化提出了较高的要求,镁合金作为一种良好的轻型结构材料备受关注;同时,挤压铸造过程中液体金属在压力作用下凝固,可获得组织细密、质量好、性能高、表面光洁、机加工量少的优质零件,因此,镁合金挤压铸造具有重要的发展前景。另外,成型过程数值模拟技术在优化工艺设计,缩短产品试制周期,降低生产成本,控制质量性能等方面日益成为实验技术的重要支持和补充,所以,对镁合金挤压铸造成形过程进行数值模拟具有重要意义。本论文主要研究内容如下:
     (1)阐述充型过程数学模型及其有限差分离散方法,并开发基于FDM (Finite Differential Method)的镁合金挤压铸造充型过程的数值模拟程序,分析冲头运动速度对铸件质量的影响。
     (2)以等效比热法为基础,并根据ADI (Alternating Direction Implicit)方法的基本思想,提出一种新的高阶紧致三维导热偏微分方程计算模型,其计算精度更高且运算速度更快。
     (3)首次使用模糊数学中的海明距离对温度场数值模拟结果和实验结果的相似程度进行定量分析,较图表比较而言,是一种更加科学的考察模拟计算正确性的方法。
     (4)提出一种新FDM (Finite Differential Method)/FEM (Finite ElementMethod)挤压铸造温度场计算模型并通过镁合金挤压铸造实验验证了新计算模型的正确性,解决了模拟分析中,计算过程单向,不考虑挤压压力作用下热物性参数发生变化,以及复杂铸件FEM网格剖分困难的问题。
     (5)提出一种新FDM/FEM挤压铸造收缩缺陷计算模型并通过铝合金挤压铸造实验验证了新计算模型的正确性,解决了国内没有专门挤压铸造收缩缺陷计算模型的问题。由于新计算模型具有通用性设计,也适用于镁合金挤压铸造收缩缺陷的预测。
     (6) VTK (Visualization Toolkit)是一个面向对象的可视化类库,具有强大的可视化功能和图形、图像处理能力。介绍了VTK技术的层次结构和显示机制,并将其应用于铸造模拟软件的开发过程中,与国内同类使用OpenGL作为开发工具的软件相比,VTK具有更加优秀的显示效果。
Higher demand for light weight of components has been proposed in aviation, aerospace, automobile and other areas. Magnesium alloy has attracted much attention as a light metal structure material. We can get high quality parts which have exquisite microstructure, good physics performance and smooth surface because the liquid metal is solidificated under pressure. The squeeze casting of magnesium alloy has the broad development prospect. With the rapid development of the computer techniques, numerical simulation technique is increasingly becoming an important support and complement to experiment techniques in optimizing the technological design, shortening the trial-production periods of the product, reducing the cost, and insuring the product quality and properties. Therefore, it is significant to simulate the filling and solidification processes of squeeze casting. The main contents are as follows.
     (1) The mathematical model and finite difference method are discussed. Based on the FDM method, we develop the numerical calculation program. This program is used to calculate the filling processes of squeeze casting. The influence of different speeds of plunger on quality is analyzed.
     (2) In this paper, Alternating Direction Implicit method and equivalent specific heat method are applied to establish a new high order mathematical model of3D temperature field, which could largely improve arithmetic speed and numerical precision.
     (3) The fuzzy mathematical theory is introduced, and the degree of similarity between the simulation results and experimental results is analyzed quantitatively by the Hamming Distance for the first time. This method is more scientific than the figure analysis.
     (4) A new FDM/FEM model has been developed to simulate the temperature field during the solidification process of squeeze casting. Squeeze casting experiments of magnesium alloy are incited for validating the new FDM/FEM model. It is shown that the results of numerical simulation are in agreement with the experimental results. Through this model, the influence of pressure on thermal physical parameters is considered, and the problem of getting the finite element meshes is resolved.
