用户名: 密码: 验证码:
磷酸铁锂正极材料表面结构的构架及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机和环境危机的出现,锂离子动力电池成为当前研究的热点。磷酸铁锂因其具有较高的理论容量、循环性能优良、安全性高、成本低廉和环境友好等诸多优点而备受关注。本文以廉价化学试剂为主要原料,采用原位固相合成法和二步法成功制备了LiFePO4/C正极材料、金属氧化物修饰LiFePO4/C正极材料、金属氧化物和碳共包覆LiFePO4正极材料和共生化合物修饰LiFePO4/C正极材料,采用XRD、Raman、SEM、TEM、EDS和XPS等技术手段对正极材料的结构与组成进行了分析和表征;采用充放电测试、循环伏安(CV)和交流阻抗(EIS)等方法对正极材料的电化学性能进行了分析和研究。其研究结果总结如下:
     1.铁源、碳源和煅烧方法对LiFePO4/C正极材料的影响。分别以草酸亚铁和氧化铁为铁源,葡萄糖、蔗糖、柠檬酸、聚乙二醇4000、可溶性淀粉和己二酸为碳源,以碳酸锂为锂源、磷酸二氢铵为磷源采用原位固相法合成了LiFePO4/C正极材料。(1)不同碳源对正极材料的颗粒大小、形貌及碳结构有一定的影响,其中以葡萄糖和蔗糖为碳源合成的正极材料的颗粒大小均匀、分散性良好,且碳的石墨化程度较高。(2)对比两种铁源发现,以草酸亚铁为铁源,葡萄糖为碳源合成的正极材料粒度较小,分散性好,颗粒形貌较规则,且具有相对较好的充放电性能。(3)随着煅烧温度的升高和时间的延长,正极材料的结晶度逐渐提高,颗粒大小逐渐均匀,分散性逐渐变好,当温度升高至800℃以上时正极材料的粒径随温度变化较大,同时有杂相Fe2P生成。
     2.金属氧化物修饰LiFePO4/C正极材料。以草酸亚铁(或三氧化二铁)、碳酸锂、磷酸二氢铵、葡萄糖、碳酸锌、钨酸铵和钼酸铵为原料,采用原位合成法成功合成了ZnO修饰LiFePO4/C正极材料,并首次合成了WO2和MoO2修饰LiFePO4/C正极材料及MoO2修饰LiFePO4正极材料。在合成过程中,各金属氧化物前驱体及碳源的分解在LiFePO4正极材料的颗粒之间及表面构架了以金属氧化物和碳为混合体的导电介质,从而达到提高正极材料电化学性能的目的。研究发现:(1)由于ZnO的电子电导率相对较低,ZnO的添加对提高正极材料的电化学性能的贡献很小。(2)电子导电率高的WO2和MoO2的添加能明显改善正极材料的电化学性能,当导电金属氧化物W02和M002含量为5wt%时,正极材料在0.1C倍率下具有最大的首次放电比容量,分别为120.1mAh/g和142.6mAh/g,此时正极材料的表观锂离子扩散系数最大,电荷转移阻抗最小。但由于导电金属氧化物结晶度较低、表面部分被氧化及其在电解液中的部分溶解导致正极材料在不同倍率下的循环性能较差。(3)在对不含碳的MoO2修饰LiFePO4正极材料研究时发现,仅仅依靠Mo02的添加也可以提高正极材料的电化学性能,MoO2含量为5wt%时,正极材料在0.1C倍率下的首次放电比容量已提高至76.6mAh/g,与未添加Mo02的样品相比,放电比容量提高了59.8mAh/go
     3.金属氧化物和碳共包覆LiFePO4正极材料。以草酸亚铁、碳酸锂、磷酸二氢铵、葡萄糖及硝酸锌、钨酸铵、钼酸铵、碳酸铵和柠檬酸为原料,采用二步法成功合成了ZnO与碳共包覆LiFePO4正极材料,并首次合成了WO2和MoO2与碳共包覆LiFePO4正极材料。由于LiFePO4/C正极材料中的少量碳不能在LiFePO4颗粒表面形成完整的包覆层,因此金属氧化物对LiFePO4颗粒表面裸露部分的修复将提高包覆层的完整性和连续性,从而改善正极材料的电化学性能。研究发现:(1)适量的ZnO包覆提高了正极材料的充放电比容量和锂离子扩散系数,降低了电荷转移阻抗,同时具有较好的循环性能。(2)电子电导率更高的WO2和Mo02的包覆相对于ZnO包覆来讲,能更好的提高正极材料的电化学性能,其充放电比容量和表观锂离子扩散系数更高,同时也具有较好的循环性能,其中WO2与碳共包覆LiFePO4正极材料在0.1、0.2、0.5和1.0C倍率下110次循环后的放电比容量分别为153.7、144.5、137.5和121mAh/g;MoO2与碳共包覆LiFePO4正极材料在0.1、0.2、0.5和1.0C倍率下110次循环后的放电比容量分别为157、136.16、131.3和119.1mAh/g,说明导电金属氧化物对提高正极材料的电化学性能具有良好的促进作用。
     4.共生化合物修饰LiFePO4/C正极材料。以草酸亚铁、碳酸锂、磷酸二氢铵、葡萄糖和钨酸铵为原料,采用原位固相法合成了共生化合物(Li3PO4、Li4P2O7和Fe2P2O7)修饰LiFePO4/C正极材料和FeWO4修饰LiFePO4/C正极材料。研究发现:(1) FeWO4的添加对正极材料电化学性能的提高没有贡献。(2)由于Li3PO4离子电导率较低,其对提高正极材料电化学性能的贡献较小。(3)作为快离子导体的Li4P2O7的添加能较好的提高正极材料的充放电性能,但其循环性能较差。(4)首次研究了共生化合物Fe2P2O7对正极材料的影响,相比之下,Fe2P2O7的添加不仅可以更好的提高正极材料的充放电比容量,而且具有较好的循环性能,这可能是由于Fe2P2O7具有良好离子导电性或电子导电性而实现的。(5)当正极材料的Fe2P2O7含量为5wt%时,在0.1C倍率下具有最高的首次放电比容量146.7mAh/g,110次循环后仍保持130mAh/g以上,同时具有最高的表观锂离子扩散系数。
The lithium ion power battery has become the research hotspot in recent years with the emergency of energy crisis and environmental crisis. LiFePO4has received much attention as a promising storage compound for cathodes in lithium-ion batteries due to it has high specific capacity, good cycle performance, safety, low costs and environmental friendliness. In this paper, the LiFePO4/C, metallic oxide modified LiFePO4/C, metallic oxide and carbon co-coated LiFePO4and symbiotic compounds modified LiFePO4/C cathode materials were synthesized by in-situ solid phase synthetic method and two step method with the cheap chemistry reagents as raw materials. The phase composition and structure of cathode materials were characterized and analyzed by XRD、Raman、 SEM、 TEM, EDS and XPS. The electrochemical performances of cathode materials were tested and studied by charge-discharge technology, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The main results are as follows:
     1. The effects of carbon source, iron source and calcination method on the electrochemical performances of LiFePO4/C cathode materials. The LiFePO4/C cathode materials were synthesized by in-situ solid phase synthetic method with Fe2C2O4and Fe2O3as iron source, glucose, sucrose, citric acid, polyethylene glycol4000, starch and hexanedioic acid as carbon source, Li2CO3as lithium source and NH4H2PO4as phosphorous source, respectively.(1) There were the obvious effects of carbon sources on carbon structure, particle size and shape of LiFePO4/C cathode materials, the samples synthesized with glucose and sucrose as carbon sources had uniform particle size, well dispersibility and higher graphitization degree of carbon.(2) The cathode materials synthesized with Fe2C2C2O4as iron source and glucose as carbon sources had smaller particle size, well dispersibility and regular shape.(3) With calcination temperature increasing and time prolonging, the crystallinity of LiFePO4increased, particles size become gradually uniform and dispersion become gradually good. When calcination temperature was increased over800℃, the increasing of particles size was significant with the temperature change, and the new phase of Fe2P generated.
