用户名: 密码: 验证码:
锡基负极材料的制备及电化学吸脱锂性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池是目前综合性能最好的可充电电池,已经广泛应用于各种便携式电子设备中,并正在向大容量、高功率和长寿命的方向发展。传统的碳负极材料较低的比能量和较差的安全性已成为进一步提高电池整体性能的瓶颈。本论文采用液相沉淀法和机械球磨法制备前驱物,再在一定条件下热解,合成新型锡基锂离子电池负极材料。这些材料具有很高的贮锂容量,其可逆容量在300~800 mAh/g之间。深入研究了反应条件对产物的组成、结构、和颗粒尺寸的影响,以及材料的性质对贮锂性能的影响;阐明了金属锡化物的可逆吸放锂机制、电极反应特征和充放电过程中负极材料组织结构变化规律以及循环失效机制;最后也指明了提高其循环寿命的途径。
     以SnCl_4·5H_2O和盐酸为原料,采用水热法制备了直径为20~100nm,长度为50~400 nm短棒状纳米SnO_2。研究了纳米SnO_2电极的电化学性能,结果显示充放电截止电压、充放电电流密度以及颗粒的形貌对SnO_2电极的容量、循环性能等具有重要的影响。当充放电截止电压为1.0-0V,充放电电流密度为0.4C时,短棒状纳米SnO_2电极的循环性能最好。其首次放电容量为1166mAhg~(-1),可逆容量631mAh g~(-1),20次循环容量衰减率为0.8%。同时,采用循环伏安曲线和容量微分曲线分析了纳米SnO_2的插/脱锂过程。
     以SnCl_2·5H_2O和Si(OMe)_4为原料,通过尿素控制反应的pH值,采用水热法制备出了细小的SnOy-SiO_2复合物,使活性物质SnOy很好地分散于非活性相物质SiO_2中,保持活性成分在纳米尺度范围均匀分散于非活性基质成分中。纳米SnOy-SiO_2复合物作为锂离子电池负极材料在循环充放电时,其放电曲线的嵌锂电位平台分别为:0.4V,0.9V和0.7V-0.1V,与相应的金属Sn与锂合金化反应的电位平台是一致的。纳米SnOy-SiO_2复合物有较高的容量。首次放电容量达到1208 mAh g~(-1),首次可逆容量为756 mAh·g~(-1),首次库仑效率达到62.6%,随后的库仑效率都保持在90%以上,每次循环的容量衰减率只有0.9%。纳米SnOy-SiO_2复合物电极具有较好的循环嵌脱锂性能,是有希望的锂离子电池负极材料之一。
     利用纳米SnO_2和金属Zn粉分别在600℃和800℃高温下进行固相还原反应制备了分散比较均匀的锌锡复合氧化物纳米粉体。X射线衍射及扫描电镜测试结果表明,600℃所得的复合氧化物纳米粉体是由Sn、SnO、ZnO组成的混合晶相;800℃所得的纳米粉体是由Sn、SnO、ZnO和Zn_2SnO_4组成的混合晶相。将其分别作为锂离子电池负极材料在1 mol/L LiPF_6/EC+DMC(体积比1:1)电解液中进行恒流充放电测试结果表明,经过800℃焙烧的Sn-Zn-O样品,首次可逆容量达到772mAh/g,首次嵌脱锂效率为60.1%,20次循环后,可逆容量保持在376 mAh/g;而600℃焙烧的样品,第1周可逆容量为641mAh/g,首次库仑效率仅为49.4%,经20次循环后,容量只有272mAh/g。与600℃烧结相比,800℃烧结后的活性材料电化学性能更好一些。
     首次采用机械球磨法和共沉淀法制备Sn-Mo复合材料,并对其结构、形貌和电化学性能进行了比较研究。采用机械球磨法制备的复合材料可逆容量达到307mAh/g,经20次循环后每次循环的容量衰减率3.9%;而共沉淀法制备的复合材料可逆容量达到390mAh/g,经过20次循环,每次循环的容量衰减率只有1.1%,表明其循环性能良好。综上结果显示,采用共沉淀法制备的复合材料的粒度更细更均匀,因此具有更好的电化学性能。
     由球磨法制备了Sn-Cr混合材料,分析研究了Sn-Cr复合电极的充放电曲线和容量微分曲线,其首次放电容量为577mAh/g,可逆充电容量为374 mAh/g,库仑效率达到67%。并从合金的组成及晶体结构入手,讨论了合金Sn-Cr的嵌脱锂机制,构想了一个理想合金负极材料的微观结构模型。
Lithium ion battery is currently one of the best rechargeable batteries and has been extensively applied in various portable electronic equipments.R&D for lithium ion batteries with higher capacity and higher power is undergoing and will help their application in electric vehicles.However,the low capacity and safety of the traditional carbon anode material are becoming the bottleneck to any further improvement of the battery performances.In this thesis,a series of tin-based composites were synthesized through pyrolysisof precursor,which were prepared with liquid precipitation and mechanical milling method,as new anode materials for lithium ion batteries.The prepared samples exhibited large lithium storage capacities and the reversible capacities were about the range from 300 to 800 mAh/g.The influence of reaction conditions on components and construction and particle size was studied.The influence of these properties of the samples on the capacities and cycle-abilities was discussed.A mechanism of Li storage in tin-based composites and characterizations of the electrode reactions were studied.Meanwhile,the structure and morphology of lithium insertion/desertion into/from the electrode as well as the capacity fading were discussed. The approaches for improving the cycle life were researched.