     (5) In this paper, a new FDM/FEM model has been developed to simulate the shrinkage defect. Squeeze casting experiments of aluminum alloy are incited for validating the new FDM/FEM model. It is shown that the results of numerical simulation are in good agreement with the experimental results. This FDM/FEM model is also suitable to the shrinkage defect prediction of magnesium alloy.
     (6) VTK is an object-oriented visualized class library. It has extensive capability in visualization and graphic processing. In this paper, the hierarchy and display way about VTK is introduced, and VTK is used in casting simulation software. Compared to other similar softwares that display results using OpenGL, the casting simulation software using VTK can display results of simulation more realistic.
引文
[1]党春梅,谢卫东.铝、镁合金材料在汽车工业中的应用[J].热加工工艺,2011,40(4):1-4.
    [2]赵琛,陈云霞,李中兵.轻量化材料镁合金在汽车上的应用[J].材料应用,2011,(7):54-57.
    [3]屈伟平,高崧.镁合金的特点及应用现状[J].金属世界,2011,(2):10-14.
    [4]陈力禾,赵慧杰,刘正等.镁合金压铸及其在汽车工业中的应用[J].铸造,1999,(10):45-50.
    [5]吉泽升,李德锋,孙荣滨等.镁合金压铸技术的发展现状[J].轻合金加工技术,2001,(12):1-4.
    [6]庞松,吴国华,孙明等.镁合金熔炼保护气体研究现状与展望[J].铸造,2011,60(3):68-79.
    [7]李元元,张卫文,刘英等.镁合金的发展动态和前景展望[J].特种铸造及有色合金,2004,(1):14-17.
    [8]潘复生,王敬丰,章宗和等.中国镁工业发展的机遇、挑战和责任[J].中国金属通报,2008,(2):6-14.
    [9]秦鹏程,张希俊Procast在压力铸造数值模拟的应用现状[J].热加工工艺,2010,39(23):75-77.
    [10]张占领,徐春华,阎峰云.镁合金轮毂反挤压铸造成形工艺研究[J].特种铸造及有色合金,2011,31(2):145-148.
    [11]罗继相,潘欣,潘利波.间接立式挤压铸造液流充型特性研究[J].铸造,2003,52(1):26-31.
    [12]马欣宇,范云波,陈敏等.前缸盖的间接挤压铸造技术研究[J].兵器材料科学与工程,2010,33(3):70-74.
    [13]侯华,毛红奎,张国伟.铸造过程的计算机模拟[M].北京,国防工业出版社,2008:20-37.
    [14]张毅.铸件凝固数值模拟及铸造工艺CAD现代进展[J].铸造,1987,(6):8-12.
    [15]张明远,陈立亮,庞盛永等.基于投影-水平集方法充型过程气-液两相流数值模拟[J].铸造,2010,59(5):478-480.
    [16]冯旭东,王瑞权,杨刚等.低压铸造铝合金轮毂充型和凝固过程模拟及工艺优化[J]. 铸造技术,2010,31(3):332-335.
    [17]苗信诚,李激光.铸件内部质量计算机数值模拟预报[J].鞍山钢铁学院学报,1999,22(2):83-85.
    [18]Desai P. V. Computer Simulation of Forced and Natural Convection during Filling of a Casting [J]. AFS Transaction,1984:519-528.
    [19]SIRRELL B, HOLLIDAY M, CAMPBELL J. Benchmark Testing the Flow and Solidification Modeling of Al Castings [J]. The Member Journal of TMS,1996, 48(3):20-23.
    [20]周建华.基于充型和凝固过程数值模拟的硬盘座压铸工艺优化[J].特种铸造及有色合金,2009,29(11):1007-1009.
    [21]Xiangbin Meng, Jinguo Li, Tao Jin, Xiaofeng Sun etc. Evolution of Grain Selection in Spiral Selector during Directional Solidification of Nickel-base Superalloys [J]. Journal of Materials Science & Technology,2011,27(2):118-126.
    [22]S.M. Afazov, A.A. Becker, T.H. Hyde. FE prediction of residual stresses of investment casting in a Bottom Core Vane under equiaxed cooling [J]. Journal of Manufacturing Processes,2011,13(1):30-40.