     2. Metallic oxide modified LiFePO4/C cathode materials. ZnO modified LiFePO4/C, W02modified LiFePO4/C, MoO2modified LiFePO4/C and MoO2modified LiFePO4cathode materials were synthesized by in-situ solid phase synthetic method with Fe2C2O4(or Fe2O3), Li2CO3, NH4H2PO4, ZnCO3,(NH4)10W12O41·xH2O,(NH4)6Mo7O24-4H2O and glucose as raw materials. In the synthesis process, the conducting medium composed by metal oxide and carbon on the LiFePO4particles surface and in gap of particles would improve the electrochemical performances of cathode materials, which were formed by the decomposition of metal oxide precursors and carbon sources.(1) The existence of ZnO could improve the charge-discharge specific capacity of cathode materials, but the improvement was very low because of lower electronic conductivity of ZnO.(2) The adding of WO2and MoO2with high electronic conductivity could obvious improve electrochemical performances of cathode materials. The cathode materials with5wt%conductive metal oxides exhibited the best electrochemical performance; they had the maximum value of initial discharge specific capacity of120.1mAh/g and142.6mAh/g at0.1C at room temperature, respectively, the maximum apparent lithium ion diffusion coefficient and the minimum charge transfer resistance. However, because of WO2and MoO2lower crystallinity, partially oxidized of surface and partially dissolved by electrolyte, the cycle performance of cathode materials is poor at different charge-discharge rate.(3) MoO2modified LiFePO4cathode materials without carbon had better charge-discharge performance, when the MoO2content is5wt%, the sample had higher initial discharge specific capacity of76.6mAh/g at0.1C at room temperature, compared with the sample without MoO2, the discharge specific capacity rose59.8mAh/g.
     3. Metallic oxide and carbon co-coated LiFePO4cathode materials. ZnO and carbon co-coated LiFePO4, WO2and carbon co-coated LiFePO4and MoO2and carbon co-coated LiFePO4cathode materials were synthesized by two step method. In LiFePO4/C, the small amounts of carbon can not form a full coating layer on the surface of LiFePO4, but the adding of metal oxides could repair the bare surface of LiFePO4particles, make the coating layer more full and continuous and improve electrochemical performances of cathode materials.(1) The right amount of ZnO coating could improve charge-discharge specific capacity and apparent lithium ion diffusion coefficient, and decrease charge transfer resistance, and the sample with3wt%ZnO has better cycle performance in different charge-discharge rate.(2) Relative to ZnO coating, the WO2and MoO2coating could improve electrochemical performances even more, including higher charge-discharge specific capacity, higher apparent lithium ion diffusion coefficient and lower charge transfer resistance and good cycle performance. The discharge specific capacity of WO2and carbon co-coated LiFePO4cathode materials are153.7,144.5,137.5and121mAh/g at0.1,0.2,0.5and1.0C after110-cycle, respectively, The discharge specific capacity of MoO2and carbon co-coated LiFePO4cathode materials are157,136.16,131.3and119.1mAh/g at0.1,0.2,0.5and1.0C after110-cycle, respectively. It indicated the positive effects of conductive metallic oxide on electrochemical performances of cathode materials.
     4. Symbiotic compounds modified LiFePO4/C cathode materials. Symbiotic compounds (Li3PO4, Li4P2O7and Fe2P2O7) modified LiFePO4/C and FeWO4modified LiFePO4/C cathode materials were synthesized by in-situ solid phase synthetic method with Fe2C2O4, Li2CO3, NH4H2PO4,(NH4)10W12O41·xH2O and glucose as raw materials.(1) The FeWO4adding did not contribute to the improved electrochemical performances of cathode materials.(2) The symbiotic compound of Li3PO4adding can improve the charge-discharge performance of LiFePO4cathode materials, but the improvements were very little because of lower lithium ionic conductivity of Li3PO4.(3) The existence of Li4P2O7as fast ionic conductor can improve electrochemical performances of cathode materials, but the cycling performance was very bad.(4) Compared with the adding of Li4P2O7, the existence of Fe2P2O7can not only improve the charge-discharge performance, but also maintain good cycling performance, it could be because of higher lithium ionic conductivity or electronic conductivity of Fe2P2O7.(5) When the Fe2P2O7content is5wt%, the sample had the highest discharge specific capacity of146.7mAh/g at0.1C at room temperature, the discharge specific capacity still reached130mAh/g after110charge-discharge cycle, and the sample had the highest apparent lithium ion diffusion coefficient.
引文
[1]Megahed S, Scrosati B. Lithium ion rechargeable batteries[J]. Journal of Power Sources,1994,51(1-2):79-104.
    [2]黄彦瑜.锂电池发展简史[J].物理学史和物理学家,2007,36(8):643-651.
    [3]T. Nagaura, K. Tozawa. Lithium ion rechargeable battery[J]. Prog. Batteries Solar Cells,1990,9:209-217.
    [4]郭炳煜,徐徽,王先友,等.锂离子电池[M].中南大学出版社,2002.
    [5]吕鸣祥,黄长保,宋玉瑾.化学电源[M].天津大学出版社,1992.
    [6]Brandt K. Historical development of secondary lithium batteries[J]. Solid State Ionics,1994,69(3-4):173-183.
    [7]Y Nishi. Lithium ion secondary batteries:past 10 years and the future[J]. Journal of Power Sources,2001,100(1-2):101-106.
    [8]黄祖飞.LiMnO2体系结构与性能的第一原理研究[D].吉林大学博士学位论文,2006.
    [9]张勇,胡信国,张翠芬.新型化学电源的电极反应原理[J].电池工业,2004,9(1):33-36.
    [10]刘大亮.锂离子电池负极材料Li3-XMXN的制备与表征[D].吉林大学博士学位论文,2009.
    [11]MasatakaWakihara. Recent development in lithium ion batteries [J]. Material Seienee and Engineering,2001,33(4):109-134.
    [12]E. Antolini. LiCoO2:Formation, structure, lithium and oxygen nonstoichiometry, electrochemical behavior and transport properties[J]. Solid State Ionics,2004,170: 159-171.
    [13]Y. Chen, G.X. Wang, K. Konstantinov, et al. Synthesis and characterization of LiCoxMnyNi1-x-yO2 as a cathode material for secondary lithium batteries [J]. Journal of Power Sources,2003,119-121:184-186.
    [14]Yaser Hamedi Jouybari, Sirous Asgari. Synthesis and electrochemical properties of LiNi0.8Co0.2O2 nanopowders for lithium ion battery applications [J]. Journal of Power Sources,2011,196(1):337-342.
    [15]D. Belov, M.-H. Yang. Investigation of the kinetic mechanism in overcharge process for Li-ion battery[J]. Solid State Ionics,2008,179(27-32):1816-1821.
    [16]D. Belov, M.-H. Yang. Failure mechanism of Li-ion battery at overcharge conditions[J]. Journal of Solid state Electrochemistry,2008,12(7-8):885-894.
    [17]C. H. Doh, D. H. Kim, H. S. Kim, et al. Veluchamy, Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test[J]. Journal of Power Sources,2008, 175(2):881-885.
    [18]Y. Takahashi, S. Tode, A. Kinoshita, et al. Development of lithium-ion batteries with a LiCoO2 cathode toward high capacity by elevating charging potential[J], Journal of the Electrochemical Society,2008,155(7):A537-A541.
    [19]G. G. Amatucci, J. M. Tarascon, L. C. Klein. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries[J]. Solid State Ionics,1996,83(1-2):167-173.