     SnO_2 short nanorods were synthesized using the tin(Ⅳ)chloride as precursor by the hydrothermal method,which diameters and lengths are up to 20-100nm and 50-400 nm, respectively.Their electrochemical properties were also studied.The results show that voltage windows,current density for charge and discharge,and particle morphology effect on their specific capacities,cyclability and rate capability.The short nano-rod shows the best electrochemical properties:the initial discharge capacity was 1166mAh/g and the reversible capacity was 631mAh/g with a rate of capacity fading of 0.8%after 20 cycles at 0.5C rate in the potential range of 0-1.0V.The mechanism of lithium insertion-desertion was proved by cyclic voltammetry tests and the differential capacity.
     Nano-SnOy-SiO_2 composites were prepared by a modified hydrothermal method, using SnCl_2 and equal amounts of Si(OMe)_4 as the starting materials and CO(NH_2)_2 as PH regulator.Fine powders of tin oxide as active materials were doped with highly dispersed silicon oxide as inert materials in atomic or nano-meter scale.In the first lithium insertion step,three clear voltage plateaus on 0.4V,0.9V and 0.7V-0.1V were observed,which were consistent with Sn-Li alloying process.A discharge capacity of 1208 mAh·g~(-1)and a charge capacity of 756 mAh·g~(-1)were achieved,a coulombic efficiency was more than 90%except for the first cycles(62.6%),and the capacity loss per cycle was about 0.9%after cycling 20 times which suggests that tin oxide-based materials work as high capacity anodes for lithium-ion rechargeable batteries.,
     Highly dispersed Sn-Zn-O nano-composite oxides were synthesized using nano-SnO_2 and Zinc powders as the starting materials by solid state reaction method at high temperature(600℃or 800℃).The as-prepared powders were characterized by XRD and SEM.The results indicated the sample sintered at 600℃were composed of Sn、SnO、ZnO multiphase,and the sample sintered at 800℃were composed of Sn、SnO、ZnO and Zn_2SnO_4 multiphase.The gravimetric discharge(Li insertion)-charge(Li extraction)properties of the Sn-Zn-O anodes were measured by an electrolyte of 1 M LiPF_6 solution in a 1:1(v:v)mixture of ethylene carbonate(EC)and dimethyl carbonate (DMC).The results showed that the first reversible capacity of sample sintered at 800℃was 772mAh/g,the coulombic efficiency in the first cycle was 60.1%,the reversible capacity maintained 376 mAh/g after 20 cycles.Meanwhile,the sample was sintered at 600℃,the first reversible capacity was 641mAh/g,the coulombic efficiency in the first cycle was 49.4%and the reversible capacity maintained 272 mAh/g after 20 cycles.The electrochemical performance of the Sn-Zn-O composite sintered at 800℃was better than that sintered at 600℃.
     The preparation and characterization of Sn-Mo composites derived by mechanical milling and coprecipitation process were carried out and comparatively studied.The reversible capacity was more than 390mAh/g and the capacity loss was only 1.1%per cycle after being cycled 20 times for the sample derived by coprecipitation reaction, while that of the sample derived by mechanical milling method was 307mAh/g and 3.9%, respectively.These results show that Sn-Mo comopsites prepared by coprecipitation method possess better electrochemical properties due to their smaller particle size and more uniform distribution of particles sizes.