    [23]孙逊,王君卿.充填过程数值模拟在球墨铸铁铸造工艺设计中的应用研究[J].铸造,1991,(12):23-29.
    [24]陈瑶,柳百成.国内外铸造过程应力场数值模拟技术的研究进展[J].中国机械工程,1996,(4):28-30.
    [25]张云鹏.铸件凝固过程数值模拟的新发展[J].铸造技术,1998,(1):2-4.
    [26]荆涛,柳百城.考虑充型过程对初始温度场影响的缩孔缩松缺陷分析[J].热加工工艺,1993,(3):10-12.
    [27]陈立亮,刘瑞祥,林汉同.我国铸造行业计算机应用的回顾与展望[J].铸造,2002,(2):14-16.
    [28]陈立亮.铸件有限分析前、后置处理软件的研究[J].热加工工艺,1995,(2):18-19.
    [29]彭立明,毛协民,陈定兴等.CAE技术在2VQS机油滤清器支架压铸工艺中的应用[J].铸造,2000,49(3):160-163.
    [30]张绍利,杨留栓.铸造充型过程流场计算快速算法的研究[J].矿山机械,2005,(4):84-85.
    [31]J.G. Henzel et al. The theory and Application of a Digital Computer in Predicating Solidification Patterns. J. of Metals,1965, (17):561-568.
    [32]C.S. Wei, J.T. Berry. Solidification simulation based on the edge function approach, Trans. Am. Foundry men's Soc,1983, (91):509-514.
    [33]朱宪华.用直接差分法进行凝固过程数值解析的研究[J].西安交通大学学报,1983,(2):49-60.
    [34]曹广军,陈立亮.基于FDM/FEM联合的铸件凝固过程热应力数值模拟的研究[J].铸造技术,2007,28(7):987-990.
    [35]廖敦明,刘瑞祥,陈立亮,等.基于有限差分法的铸件凝固过程热应力场数值模拟的研究[J].铸造,2003,52(6):420-425.
    [36]朱慧,康进武,黄天佑.基于有限差分网格的发动机缸体铸件热应力模拟[J].铸造技术,2005,26(7):618-621.
    [37]韩志强,朱维,柳百成.挤压铸造凝固过程热-力耦合模拟(Ⅱ)[J].金属学报,2009,45(3):356-362.
    [38]朱维,韩志强,柳百成.挤压铸造凝固过程热-力耦合模拟(Ⅱ)[J].金属学报,2009,45(3):363-368.
    [39]刁宝成,焦永和.计算机图形学[M].北京,高等教育出版社,1999:1-100.
    [40]王凤林,陈立亮,陶永劲等.OpenGL技术在铸造CAE后处理模块中的应用[J].铸造,2002,(12):775-777.
    [41]张毅,李昌华IGES后处理器的实现研究[J].现代电子技术,2009,(5):119-130.
    [42]王忠.镁合金低压铸造缩孔缩松预测技术研究[D].太原,中北大学,2010.
    [1]吴颂平,刘赵淼.计算流体力学基础及应用[M].北京,机械工业出版社,2007:1-193.
    [2]张兆顺,崔桂香.流体力学(第二版)[M].北京,清华大学出版社,2006:1-95.
    [3]熊守美,许庆彦,康进武.铸造过程模拟仿真技术[M].北京,机械工业出版社,2004:39-130.
    [4]侯华,毛红奎,张国伟著.铸造过程的计算机模拟[M].北京,国防工业出版社,2008:54-113.
    [5]王辉.铸件充型过程三维数值模拟[D].山东,山东大学,2010.
    [6]雷玲.低压铸造铸件充型凝固过程数值模拟[D].西安,西安理工大学,2005.
    [7]侯峰起.铸件充型过程三维数值模拟[D].内蒙古,内蒙古工业大学,2005.
    [8]田学雷.铸件充型过程三维数值模拟[D].山东,山东大学,2005.