    [20]G. G. Amatucci, J. M. Tarascon, L. C. Klein. CoO2, the end member of the LixCoO2 solid solution[J]. Journal of the Electrochemical Society,1996,143(3):1114-1123.
    [21]T. Ohzuku, A. Ueda. Solid-state redox reaction of LiCoO2 (R3m) for 4 volt secondary lithium cells[J]. Journal of the Electrochemical Society,1994,141(11): 2677-2972.
    [22]J. Zhou, P. H. L. Notten. Studies on the degradation of Li-ion batteries by the use of microreference electrodes[J]. Journal of Power Sources,2008,177:553-560.
    [23]吴宇平,戴晓兵,马军旗,等.锂离子电池-应用于实践[M].化学工业出版社,北京:2004.
    [24]T. Amriou, B. Khelifa, H. Aourag, et al. Ab initio investigation of the Jahn-Teller distortion effect on the stabilizing lithium intercalated compounds[J]. Materials Chemistry and Physics,2005,92(2-3):499-504.
    [25]H. Liu, Y. Yang, J. Zhang. Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2[J]. Journal of Power Sources,2007,173(1): 556-561.
    [26]A. Rougier, P. Bravereau, D. Delmas. Optimization of the composition of the Li1-zNi1+zO2 electrode materials:Structural, magnetic, and electrochemical studies[J]. Journal of the Electrochemical Society,1996,143(4):1168-1175.
    [27]T. Thongtem, S. Thongtem. Characterization of Li1-xNi1+xO2 prepared using succinic acid as a complexing agent[J]. Inorganic Materials,2006,42(2):202-209.
    [28]A. Rougier, I. Saadoune, P. Gravereau, et al. Effect of cobalt substitution on cationic distribution in LiNi1-yCoyO2 electrode materials[J]. Solid State Ionics, 1996,90(1-4):83-90.
    [29]B. J. Neudecker, R. A. Zuhr, B. S. Kwak, et al. Lithium manganese nickel oxides Lix(MnyNi1-y)2-xO2:I. Synthesis and characterization of thin films and bulk phases[J]. Journal of the Electrochemical Society,1998,145(12):4148-4159.
    [30]M. S. Whittingham. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004,104(10):4271-4302.
    [31]I. Saadoune, C. Delmas. LiNi1-yCoyO2 positive electrode materials:relationships between the structure, physical properties and electrochemical behaviour[J]. Journal of Materials Chemistry,1996,6(2):193-199.
    [32]C. Delmas, M. Menetrier, L. Croguennec, et al. An overview of the Li(Ni,M)O2 systems:syntheses, structures and properties[J]. Electrochim. Acta, 1999,45:243-253.
    [33]J. Cho, H. Jung, Y. Park, et al. Electrochemical properties and thermal stability of LiaNi1-xCOxO2 cathode materials[J]. Journal of the Electrochemical Society,2000, 147(1):15-20.
    [34]J. Aragane, K. Matsui, H. Andoh, et al. Development of 10 Wh class lithium secondary cells in the New Sunshine Program[J]. Journal of Power Sources,1997, 68(1):13-18.
    [35]Janina Molenda, Mariusz Ziemnieki, Jaeek Marzee, et al. Electrochemical and high temperature Physicochemical properties of orthorhombic LiMnO2[J]. Journal of power sources,2007,173(2):707-711.
    [36]S. Zhao, H. Liu, Q. Li, et al. Synthesis and structure transformation of orthorhombic LiMnO2 cathode materials by sol-gel method[J]. Journal of Material Science and Technology,2004,20(1):46-48.
    [37]C. Cheng, L. Tan, A. Hu, et al. Synthesis of LiNi0.65Co0.25Mn0.1O2 as cathode material for lithium-ion batteries by Theological phase method[J]. Journal of Alloys and Compounds,2010,506(2):888-891.
    [38]T. Ohzuku, Y. Makimura. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-Ion batteries[J]. Chemistry Letters,2001,30(7): 642-643.
    [39]苏继桃.锂离子电池用层状LiNi1/3Co1/3Mn1/3O2的合成工艺优化与性能研究[D].中南大学博士学位论文,2007.
    [40]刘智敏.锂离子电池正极材料层状LiNixCo1-2xMnxO2的合成与改性研究[D].中南大学博士学位论文,2009.
    [41]D. Li, C. Yuan, J. Dong, et al, Synthesis and electrochemical properties of LiNi0.85-xCoxMn0.15O2 as cathode materials for lithium-ion batteries[J]. Journal of Solid State Electrochemistry,2008,12(3):323-327.
    [42]S. W. Oh, S. T. Myung, H. B. Kang, et al. Effects of Co doping on Li[Ni0.5CoxMn1.5-x]O4 spinel materials for 5V lithium secondary batteries via co-precipitation[J]. Journal of Power Sources,2009,189(1):752-756.
    [43]S. G. Stewart, V. Srinivasan, J. Newman. Modeling the performance of lithiumion batteries and capacitors during hybrid-electric-vehicle operation[J]. Journal of the Electrochemical Society,2008,155(9):A664-A671.
    [44]S. K. Martha, E. Markevich, V. Burgel, et al. A short review on surface chemical aspects of Li batteries:A key for a good performance[J]. Journal of Power Sources, 2009,189(1):288-296.
    [45]S. K. Martha, H. Sclar, Z. S. Framowitz, et al. A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds[J]. Journal of Power Sources,2009,189(1):248-255.
    [46]N. Tran, L. Croguennec, M. Menetrier, et al. Mechanisms associated with the "plateau" observed at high voltage for the overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2 system[J]. Chemistry of Materials,2008,20(15): 4815-4825.
    [47]S. H. Park, S. H. Kang, I. Belharouak, et al. Physical and electrochemical properties of spherical Li1+x(Ni1/3Co1/3Mn1/3)1-xO2 cathode materials[J]. Journal of Power Sources,2008,177(1):177-183.
    [48]M. M. Thackaray, A. de Kock, W. I. F. David. Synthesis and structural characterization of defect spinels in the lithium-manganese-oxide system[J]. Materials Research Bulletin,1993,28(10):1041-1049.
    [49]A. D. Pasquier, C. C. Huang, T. Spitler. Nano Li4Ti5O12-LiMn2O4 batteries with high power capability, improved cycle-life[J]. Journal of Power Sources,2009, 186(2):508-514.
    [50]I. Belharouak, Y. K. Sun, W. Lu, et al. On the safety of the Li4Ti5O12/LiMn2O4 lithium-ion battery system[J]. Journal of the Electrochemical Society,2007, 154(12):A1083-A1087.
    [51]N. Takami, H. Inagaki, T. Kishi, et al. Electrochemical kinetics and safety of 2-volt class Li-ion battery system using lithium titanium oxide anode[J]. Journal of the Electrochemical Society,2009,156(2):A128-A132.
    [52]Y. Liu, X. Li, H. Guo, Z. et al. Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature [J]. Journal of Power Sources,2009,189(1):721-725.
    [53]T. Doi, M. Inaba, H. Tsuchiya, et al. Electrochemical AFM study of LiMn2O4 thin film electrodes exposed to elevated temperatures [J]. Journal of Power Sources, 2008,180(1):539-545.
    [54]Y. G. Mateyshina, U. Lafont, N. F. Uvarov, et al. Physical and electrochemical properties of LiFe0.5Mn1.5O4 spinel synthesized by different methods[J]. Russian Journal of Electrochemistry,2009,45(5):602-605.
    [55]H. J. Bang, V. S. Donepudi, J. Prakash. Preparation and characterization of partially substituted LiMyMn2-yO4(M=Ni,Co,Fe) spinel cathodes for Li-ion batteries [J]. Electrochimica Acta,2002,8(4):443-451.