     The Sn-Cr composites were prepared by mechanical milling method.The curves of the cyclic voltammetry and the differential capacity of the Sn-Cr electrodes were analysed.The initial discharge capacity of 577mAh/g and a charge capacity of 374mAh/g were achieved and a coulombic efficiency was more than 67%.The mechanism of lithium insertion into Sn-Cr alloy based on their composition and crystal structure was discussed.Furthermore,an ideal microstructural model for alloy anode materials was constructed.
引文
[1]陈昌国,余丹梅,黄宗卿.[J].电池,2000,30(4):178.
    [2]王国光,锂离子二次电池正极材料LiMn_2O_4的制备、结构和电化学性能研究,浙江大学博士学位论文,2005,p1.
    [3]吴宇平,戴晓兵,马军旗,程预江.[M].锂离子电池---应用与实践,北京:化学工业出版社,2004:4.
    [4]Murphy D.W.,Broodhead J.,Steelè B.C.H.[M].Materials for advanced batteries,New York:Plenum Press,1980:145.
    [5]Wakihara M.,Yamamoto O.[M].Lithium ion batteries fundamentals and performance.Tokyo:Kodansha Ltd.,1998:1-125
    [6]陈立泉.[J].锂离子电池中的物理问题,物理,1998,27:354-357.
    [7]B.Scrosati:Challenge of portable power,Nature,1996,381:499-500
    [8]郭炳馄,李新海,杨松青.化学电源-电池原理及制造技术[M].中南工业大学出版社,2000.31-48.
    [9]J.M.Tarascon,M.Armand:Issues and challenges facing rechargeable lithium batteries,Nature,2001,414:359-367.
    [10]颜剑,苏玉长,苏继桃,卢普涛.[J].锂离子电池负极材料的研究进展,电池工业,2006,11(4):277-281.
    [11]刘建,王猛,尹大川,黄卫东,高能锂离子电池的研究进展,材料导报,2001,15(7):32-35.
    [12]任旭梅,吴川,锂离子电池正负极材料研究进展,化学研究与应用,2000,12(4):360-364.
    [13]Shi H,Barker J.Structure and lithium intercalation properties of synthetic and natural graphite [J].Electorchem.Soc.,1996,143(11):3466-3472.
    [14]Edward B.,Dahn J R.,Reduction of their reversible capacity in hard-carbon anode materials prepared from sucrose for Li-ion batteries[J].Electrochem.Soc.,1998,145(6):1977-1981.
    [15]Edward B.,Dahn J R.,Li-insertion in hard carbon anode materials for Li-ion batteries [J].Electrochim.Acta.,1999,45:121130
    [16]T.Zheng,J.R.Dahn,J.Electrochem.Soc.142(1995)2581.
    [17]Y.Liu,J.Xue,T.Zheng,J.R.Dahn,Carbon 34(1996)193.
    [18]T.Zheng,J.Electrochem.Soc.142(1995)L211.
    [19]S.Yara,Synth.Met.62(1994)153.
    [20]W.Xing,J.Electrochem.Soc.143(1996)3046.
    [21]唐致远,庄新国,翟玉梅.锂离子蓄电池负极材料的研究进展[J].电源技术,2000,24(2): 108-111.
    [22]Buiel E,George A E,Dahn J R.On the reduction of lithium insertion capacity in hard carbon anode materials with increasing heat-treatment temperature[J].Electrochem.Soc.,1998,145:2252-2257
    [23]Xiang H,Fang Shi-Bi,Jiang Ying-yan.Carbonaceous anodes for lithium ion batteries pre- pared from phenolic resins with different cross-linking densities[J].Electrochem.Sot.,1997,144:L187.
    [24]Xing W.Optimizing pyrolysis of sugar carbons for use as anode materials in lithium -ion batteries[J].Electrochem.Sot.,1996,143(10):3046
    [25]Tatsumi K,Akai T,Imamura T.etal.~7Li-nuclear Magnetic resonance observation of lithium intercalation into mesocarbon microbeads[J].Electrochem.Soc.,1996,143:1923-1930
    [26]Tsuyoshi N,Katsuouori Y Surface fluorination and oxidation of carbon Materials for negative electrode of lithium ion secondary battery[J].Denki Kagaka,1996,64:922-923
    [27]吴升晖,尤金跨,林祖赓锂离子电池碳负极材料的研究[J].电源技术,1998,22(1):35-39.