    [9]俱英翠.铸件充型过程三维数值模拟技术研究[D].河北,河北工业大学,2007.
    [10]王延露.基于MAGMAsoft的铸造充型凝固过程分析与研究[D].兰州,兰州理工大学,2006.
    [11]陈乐平.针对工程铸件充型过程的数值模拟[D].昆明,昆明理工大学,2006.
    [12]裴晓亮.基于Pro/E对阀体件铸造工艺CAD浇冒系统的开发及CAE验证[D].兰州,兰州理工大学,2009.
    [13]郝静.铸造充型过程气液两相流动数值模拟的研究[D].武汉,华中科技大学,2008.
    [14]Shi-ping WU,Chang-yun LI,Jing-jie GUO etc. Numerical simulation and experimental investigation of two filling methods in vertical centrifugal casting [J]. Transactions of Nonferrous Metals Society of China,2006,16(5):1035-1040.
    [15]S. Sulaiman, A. M. S. Hamouda, S. Abedin etc. Simulation of metal filling progress during the casting process [J]. Journal of Materials Processing Technology,2000, 100(1):224-229.
    [16]Haidong Zhao, Itsuo Ohnaka, Jindong Zhu. Modeling of mold filling of Al gravity casting and validation with X-ray in-situ observation [J]. Applied Mathematical Modelling, 2008,32(2):185-194.
    [17]Shengyong Pang, Liliang Chen, Mingyuan Zhang etc. Numerical simulation two phase flows of casting filling process using SOLA particle level set method [J]. Applied Mathematical Modelling,2010,34(12):4106-4122.
    [18]K. Ravindran,R. W. Lewis. Finite element modelling of solidification effects in mould filling [J]. Finite Elements in Analysis and Design,1998,31(2):99-116.
    [19]C. M. OISHI, M. F. TOME, J. A. CUMINATO, S. MCKEE. An implicit technique for solving 3D low Reynolds number moving free surface flows [J]. Journal of Computational Physics,2008,227 (16):7446-7468.
    [20]V. G. FERREIRA, F. A. KUROKAWA, C. M. OISHI, M. K. KAIBARA, A. CASTELO, J. A. CUMINATO. Evaluation of bounded high order upwind scheme for 3D incompressible free surface flow computations [J]. Mathematics and Computers in Simulation,2009,79 (6):1895-1914.
    [21]M. F. TOME, A. CASTELO, V. G. FERREIRA, S. MCKEE. A finite difference technique for solving the Oldroyd-B model for 3D-unsteady free surface flows [J]. Journal of Non-Newtonian Fluid Mechanics,2008,154 (2):179-206.
    [22]M. F. TOME, N. MANGIAVACCHI, J. A. CUMINATO, A. CASTELO, S. MCKEE. A finite difference technique for simulation unsteady viscoelastic free surface flows [J]. Journal of Non-Newtonian Fluid Mechanics,2002,106 (2):61-106.
    [23]M. F. TOME, L. GROSSI, A. CASTELO, J. A. CUMIATO, S. MCKEE, K. WALTERS. Die-swell, splashing drop and a numerical technique for solving the Oldroyd-B model for axisymmetric free surface flows [J]. Journal of Non-Newtonian Fluid Mechanics,2007, 141(2):148-166.
    [1]PANG Sheng-yong, CHEN Li-liang, ZHANG Ming-yuan etc. Numerical simulation two phase flows of casting filling process using SOLA particle level set method [J]. Applied Mathematical Modelling,2010,34(12):4106-4122.
    [2]B. SIRRELL, M. HOLLIDAY, J. CAMPBELL. Benchmark Testing the Flow and Solidification Modeling of Al Castings [J]. The Member Journal of TMS,1996, 48(3):20-23.
    [3]齐丕骧.挤压铸造技术的最新发展[J].特种铸造及有色合金,2007,27(9):688-694.
    [1]张奕.传热学[M].南京,东南大学出版社,2004:1-14.
    [2]陶文铨.数值传热学(第二版)[M].西安,西安交通大学出版社,2004:1-26.