    [56]K. W. Kim, S. W. Lee, K. S. Han, et al. Characterization of Al-doped spinel LiMn2O4 thin film cathode electrodes prepared by liquid source misted chemical deposition(LSMCD)technique[J]. Electrochimica Acta,2003,48(28):4223-4231.
    [57]D. Capsoni, M. Bini, G. Chiodelli, et al. Inhibition of Jahn-Teller cooperative distortion in LiMn2O4 spinel by Ga3+ doping[J]. Journal of Physical Chemistry B, 2002,106(30):7432-7438.
    [58]D. Capsoni, M. Bini, G. Chiodelli, et al. Structural transition in Mg-doped LiMn2O4: a comparison with other M-doped Li-Mn spinels[J]. Solid State Communications, 2003,125(3-4):179-183.
    [59]C. Wu, F. Wu, L. Q. Chen, et al. X-ray diffraction and X-ray photoelectron spectroscopy analysis Cr-doped spinel LiMn2O4 for lithium ion batteries[J]. Solid State lonics,2002,152:335-339.
    [60]D. Q. Liu, X. Q. Liu, Z. Z. He. The elevated temperature performance of LiMn2O4 coated with Li4Ti5012 for lithium ion battery[J]. Materials Chemistry and physics, 2007,105(2-3):362-366.
    [61]J. Tu, X.B. Zhao, J. Xie, et al. Enhanced low voltage cycling stability of LiMn2O4 cathode by ZnO coating for lithium ion batteries[J]. Journal of Alloys and Compounds,2007,432(1-2):313-317.
    [62]D. Liu, X. Liu, Z. He. Surface modification by ZnO coating for improving the elevated temperature performance of LiMn2O4[J]. Journal of Alloys and Compounds,2007,436(1-2):387-391.
    [63]Y. M. Lin, H. C. Wu, Y. C. Yen, et al. Enhanced high-rate cycling stability of LiMn2O4 cathode by ZiO2 coating for Li-ion battery[J]. Journal ofthe Electrochemical Society,2005,152(8):A1526-A1532.
    [64]Kenneth A. Walz, Christopher S. Johnson, Jamie Genthe, et al. Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZiO2 and TiO2 coatings[J]. Journal of Power Sources,2010, 195(15):4943-4951.
    [65]S. C. Park, Y. S. Han, Y. S. Kang, et al. Electrochemical properties of LiCoO2-coated LiMn2O4 prepared by solution-based chemical process[J].Journal of the Electrochemical Society,2001,148(7):A680-A686.
    [66]G. Li, S. Pang, L. Jiang, et al. Environmentally friendly chemical route to vanadium oxide single-crystalline nanobelts as a cathode material for lithium-ion batteries[J]. Journal of Physical Chemistry B,2006,110(19):9383-9386.
    [67]Y. Wang, K. Takahashi, K. H. Lee, et al. Nanostuctures vanadium oxide electrodes for enahnced lithium-ion intercalation[J]. Advanced Functional Materials,2006, 16(9):1133-1144.
    [68]C. Q. Feng, S. Y. Wang, R. Zeng, et al. Synthesis of spherical porous vanadium pentoxide and its electrochemical properties[J]. Journal of Power Sources,2008, 184(2):485-488.
    [69]R. Benedek, M. M. Thackeray, L. H. Yang. Lithium site preference and electronic structure of Li4V3O8. Physical Review B,1997,56(17):10707-10710.
    [70]F. Wu, L. Wang, C. Wu, et al. Study on Li1+xV3O8 synthesized by microwave sol-gel route[J]. Materials Chemistry and Physics,2009,115(2-3):707-711.
    [71]H. Liu, Y. Wang, K. Wang, et al. Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries[J]. Journal of Power Sources,2009,192(2):668-673.
    [72]J. Gaubicher, C. Wurm, G. Goward, et al. Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries[J]. Chemistry of Materials,2000,12(11):3240-3242.
    [73]S. C. Yin, H. Grondey, P. Strobel, et al. Electrochemical property:Structure relationships in monoclinic Li3-yV2(PO4)3[J]. Journal of the American Chemical Society,2003,125(34):10402-10411.
    [74]H. Huang, S. Yin, T. Kerr, et al. Nanostructured composites:a high capacity, fast rate Li3V2(PO4)3/Carbon cathode for rechargeable lithium batteries[J]. Advanced Materials,2002,14(21):1525-1528.
    [75]A. K.Padhi, K. S. Najundaswamy, J. B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society,1997,144(4):1188-1194.
    [76]林燕LiFePO4/C正极材料的溶胶凝胶制备及其结构域性能的关键影响因素研究[D].浙江大学博士论文,2009.
    [77]于文志.锂离子电池正极材料LiFePO4的金属离子掺杂改性研究[D].湖南大学硕士论文,2007.
    [78]A. S. Andersson, J. O. Thomas. The source of first-cycle capacity loss in LiFePO4[J] Journal of Power Sources,2001,97-98:498-502.
    [79]W. Zhang. Structure and performance of LiFePO4 cathode materials:a review[J]. Journal of Power Sources,2011,196(6):2962-2970.
    [80]P. G. Bruce. Solid-state chemistry of lithium power sources[J]. Chemical Communications,1997,33(19):1817-1824
    [81]H. S. Kim, B. W. Cho, E. I. Cho. Cycling performance of LiFePO4 cathode material for lithium secondary batteries[J]. Journal of Power Sources,2004, 132(1-2):235-239.
    [82]崔妍.金属氧化物与碳共包覆LiFePO4正极材料高倍率电化学性能研究[D].天津大学博士学位论文,2010.
    [83]Jae-Kwang Kim, Gouri Cheruvally, Jae-Won Choi, et al. Effect of mechanical activation process parameters on the properties of LiFePO4 cathode material[J]. Journal of Power Sources,2007,166(1):211-218.
    [84]G. Arnold, J. Garche, R. Hemmer, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique[J]. Journal of Power Sources,2003,119-121:247-251.
    [85]M. Takahashi, H. Ohtsuka, K. Akuto, et al. Confirmation of long-term cyclability and high thermal stability of LiFePO4 in prismatic lithium-ion cells[J]. Journal of the Electrochemical Society,2005,152(5):A899-A904.
    [86]黄学杰.发展车用锂离子电池需加强关键材料研发[J].新材料产业,2010,12(3):18-21.
    [87]A. Ritchie, W. Howard. Recent developments and likely advances in lithium-ion batteries[J]. Journal of Power Sources,2006,162(2):809-812.
    [88]J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414:359-367.
    [89]B. Scrosat, J. Garche. Lithium batteries:Status, prospects and future[J]. Journal of Power Sources,2010,195(9):2419-2430.
    [90]Yancheng Zhang, Chao-Yang Wang, Xidong Tang. Cycling degradation of an automotive LiFePO4 lithium-ion battery [J]. Journal of Power Sources,2011, 196(3):1513-1520.
    [91]Hong Li, Zhaoxiang Wang, Liquan Chen, et al. Research on advanced materials for Li-ion batteries.[J]. Advanced Materials,2009,21(45):4593-4607.
    [92]P. P. Prosini, M. Lisi, S. Scaccia, et al. Synthesis and characterization of amorphous hydrated FePO4 and its electrode performance in lithium batteries [J]. Journal of the Electrochemical Society,2002,149(3):A297-A301.
    [93]B. Ellis, L. K. Perry, D. H. Ryan, et al. Small polaron hopping in LixFePO4 solid solutions:coupled lithium-ion and electron mobility [J]. Journal of the American Chemical Society,2006,128(35):11416-11422.
    [94]Xiao-Zhen Liao, Zi-Feng Ma, Qiang Gong, et al. Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte [J]. Electrochemistry Communications,2008,10(5):691-694.
    [95]Zhaohui Chen, J R Dahn. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J]. Journal of the Electrochemical Society,2002,149(9):A1184-A1189.
    [96]V. Palomares, A. Goni, I. Gil de Muro, et al. Influence of carbon content on LiFePO4/C samples synthesized by freeze-drying process[J]. Journal of the Electrochemical Society,2009,156(10):A817-A821.
    [97]Sung Woo Oh, Hyun Joo Bang, Seung-Taek Myung, et al. The effect of morphological properties on the electrochemical behavior of high tap density C-LiFePO4 prepared via coprecipitation[J]. Journal of the Electrochemical Society, 2008,155(6):A414-420.
    [98]W.F. Howard, R.M. Spontnitz. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries[J]. Journal of Power Sources, 2007,165(2):887-891.
    [99]刘辉.锂离子电池正极材料LiFePO4的合成与性能研究[D].中国科学院研究生院博士学位论文,2008.
    [100]金波.锂离子和锂聚合物电池用LiFePO4/C阴极材料的合成及其电化学性能研究[D].吉林大学博士学位论文,2008.
    [101]Xu-heng Liu, Zhong-wei Zhao. Synthesis of LiFePO4/C by solid-liquid reaction milling method[J]. Powder Technology,2010,197(3):309-313.
    [102]Kerun Yang, Zhenghua Deng, Jishuan Suo. Synthesis and characterization of LiFeP04 and LiFePO4/C cathode material from lithium carboxylic acid and Fe3+[J]. Journal of Power Sources,2012,201:274-279.
    [103]Y. Z. Dong, Y. M. Zhao, Y. H. Chen, et al. Optimized carbon-coated LiFePO4 cathode material for lithium-ion batteries[J]. Materials Chemistry and Physics, 2009,115(1):245-250.
    [104]C. Lai, Q. Xu, H. Ge, et al. Improved electrochemical performance of LiFePO4/C for lithium-ion batteries with two kinds of carbon sources[J]. Solid State Ionics, 2008,179(27-32):1736-1739.
    [105]Z. Chen, H. Zhu, S. Ji, et al. Influence of carbon sources on electrochemical performances of LiFePO4/C composites[J]. Solid State Ionics,2008,179(27-32): 1810-1815.
    [106]A. Yamada, S.C. Chung, K. Hinokuma. Optimized LiFePO4 for lithium battery cathodes[J]. Journal of Electrochemical Society,2001,148(3):A224-A229.
    [107]Jinli Yang, Jiajun Wang, Dongniu Wang, et al.3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries[J]. Journal of Power Sources,2012,208:340-344.
    [108]S. B. Lee, S. H. Cho, S. J. Cho, et al. Synthesis of LiFePO4 material with improved cycling performance under harsh conditions[J]. Electrochemistry Communications,2008,10(9):1219-1221.
    [109]Xiaoping Zhang, Huajun Guo, Xinhai Li, et al. Studies of fast-ion conducting Li3V2(PO4)3 coated LiFePO4 via sol-gel method[J]. Solid State Ionics,2012,212: 106-111.
    [110]M.M. Doeff, Y. Hu, F. McLarnon, et al. Effect of surface carbon structure on the electrochemical performance of LiFePO4[J]. Electrochemical and Solid State Letters,2003,6(10):A207-A209.
    [111]曹小卫,张俊喜,颜立成,等.用不同碳源对LiFePO4的碳包覆改性[J].材料研究学报,2009,23:369-374.
    [112]Y. Lin, M. X. Gao, D. Zhu, et al. Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C[J]. Journal of Power Sources, 2008,184(2):444-448.
    [113]J. Yao, K. Konstantinov, G. Wang, et al. Electrochemical and magnetic characterization of LiFePO4 and Li0.95Mg0.05FePO4 cathode materials [J]. Journal of Solid State Electrochemistry,2007,11(2):177-185.
    [114]H. T. Kuo, T. S. Chan, N. C. Bagkar, et al. Effect of LiI amount to enhance the electrochemical performance of carbon-coated LiFePO4[J]. Electrochemical and Solid State Letters,2009,12(6):A111-A114.
    [115]Ling-Bin Kong, Peng Zhang, Mao-Cheng Liu, et al. Fabrication of promising LiFePO4/C composite with a core-shell structure by a moderate in situ carbothermal reduction method[J]. Electrochimica Acta,2012,70:19-24.
    [116]L. Wang, G.C. Liang, X.Q. Ou, et al. Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction[J]. Journal of Power Sources,2009,189(1):423-428.
    [117]Yan-hong Yin, Shao-yu Li, Lin-lin Yan, et al. Modified carbothermal reduction method for synthesis of LiFePO4/C composite[J]. Transactions of Nonferrous Metals Society of China,2012,22(3):621-626.
    [118]周永慧,林君,于敏,等.喷雾热解法制备发光材料研究进展[J].发光学报,2002,23(5):503-508.
    [119]Muxina Konarova, Izumi Taniguchi. Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties[J]. Powder Technology,2009, 191(1-2):111-116.
    [120]M. Konarova, I. Taniguchi. Preparation of LiFePO4/C composite powders by ultrasonic spray pyrolysis followed by heat treatment and their electrochemical properties [J]. Materials Research Bulletin,2008,43(12):3305-3317.
    [121]N. A. Hamid, S. Wennig, S. Hardt, et al. High-capacity cathodes for lithium-ion batteries from nanostructured LiFePO4 synthesized by highly-flexible and scalable flame spray pyrolysis[J]. Journal of Power Sources,2012,216:76-83.
    [122]M. R. Yang, T. H. Teng, S. H. Wu. LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis[J]. Journal of Power Sources,2006,159(1):307-311.
    [123]T. H. Teng, M. R. Yang, S.H. Wu, et al. Electrochemical properties of LiFe0.9Mg0.1PO4/carbon cathode materials prepared by ultrasonic spray pyrolysis[J]. Solid State Communications,2007,142(7):389-392.
    [124]Akira Kuwahara, Shinya Suzuki, Masaru Miyayama. High-rate properties of LiFePO4/carbon composites as cathode materials for lithium-ion batteries[J]. Ceramics International,2008,34(4):863-866.
    [125]Huaxu Gong, Yang Yu, Ting Li, et al. Solvothermal synthesis of LiFePO4/C nanopolyhedrons and microellipsoids and their performance in lithium-ion batteries[J]. Materials Letters,2012,66(1):374-376.
    [126]Shuyuan Ju, Hongrui Peng, Guicun Li, et al. Synthesis and electrochemical properties of LiFePO4 single-crystalline nanoplates dominated with bc-planes[J]. Materials Letters,2012,74:22-25.
    [127]Qiang Zhang, Wenwen Jiang, Zhufa Zhou,et al. Enhanced electrochemical performance of Li4SiO4-coated LiFePO4 prepared by sol-gel method and microwave heating[J]. Solid State Ionics,2012,218:31-34.
    [128]K. S. Park, J. T. Son, H. T. Chung, et al. Synthesis of LiFePO4 by co-precipitation and microwave heating[J]. Electrochemistry Communications,2003,5(10): 839-842.
    [129]W. Li, J. Ying, C. Wan, et al. Preparation and characterization of LiFePO4 from NH4FePO4·H2O under different microwave heating conditions [J]. Journal of Solid State Electrochemistry,2007,11(6):799-803.
    [130]A.V. Murugan, T. Muraliganth, A. Manthiram. Voltage-composition profile and synchrotron X-ray structural analysis of low and high temperature LixCoO2 host material[J]. Journal of Physical Chemistry C,2008,112(37):14665-14671.
    [131]Jing-Han Lin, Jenn-Shing Chen. Synthesis and electrochemical characterization of LiFePO4/C composites prepared by the microemulsion method[J]. Electrochimica Acta,2012,62:461-467.
    [132]K. Hamamoto, M. Fukushima, M. Mamiya, et al. Morphology control and electrochemical properties of LiFePO4/C composite cathode for lithium ion batteries[J]. Solid State Ionics,2012,225:560-563.