    [3]杨世铭.传热学基础(第二版)[M].北京,高等教育出版社,2003:1-10.
    [4]余敏强.轻合金薄壁件压铸工艺的数值模拟研究[D].广州,华南理工大学2010
    [5]李青松.AZ91铸造镁合金凝固过程数值模拟[D].南昌,华东交通大学,2010.
    [6]郝秋红.Zr基块体非晶合金铸造凝固过程的数值模拟[D].浙江,浙江工业大学,2009.
    [7]纵荣荣.金属型重力铸造铝活塞流场和温度场的数值模拟[D].合肥,合肥工业大学,2010.
    [8]陈席国.铝合金液态模锻数值模拟及缺陷预测[D].哈尔滨,哈尔滨工业大学,2010.
    [9]罗康淳.铝合金压铸件压力铸造成型数值模拟研究[D].浙江,浙江工业大学,2009.
    [10]唐计龙.铝合金轮毂低压铸造工艺的数值模拟[D].吉林,吉林大学,2009.
    [11]Dong-dong YOU, Ming SHAO, Yuan-yuan LI etc. Numerical simulation of mold-temperature-control solidification [J]. Transactions of Nonferrous Metals Society of China,2007,17(3):443-448.
    [12]J. S. Zhang, H. Cui, X. J. Duan etc. An analytical simulation of solidification behavior within deposited preform during spray forming process [J]. Materials Science and Engineering A,2000,276(1):257-265.
    [13]侯华,毛红奎,张国伟著.铸造过程的计算机模拟[M].北京,国防工业出版社,2008:54-145.
    [14]李东辉,白金兰,邱以清等.方坯连铸机结晶器凝固传热的模型研究[J].特种铸造及有色合金,2004,(6):37-40.
    [15]王忠,赵宇宏,牛晓峰等.基于AD1分数步长法的铸件温度场数值模拟[J].铸造,2010,59(5):491-494.
    [16]马月珍,田娣,葛永斌等.三维波动方程的高精度交替方向隐式方法[J].河南科技大学学报,2008,29(6):86-89.
    [17]A. Hadjidimos, M. Lapidakis. Optimal Alternating Direction Implicit Preconditioners for Conjugate Gradient methods [J]. Applied Mathematics and Computation,2006,183 (1): 559-574.
    [18]Mingrong Cui. High order compact Alternating Direction Implicit method for the generalized sine-Gordon equation [J]. Journal of Computational and Applied Mathematics, 2010,235 (30):837-849.
    [19]Jinggang Qin. The new alternating direction implicit-difference methods for solving three-dimensional parabolic equations [J]. Applied Mathematical Modelling,2010,34 (4): 890-897.
    [20]L.A.Zadeh. Fuzzy Sets [J]. Information and Control,1965,8:338-356.
    [21]曹阳,金凯,单鑫等.基于模糊理论的导弹系统性能群评价模型[J].战术导弹技术,2011,(1):12-16.
    [22]肖木恩.模糊数学在采矿方法选择中的应用[J].矿业研究与开发,2003,23(1):15-17.
    [23]张恒.基于模糊数学理论的蔬菜保鲜效果评判[J].食品与生物技术学报,2006,25(1):35-39.
    [24]陈忠,谢能刚,王璐.基于模糊理论的高拱坝体型多目标优化设计[J].河海大学学报,2009,37(3):330-334.
    [25]Shunji Tanaka. A heuristic algorithm based on Lagrangian relaxation for the closest string problem [J]. Computers & Operations Research,2012,39(3):709-717.
    [26]F. Delia Croce, F. Salassa. Improved LP-based algorithms for the closest string problem [J]. Computers & Operations Research,2012,39(3):746-749.
    [27]Sayyed Rasoul Mousavi, Navid Nasr Esfahani. A GRASP algorithm for the Closest String Problem using a probability-based heuristic [J]. Computers & Operations Research, 2012,39(3):238-248.
    [28]Carlos H. Rentel, Thomas Kunz. Bounds and parameter optimization of medium access control coding for wireless ad hoc and sensor networks[J]. Ad Hoc Networks,2012,10(1): 128-143.
    [29]杨纶标,高英仪.模糊数学原理及应用(第四版)[M].广州,华南理工出版社,2005:31-52.
    [30]崔忠圻,刘北兴.金属学与热处理原理(第3版)[M].哈尔滨,哈尔滨工业大学出版 社,2007:165-200.
    [31]王足.连续介质力学中某些物理量的近似和大变形弹塑性定义的比较[D].北京,北京交通大学,2010.
    [32]孙文静.膨胀性非饱和土的水力-力学性质及其弹塑性本构模型[D].上海,上海大学,2009.
    [33]刘锋涛.结构塑性极限分析上限法数值计算方法研究[D].哈尔滨,哈尔滨工业大学,2011.
    [34]李毅磊.基于ANSYS的随焊锤击后焊道应力场数值模拟[D].河北,河北农业大学,2010.
    [35]李伟.基于热力耦合的钢轨接触疲劳伤损研究[D].四川,西南交通大学,2010.
    [36]薛翠鹤.AZ31镁合金板材温热高速率本构关系研究[D].武汉,武汉理工大学,2010.
    [37]李德荣,侯君,于茜,等.大高径比ZA27合金铸件挤压铸造应力场模拟[J].沈阳工业大学学报,2003,27(2):138-142.
    [38]裴继斌.船用钢板激光弯曲成形机理及成形规律的研究[D].大连,大连理工大学,2008.
    [1]罗守靖,陈炳光,齐丕骧.液态模锻与挤压铸造技术[M].北京,化学工业出版社,2006:8-36.
    [2]吴岳壹,王进华,费良军,等.铸造成型局部加压补缩控制系统设计和应用实例[J].兵器材料科学与工程,2010,33(3):37-40.
    [3]马欣宇,范云波,陈敏,等.前缸盖的间接挤压铸造技术研究[J].兵器材料科学与工程,2010,33(3):70-74.
    [4]齐丕骧.我国挤压铸造机的现状与发展[J].特种铸造及有色合金,2010,30(4):305-308.
    [5]HUA HOU. Studies on Numerical Simulation for Liquid-Metal Filling and Solidification during Casting Process [D]. Saitama:Saitama Institute of Technology,2005:1-69.
    [6]CHEN Ye, ZHAO Yu-hong, Hou Hua. Numerical simulation for thermal flow filling process casting [J]. Transactions of Nonferrous Metals Society of China,2006,16: 214-218.
    [7]侯华,毛红奎,张国伟著.铸造过程的计算机模拟[M].北京,国防工业出版社,2008:54-145.
    [8]赵文侠.短纤维增强铝基复合材料制备工艺与性能研究[D].河南,河南科技大学,2010.
    [9]董富军.6xxx铝合金半固态坯料的制备及其成形数值模拟[D].沈阳,东北大学,2008.
    [10]李凤娥.镁合金轮毂挤压铸造技术研究[D].重庆,重庆大学,2008.
    [11]潘志勇.半固态加工Al-Cu合金的组织及性能的研究[D].湖南,湖南大学,2007.
    [12]侯君.大高径比ZA27合金铸件挤压铸造过程数值模拟[D].沈阳,沈阳工业大学,2005.
    [13]赵风雷.半固态电磁搅拌对ZA27合金组织及性能的影响研究[D].昆明,昆明理工大学,2002.
    [14]应新法.凸式冲头挤压铸造挤压力研究[D].浙江,浙江工业大学,2010.
    [15]周浩.ZK60镁合金等通道角加工组织分析和数值模拟[D].哈尔滨,哈尔滨工业大学,2010.
    [16]X.M. Zhang, Z.Y. Jiang, L.M. Yang etc. Modelling of coupling flow and temperature fields in molten pool during twin-roll strip casting process [J]. Journal of Materials Processing Technology,2007,187:339-343.