    [133]J. Orlenius, O. Lyckfeldt, K.A. Kasvayee, et al. Water based processing of LiFePO4/C cathode material for Li-ion batteries utilizing freeze granulation[J]. Journal of Power Sources,2012,213:119-127.
    [134]Izumi Taniguchi, Renat Tussupbayev. Synthesis of LiFePO4/C nanocomposites by a novel process and their electrochemical properties [J]. Chemical Engineering Journal,2012,192:334-342
    [135]Xiaoran Sun, Jiajun Li, Chunsheng Shi, et al. Enhanced electrochemical performance of LiFePO4 cathode with in-situ chemical vapor deposition synthesized carbon nanotubes as conductor[J]. Journal of Power Sources,2012, 220:264-268.
    [136]Feng Liang, Yaochun Yao, Yongnian Dai, et al. Preparation of porous structure LiFePO4/C composite by template method for lithium-ion batteries[J]. Solid State Ionics,2012,214:31-36.
    [137]Yi-Chuan Lin, George Ting-Kuo Fey, Pin-Jiun Wu, et al. Synthesis and electrochemical properties of xLiFePO4·(1-x)LiVPO4F composites prepared by aqueous precipitation and carbothermal reduction[J]. Journal of Power Sources, 2013,224:63-71.
    [138]Yong Zhang, Hui Feng, Xingbing Wu, et al. One-step microwave synthesis and characterization of carbon-modified nanocrystalline LiFePO4[J]. Electrochimica Acta,2009,54(11):3206-3210.
    [139]George Ting-Kuo Fey, Yi-Chuan Lin, Hsien-Ming Kao. Characterization and electrochemical properties of high tap-density LiFePO4/C cathode materials by a combination of carbothermal reduction and molten salt methods [J]. Electrochimica Acta,2012,80:41-49.
    [140]Z. Li, D. Zhang, F. Yang. Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material [J]. Journal of Materials Science, 2009,44(10):2435-2443.
    [141]G. X. Wang, L. Yang, Y. Chen, et al. An investigation of polypyrrole LiFePO4 composite cathode materials for lithium-ion batteries[J]. Electrochimica Acta,2005,50(24):4649-4654.
    [142]Yong Zhang, Qing-yuan Huo, Pei-pei Du, et al. Advances in new cathode material LiFePO4 for lithium-ion batteries[J]. Synthetic Metals,2012,162(13-14): 1315-1326.
    [143]Jeffrey W. Fergus. Recent developments in cathode materials for lithium ion batteries[J]. Journal of Power Sources,2010,195(4):939-954.
    [144]傅原.锂离子正极材料LiFePO4.新材料产业,2003,5(10):13-16.
    [145]Bing Zhao, Yong Jiang, Haijiao Zhang, et al. Morphology and electrical properties of carbon coated LiFePO4 cathode materials[J]. Journal of Power Sources,2009,189(1):462-466.
    [146]Guangchuan Liang, Li Wang, Xiuqin Ou, et al. Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution[J]. Journal of Power Sources,2008,184(2):538-542.
    [147]Ver6nica Palomares, Aintzane Goni, Izaskun Gil de Muro, et al. Conductive additive content balance in Li-ion battery cathodes:Commercial carbon blacks vs. in situ carbon from LiFePO4/C composites[J]. Journal of Power Sources,2010, 195(22):7661-7668.
    [148]S. H. Ju, Y. C. Kang. LiFePO4/C cathode powders prepared by spray pyrolysis from the colloidal spray solution containing nano-sized carbon black[J]. Materials Chemistry and Physics,2008,107(2-3):328-333.
    [149]E. M. Jin, B. Jin, D. K. Jun, et al. A study on the electrochemical characteristics of LiFePO4 cathode for lithium polymer batteries by hydrothermal method[J]. Journal of Power Sources,2008,178(2):801-806.
    [150]P. P. Prosini, D. Zane, M. Pasquali. Improved electrochemical performance of a LiFePO4-based composite cathode[J]. Electrochimica Acta,2001,46(23): 3517-3523.
    [151]H. Liu, Z. Wang, X. Li, et al. Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method[J]. Journal of Power Sources,2008,184(2):469-472.
    [152]B. Jin, H. B. Gu, W. Zhang, et al. Effect of different carbon conductive additives on electrochemical properties of LiFePO4-C/Li batteries[J]. Journal of Solid State Electrochemistry,2008,12(12):1549-1554.
    [153]Y. Liu, X. Li, H. Guo, et al. Effect of carbon nanotube on the electrochemical performance of C-LiFePO4/graphite battery[J]. Journal of Power Sources,2008, 184(2):522-526.
    [154]B. Jin, E. M. Jin, K. H. Park, et al. Electrochemical properties of LiFePO4 multiwalled carbon nanotubes composite cathode materials for lithium polymer battery[J]. Electrochemistry Communications,2008,10(10):1537-1540.
    [155]J. M. Chen, C. H. Hsu, Y. R. Lin, et al. High-power LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries [J]. Journal of Power Sources,2008,184(2):498-52.
    [156]Weiyan Yu, Lili Wu, Jinbo Zhao, et al. Fabrication of porous platelike LiFePO4/C cathode materials via hydrothermal process[J]. Powder Technology, 2012,230:219-224.
    [157]H. Liu, P. Zhang, G. Li, et al. LiFePO4/C composites from carbothermal reduction method[J]. Journal of Solid State Electrochemistry,2008,12(7-8):1011-1015.
    [158]X. Q. Ou, G. C. Liang, J. S. Liang, et al. LiFePO4 doped with magnesium prepared by hydrothermal reaction in glucose solution[J]. Chinese Chemistry Letters,2008,19(3):345-349.
    [159]Mu-Rong Yang, Wei-Hsin Ke, She-Huang Wu. Preparation of LiFePO4 powders by co-precipitation[J]. Journal of Power Sources,2005,146(1-2):539-543.
    [160]S. Franger, F. L. Cras, C. Bourbon, et al. LiFePO4 Synthesis routes for enhanced electrochemical performance [J]. Electrochemical and Solid State Letters,2002, 5(10):A231-A233.
    [161]J. K. Kim, G. Cheruvally, J. H. Ahn, et al. Electrochemical properties of LiFePO4/C composite cathode material:Carbon coating by the precursor method and direct addition[J]. Journal of Physics and Chemistry of Solids,2008,69(5-6): 1257-1260.
    [162]王连邦,李晟,张品杰,等.低成本动力锂离子电池磷酸铁锂正极材料的合成及性能[J].浙江工业大学学报,2012,40(4):355-360.
    [163]Y. Lin, H. Pan, M. Gao, et al. Effects of reductive conditions on the microstructure and electrochemical properties of sol-gel derived LiFePO4/C batteries and energy storage[J]. Journal of Electrochemical Society,2007,154(12): A1124-A1128.
    [164]G. X. Wang, L. Yang, S. L. Bewlay, et al. Electrochemical properties of carbon coated LiFePO4 cathode materials[J]. Journal of Power Sources,2005,146(1-2): 521-524.
    [165]C. G. Son, H. M. Yang, G. W. Lee, et al. Manipulation of adipic acid application on the electrochemical properties of LiFePO4 at high rate performance[J]. Journal of Alloys and Compounds,2011,509(4):1279-1284.
    [166]Milica Vujkovi6, Ivana Stojkovi6, Nikola Cvjeticanin, et al. Gel-combustion synthesis of LiFePO4/C composite with improved capacity retention in aerated aqueous electrolyte solution[J]. Electrochimica Acta,2013,92:248-256.
    [167]J. D. Wilcox, M. M. Doeff, M. Marcinek, et al. Factors influencing the quality of carbon coatings on LiFePO4 batteries and energy storage[J]. Journal of Electrochemical Society,2007,154(5):A389-A395.
    [168]Mingxia Gao, Yan Lin, Yuhui Yin, et al. Structure optimization and the structural factors for the discharge rate performance of LiFePO4/C cathode materials[J]. Electrochimica Acta,2010,55(27):8043-8050.
    [169]S. Luo, Z. Tang, J. Lu, et al. Electrochemical properties of carbon-mixed LiFePO4 cathode material synthesized by the ceramic granulation method[J]. Ceramic International,2008,34(5):1349-1351.
    [170]H. Liu, Y. Feng, Z. Wang, et al. A PVB-based rheological phase approach to nano-LiFePO4/C composite cathodes[J]. Powder Technology,2008,184(3): 313-317.
    [171]甘晖,童庆松,汪冰冰,等.由PAA-L制LiFePO4/C及其充放电性能与容量损失[J].应用化学,2006,23(2):179-183.
    [172]S. Tajimi, Y. Ikceda, K. Uematsu, et al. Enhanced electrochemical performance of LiFePO4 prepared by hydrothermal reaction[J]. Solid State Ionics,2004,175(1-4): 287-209.
    [173]L. N. Wang, X. C. Zhan, Z. G. Zhang, et al. A soft chemistry synthesis routine for LiFePO4/C using a novel carbon source[J]. Journal of Alloys and Compounds, 2008,456(1-2):461-465.
    [174]G. Lei, X. Yi, L. Wang, et al. An investigation of the electrochemical performance of polyaniline coated LiFePO4 materials[J]. Polymers for Advanced Technologies,2009,20(6):576-580.
    [175]G. L. Yang, A. F. Jalbout, Y. Xu, et al. Effect of polyacenic semiconductors on the performance of olivine LiFePO4[J]. Electrochemical and Solid State Letters, 2008,11(8):A125-A128.
    [176]Xuedong Yan, Guiling Yang, Jing Liu, et al. An effective and simple way to synthesize LiFePO4/C composite[J]. Electrochemical Acta,2009,54(24): 5770-5774.
    [177]曹雁冰,胡国荣,杜柯,等.多元醇还原法合成锂离子电池正极材料LiFePO4[J].无机化学学报,2010,26(6):1061-1065.
    [178]刘旭恒,赵中伟.碳源和铁源对LiFePO4/C材料的制备及性能的影响[J].中国有色金属学报,2008,18(3):541-545.
    [179]F. Croce, A. D. Epifanio, J. Hassoun, et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode[J]. Electrochemical and Solid State Letters,2002,5(3):A47-A50.
    [180]K. S. Park, J. T. Son, H. T. Chung, et al. Surface modification by silver coating for improving electroehemieal properties of LiFePO4[J]. Solid State Communications,2004,129(5):311-314.
    [181]A. Eftekhari. Electrochemical deposition and modification of LiFePO4 for the preparation of cathode with enhanced battery performance [J]. Journal of Electrochemical Society,2004,151(11):A1816-A1819.
    [182]Di Zhang, Rui Cai, Yinke Zhou, et al. Effect of milling method and time on the properties and electrochemical performance of LiFePO4/C composites prepared by ball milling and thermal treatment[J]. Electrochemical Acta,2010,55(8): 2653-2661.
    [183]Ming Xie, XiaoXue Zhang, YaZhou Wang, et al. A template-free method to prepare porous LiFePO4 via supercritical carbon dioxide[J]. Electrochimica Acta, 2013,94:16-20.
    [184]M. E. Zhong, Z. T. Zhou. Preparation of high tap-density LiFePO4/C composite cathode materials by carbothermal reduction method using two kinds of Fe3+ precursors[J]. Materials Chemistry and Physics,2010,119(3):428-431.
    [185]S. Yang, Y. Song, K. Ngala, et al. Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides[J]. Journal of Power Sources.2003,119-121:239-246.
    [186]George Ting-Kuo Fey, Yun Geng Chen, Hsien-Ming Kao. Electrochemical properties of LiFePO4 prepared via ball-milling[J]. Journal of Power Sources, 2009,189(1):169-178.
    [187]M. Gaberscek, R. Dominko, J. Jamnik. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes[J]. Electrochemistry Communications,2007,9(12):2778-2783.
    [188]C. Delacourt, P. Poizot, S. Levasseur, et al. Size effects on carbon-free LiFePO4 powders[J]. Electrochemical Solid-State Letters,2006,9(7):A352-A355.
    [189]Dagao Zhuang, Xinbing Zhao, Jian Xie, et al. One-step solid-state synthesis and electrochemical performance of Nb-doped LiFePO4/C[J]. Acta Physico-Chimica Sinica,2006,22(7):840-844.
    [190]Lingjun Li, Xinhai Li, Zhixing Wang, et al. Stable cycle-life properties of Ti-doped LiFePO4 compounds synthesized by co-precipitation and normal temperature reduction method[J]. Journal of Physics and Chemistry of Solids, 2009,70(1):238-242.
    [191]Haiyan Gao, Lifang Jiao, Wenxiu Peng, et al. Enhanced electrochemical performance of LiFePO4/C via Mo-doping at Fe site[J]. Electrochimica Acta, 2011,56(27):9961-9967.
    [192]Yan-huai Ding, Ping Zhang. Effect of Mg and Co co-doping on electrochemical properties of LiFePO4[J]. Transactions of Nonferrous Metals Society of China, 2012,22(s1):s153-s156.
    [193]Ho Chul Shin, Sung Bin Park, Ho Jang, et al. Rate performance and structural change of Cr-doped LiFePO4/C during cycling[J]. Electrochimica Acta,2008, 53(27):7946-7951.
    [194]C. S. Sun, Z. Zhou, Z. G. Xu, et al. Improved high-rate charge/discharge performances of LiFePO4/C via V-doping[J]. Journal of Power Sources,2009, 193(2):841-845.
    [195]N. Jayaprakash, N. Kalaiselvi. On the electrochemical behavior of LiMxFe1-xPO4 [M=Cu, Sn; x=0.02] anodes-An approach to enhance the anode performance of LiFePO4 material [J]. Electrochemistry Communications,2007, 9(4):620-628.
    [196]C. S. Sun, Y. Zhang, X. J. Zhang, et al. Structural and electrochemical properties of Cl-doped LiFePO4/C[J]. Journal of Power Sources,2010,195(11):3680-3683.
    [197]Fei Lu, Yichun Zhou, Jun Liu, et al. Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route. Electrochimica Acta,2011,56(24):8833-8838.
    [198]Guo-rong Hu, Xu-guang Gao, Zhong-dong Peng, et al. Influence of Ti4+ doping on electrochemical properties of LiFePO4/C cathode material for lithium-ion batteries[J]. Transactions of Nonferrous Metals Society of China,2007,17(2): 296-300.
    [199]S. Y. Chung, Y. M. Chiang. Microscale measurements of the electrical conductivity of doped LiFePO4[J]. Electrochemical and Solid State Letters,2003, 6(12):A278-A281.
    [200]Y. Wang, Y. Yang, X. Hu, et al. Electrochemical performance of Ru-doped LiFePO4/C cathode material for lithium-ion batteries [J] Journal of Alloys and Compounds,2009,481(1-2):590-594.
    [201]Hongbo Shu, Xianyou Wang, Weicheng Wen, et al. Effective enhancement of electrochemical properties for LiFePO4/C cathode materials by Na and Ti co-doping[J]. Electrochimica Acta,2013,89:479-487.
    [202]X. H. Rui, Y. Jin, X. Y. Feng, et al. A comparative study on the low-temperature performance of LiFePO4/C and Li3Vi2(PO4)3/C cathodes for lithium-ion batteries[J]. Journal of Power Sources,2011,196(4):2109-2114.