    [17]X.P. Zhang, S.M. Xiong, Q.Y. Xu. Numerical methods to improve the computational efficiency of solidification simulation for the investment casting process [J]. Journal of Materials Processing Technology,2006,173(1):70-74.
    [18]Qi-chi Le, Shi-jie Guo, Zhi-hao Zhao etc. Numerical simulation of electromagnetic DC casting of magnesium alloys [J]. Journal of Materials Processing Technology,2007, 183(2):194-201.
    [19]Hu Zhao, Peijie Li, Liangju He. Coupled analysis of temperature and flow during twin-roll casting of magnesium alloy strip [J]. Journal of Materials Processing Technology,2011,211(6):1197-1202.
    [20]曹广军,陈立亮.基于FDM/FEM联合的铸件凝固过程热应力数值模拟的研究[J].铸造技术,2007,28(7):987-990.
    [21]廖敦明,刘瑞祥,陈立亮,等.基于有限差分法的铸件凝固过程热应力场数值模拟的研究[J].铸造,2003,52(6):420-425.
    [22]朱慧,康进武,黄天佑.基于有限差分网格的发动机缸体铸件热应力模拟[J].铸造技术,2005,26(7):618-621.
    [23]韩志强,朱维,柳百成.挤压铸造凝固过程热-力耦合模拟(Ⅰ)[J].金属学报,2009,45(3):356-362.
    [24]Alfred Yu, Shuping Wang, Naiyi Li, Henry Hu. Pressurized solidification of magnesium alloy AM50A [J]. Journal of Materials Processing Technology,2007,191:247-250.
    [1]罗守靖,陈炳光,齐丕骧.液态模锻与挤压铸造技术[M].北京,化学工业出版社,2006:37-95.
    [2]申荣华,滕飞,赵波.液态金属挤压铸挂成形机理探讨[J].特种铸造及有色合金,2009,29(4):340-342.
    [3]罗继相,韩明兴,黄颖斌等.摩托车钳体挤压铸造工艺的研究[J].特种铸造及有色合金,2010,30(3):234-237.
    [4]罗继相,邵龙,黄颖斌等.摩托车钳体挤压铸造技术[J].铸造技术,2010,31(5):620-624.
    [5]ZHANG Ming, ZHANG Wei-wen, ZHAO Hai-dong etc. Effect of pressure on microstructures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting [J]. Transactions of Nonferrous Metals Society of China,2007,17(3):496-501
    [6]L. J. Yang. The effect of casting temperature on the properties of squeeze cast aluminium and zinc alloys [J]. Journal of Materials Processing Technology,2003,140 (1):391-396.
    [7]Zhizhong Sun, Henry Hu, Xiaoping Niu. Determination of heat transfer coefficients by extrapolation and numerical inverse methods in squeeze casting of magnesium alloy AM60 [J]. Journal of Materials Processing Technology,2011,211 (8):1432-1440.
    [8]J.O. Aweda, M.B. Adeyemi. Experimental determination of heat transfer coefficients during squeeze casting of aluminium [J]. Journal of Materials Processing Technology, 2009,209(3):1477-1483.
    [9]李甲,曹韩学,赵东林,等.AZ81镁合金挤压铸造铸件的缺陷分析[J].热加工工艺,2011,40(3):197-203.
    [10]赖国胜,钱娜,刘艳华.半固态流变挤压铸造研究现状[J].热加工工艺,2011,40(5):68-72.
    [11]HOU Hua. Studies on numerical simulation for liquid-metal filling and solidification during casting process [D]. Saitama:Saitama Institute of Technology,2005.
    [12]CHEN Ye, ZHAO YU-hong, Hou Hua. Numerical simulation for thermal flow filling process casting [J]. Transactions of Nonferrous Metals Society of China,2006, 16(2):214-218.
    [13]侯华,毛红奎,张国伟著.铸造过程的计算机模拟[M].北京,国防工业出版社,2008:1-54.