    [203]J. Yao, K. Konstantinov, G. Wang, et al. Electrochemical and magnetic characterization of LiFePO4 and Li0.95Mg0.05FePO4 cathode materials[J]. Journal of Solid State Electrochemistry,2007,11(2):177-185.
    [204]X. Ou, G. Liang, L. Wang, et al. Effects of magnesium doping on electronic conductivity and electrochemical properties of LiFePO4 prepared via hydrothermal route[J]. Journal of Power Sources,2008,184(2):543-547.
    [205]M. Wagemaker, B. L. Ellis, D. Lutzenkirchen-Hecht, et al. Proof of supervalent doping in olivine LiFePO4[J]. Chemistry of Materials,2008,20(20):6313-6315.
    [206]Y. Jin, C. P. Yang, X. H. Rui, et al. V2O3 modified LiFePO4/C composite with improved electrochemical performance[J]. Journal of Power Sources,2011,196 (13):5623-5630.
    [207]雷敏,应皆荣,姜长印,等.高密度球形LiFePO4的合成及性能[J].电源技术,2006,30(1):11-16.
    [208]Zhao-Rong Chang, Hao-Jie Lv, Hongwei Tang, et al. Synthesis and performance of high tap density LiFePO4/C cathode materials doped with copper ions[J]. Journal of Alloys and Compounds,2010,501(1):14-17.
    [209]Y. Li, S. Zhao, C. Nan, et al. Electrochemical performance of SiO2-coated LiFePO4 cathode materials for lithium ion battery[J]. Journal of Alloys and Compounds,2011,509(3):957-960.
    [210]Y. Liu, C. Mi, C. Yuan, et al. Improvement of electrochemical and thermal stability of LiFePO4 cathode modified by CeO2[J]. Journal of Electroanalytical Chemistry 2009,628(1-2):73-80.
    [211]Y. Cui, X. Zhao, R. Guo. Enhanced electrochemical properties of LiFePO4 cathode material by CuO and carbon co-coating[J]. Journal of Alloys and Compounds,2010,490(1-2):236-240.
    [212]J. Lee, P. Kumar, J. Lee, et al. ZnO incorporated LiFePO4 for high rate electrochemical performance in lithium ion rechargeable batteries[J]. Journal of Alloys and Compounds,2013,550:536-544.
    [213]杨南如.无机非金属材料测试方法[M].武汉理工大学出版社,2004.
    [214]刘永辉.电化学测试技术[M].北京:北京航空学院,1987.
    [215]查全性.电极过程动力学导论(第三版)[M].北京:科学出版社,2002年:104-107.
    [216]K. G. Mansaray, A. E. Ghaly. Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis [J].Biomass and Bioenergy,1999, 17(1):19-23.
    [217]A. Kumar, L. J. Wang, Y. A. Dzenis, et al. Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock[J].Biomass and Bioenergy, 2008,32(5):460-467.
    [218]M. M. Doeff, J. D. Wilcox, R. Kostecki, et al. Optimization of carbon coatings on LiFePO4[J]. Journal of Power Sources 2006,163 (1):180-184.
    [219]T. Nakamura, Y. Miwa, M. Tabuchi, et al. Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties batteries, fuel cells, and energy conversion[J]. Journal of Electrochemical Society,2006,153(6): A1108-A1114.
    [220]Y. Y. Liu, C. B. Cao, J. Li. Enhanced electrochemical performance of carbon nanospheres-LiFePO4 composite by PEG based sol-gel synthesis[J]. Electrochim. Acta 2010,55(12):3921-3926.
    [221]X. K. Zhi, G. C. Liang, L. Wang, et al. Optimization of carbon coatings on LiFePO4:Carbonization temperature and carbon content[J]. Journal of Alloys and Compounds,2010,503(2):370-374.
    [222]Y. H. Nien, J. R. Carey, J. S. Chen. Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors[J]. Journal of Power Sources 2009,193(2):822-827.
    [223]S. Madhavi, G. V.Subba Rao, B. V. R.Chowdari, et al. Effect of Cr dopant on the cathodic behavior of LiCoO2[J]. Electrochimica Acta,2002,48 (3):219-226.
    [224]肖政伟.以不同原料制备锂离子电池复合正极材料LIFePO4/C的研究[D].中南大学博士学位论文,2008.
    [225]R. Dominko, J. M. Goupil, M. Bele, et al. Impact of LiFePO4/C composites porosity on their electrochemical performanee [J]. Journal of the Electrochemical Soeiety,2005,152(5):A858-A863.
    [226]N. Claussen, R. Janssen, D.Holz. Reaction bonding of aluminum oxide (RBAO)[J]. Journal of the Ceramic Society of Japan,1995,103(8):749-758.
    [227]张国军,金宗哲.原位合成复相陶瓷概述[J].材料导报,1996,10(2):62-66.
    [228]袁方利,黄淑兰,凌远兵,等.等离子法热解制备导电ZnO陶瓷粉[J].化工冶金,1998,19(3):212-216.
    [229]F. H. Jones, R.G. Egdell, A. Brown, et al. Surface structure and spectroscopy of WO2(012) [J]. Surface Science,1997,374(1-3):80-94.
    [230]Jean Horkans, M. W. Shafer. An investigation of the electrochemistry of a series of metal dioxides with rutile-type structure:MoO2, WO2, ReO2, RuO2, OsO2, and IrO2[J]. Journal of The Electrochemical Society,1977,124(8):1202-1207.
    [231]C. H. Guo, G. J. Zhang, Z. R. Shen, et al. Hydrothermal synthesis and formation mechanism of mircrometer-sized MoO2 hollow spheres[J]. Chin. J. chem.. Phys. 2006,19(6):543-549.
    [232]Huixing Zhang, Lingxing Zeng, Xiaomin Wu, et al. Synthesis of MoO2 nanosheets by an ionic liquid route and its electrochemical properties[J]. Journal of Alloys and Compounds,2013,580:358-362.
    [233]A. Prakash, S. Maikap, C.S. Lai, et al. Bipolar resistive switching memory using bilayer TaOx/WOx films[J]. Solid-State Electronics,2012,77:35-40.
    [234]Denis Y. W. Yu, Christopher Fietzek, Wolfgang Weydanz, et al. Study of LiFePO4 by cyclic voltammetry[J]. Journal of The Electrochemical Society,2007, 154(4):A253-A257.
    [235]孙永明.钼氧化物纳米结构的构筑及其储锂性能研究[D].华中科技大学博士学位论文,2012.
    [236]刘战强,陈海杰,唐宇峰,等.共生Li3PO4对LiFePO4电化学性能的影响[J].硅酸盐学报,2011,39(4):559-562.
    [237]Naoaki Kuwata, Naoya Iwagami, Yoshinari Tanji, et al. Characterization of thin-Film lithium batteries with stable thin-film Li3PO4 solid electrolytes fabricated by ArF excimer laser deposition [J]. Journal of The Electrochemical Society,2010,157(4):A521-A52.
    [238]Man-Soon Yoon, Mobinul Islam, Soon-Chul Ur. The role of impurities on electro-chemical properties of LiFePO4 cathode material[J]. Ceramics International,2013, 39:S647-S651.
    [239]Rahul Malik, Aziz Abdellahi, Gerbrand Ceder. A critical review of the Li insertion mechanisms in LiFePO4 electrodes[J]. Journal of The Electrochemical Society, 2013,160(5):A3179-A3197.
    [240]Stefan Adams, R. Prasada Rao. Simulated defect and interface engineering for high power Li electrode materials[J]. Solid State Ionics,2011,184(1):57-61.
    [241]Gwang-Hee Lee, Seung-Deok Seo, Hyun-Woo Shim,et al. Synthesis and Li electroactivity of Fe2P2O7 microspheres composed of self-assembled nanorods[J]. Ceramics International,2012,38:6927-6930.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700