    [14]陈席国.铝合金液态模锻数值模拟及缺陷预测[D].哈尔滨,哈尔滨工业大学,2010.
    [15]常欢欢.华泰镁合金轮毂结构再设计和挤压铸造工艺优化[D].重庆,重庆大学,2009.
    [16]伞晶超.大高径比锌铝合金挤压铸造过程温度场数值模拟[D].沈阳,沈阳工业大学,2006.
    [17]韩志强,朱维,柳百成.挤压铸造凝固过程热-力耦合模拟(Ⅰ)[J].金属学报,2009,45(3):356-362.
    [18]朱维,韩志强,柳百成.挤压铸造凝固过程热-力耦合模拟(Ⅱ)[J].金属学报,2009,45(3):363-368.
    [19]廖敦明,陈立亮,刘瑞祥,等.铸件热应力场数值模拟[J].特种铸造及有色金属,2003(6):30-32.
    [20]李德荣,侯君,于茜,等.大高径比ZA27合金铸件挤压铸造应力场模拟[J].沈阳工业大学学报,2003,27(2):138-142.
    [1]牛晓峰,梁伟,赵宇宏,赵宇辉,侯华,任巨良.VTK显示技术在铸造模拟软件中的应用[J].铸造技术,2010,31(9):1241-1244.
    [2]孙家广.计算机图形学[M].北京,清华大学出版社,2004:1-55.
    [3]刘伟宁.基于VTK的海底声纳数据实时三维建模软件设计[D].浙江,浙江大学,2010.
    [4]陈超.基于VTK的医学图像体绘制技术研究[D].西安,西安电子科技大学,2010.
    [5]胡战利.基于VTK的医学图像三维重建及交互研究[D].哈尔滨,哈尔滨工程大学,2008.
    [6]李嘉,胡怀中,胡军.可视化三维图形库Visualization Toolkit的原理及应用[J].计算机应用与软件,2004,21(2):5-7.
    [7]彭天强,王聪丽.可视化工具包应用研究[J].信息工程大学学报,2003,4(1):69-72.
    [8]费晓璐,张志广,李银波.基于Visualization Toolkit的数字化人体骨骼系统的重建与可视化[J].北京生物医学工程,2002,21(4):248-251.
    [9]William.J.Schroeder. The VTK User's Guide [M]. U.S.A., Kitware Inc,2006:1-30.
    [10]贾延延,杨飞,左旺孟,王宽全.基于VTK的虚拟心脏切面交互式可视化方法[J].哈尔滨工业大学学报,2010,42(5):770-774.
    [11]王晓宇,陈吉红,唐小琦.基于VTK的线框仿真组件实现技术[J].计算机工程,2010,36(4):226-232.
    [12]杨晏春,滕奇志,赵桦.应用VTK技术进行三维图像显示及参数计算[J].计算机与数字工程,2009,37(11):134-137.
    [13]Stefan Wesarg. AHA conform analysis of myocardial function using and extending the toolkits ITK and VTK [J]. International Congress Series,2005,1281:44-49.
    [14]Tiago Martinuzzi Buriol, Sergio Scheer. CAD and CAE Integration Through Scientific Visualization Techniques for Illumination Design [J]. Tsinghua Science and Technology, 2008,13:26-33.
    [15]Paulo Dias, Joaquim Madeira, Beatriz Sousa Santos. Teaching 3D modelling and visualization using VTK [J]. Computers & Graphics,2008,32 (3):363-370.
    [16]Torsten Wilde, James A. Kohl, Raymond E. Flanery Jr. Immersive and 3D viewers for CUMULVS:VTK/CAVETM and AVS/Express [J]. Future Generation Computer Systems, 2003,19(5):701-719.
    [17]Frederic Magoules, Roman Putanowicz. Visualization of large data sets by mixing Tcl and C++interfaces to the VTK library [J]. Computers and Structures,2007,85 (9):536-552.
    [18]刘璐,梁国柱,马敏团.基于VTK分形理论的研究[J].计算机与数字工程,2007,35(9):16-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700