    [28]Theng T,McKinnon W R,Dahn J R.Hysteresis during lithium insertion inhydrogen-conta ining carbons[J].Electrochem.Soc.,1996,143(7):2137-2145.
    [29]Sato K,Noguchi M,Demachi A,et al.A mechanism of lithium storage in disordered carbons [J].Science,1994,264(22):556-558
    [30]Mabuchi A,Tokumitu K,Fujimoto H,et al.Charge-discharge characteristics of the mesocarb on microbeads heat-treated at different temperature[J].Electrochem.Soc.,1995,142(4):1041-1046.
    [31]Yazami R,Deschamps M.High reversible capacity carbon-lithium negative electrode in Polymer electrolyte[J].Power Sources,1995,54:411-415
    [32]吴宇平,万春荣,姜长印,等.锂离子二次电池碳负极材料的改性[J].电化学,1998,4(3):286-292
    [33]吴字平,万春荣,姜长印,方世璧.[M].锂离子二次电池,北京:化学工业出版社,2002.
    [34]高剑,姜长印,应皆荣,万春荣,电池,2005,35(5):390-392.
    [35]Tsutomu Ohzuku,Atsushi Ueda,Solid State Ionics,1994,69,201.
    [36]Zaghib K,Armand M,Gauthier M,J.Electrochem.Soc,1998,145(9),3136.
    [37]Ferg E,Gummow R.J,Kock A.de,Thackeray M.M.,J.Electrochem.Soc.1994,(141):147.
    [38]Ohzuku T,Ueda A,Yamamoto N,J.Electrochem.Soc.1995,(142):1431.
    [39]Robertson A D,Trevino L,Tukamoto H,et al,J Power Sources,1999,81-82:352-357.
    [40]Prosini P P,Mancini R,Petrucci L,et al,Solid State Ionics,2001,144(1-2):185-192.
    [41]高玲,仇卫华,赵海雷,电池,2004,34(5):351-352.
    [42]高玲,仇卫华,赵海雷,北京科技大学学报,2005,27(1):82-85.
    [43]Nakahara K,Nakajima R,Matsushima T,et al,J Power Sources,2003,117(1-2):131-136.
    [44]Gao J,Jiang C Y,Ying J R,Wan C R,J Power Sources,2006,155:364-367.
    [45]Poizot P,LarueIle S,Grugeon S,Tarascon J M,J Electrochem.Soc.,2002,149(9):A 1212-A 1217.
    [46]Grugeon S,Laruelle S,Herrera-Urbina R,Dupont L,Poizot P,Tarascon J M,J.Electrochem.Soc.,2001,148(4):A285-A292
    [47]Larcher D,Bonnin D,Cortes R,Rivals I,Personnaz L,Tarascon J M,J.Electrochem.Soc,2003,150(12):A1643-A 1650
    [48]Poizot P,Laruelle S,Grugeon S,Tarascon J M,Nature,2000,407:496.
    [49]Dolle M,Poizot P,Dupont L,etai,Electrochemical and Solid-State Letters,2002,5(1):A18-A21.
    [50]Leyzerovich N N,Brarnnik K G,Buhrmester T,Ehrenberg H,Fuess H,J Power Sources,2004,127:76-84
    [51]Sharma N,Shaju K M,Subba Rao G V,Chowdari B V R,Dong Z L,White T J,Chem.Mater,2004,16:504-512
    [52]Sharma N,Shaju K M,Subba Rao G V,Chowdari B V R,Electrochim.Acta,2004,49:1035-1043.
    [53]Ibarra-Palos A,Darie C,Proux O,Hazemann J L,Aldon L,Jumas J C,Morcrette M,Strobel P,Chem.Mater.,2002,14:1166-1173.
    [54]Okada S,Tonuma T,Uebo Y,Yamaki J,J Power Scsurces.2003,119-121:621
    [55]Wakihara M,Ikuta H,Uchimoto Y.Manganese vanadates and molybdates as anode materials for lithium-ion batteries,in Advances in Lithium-ion Batteries.Eds.Schalkwijk W,Scrosati B.New York:Kluwer Academic/Plenum Publisher.2002.
    [56]Chang S K,Kim H J,Hong S T,J.Power Sources,119-121,69-75.
    [57]Courtney Ian A.,Dahn J.R.[J].J.Electrochem.Soc.,1997,144(6):2045-2052.
    [58]Scrosati B.,Recent advances in lithium ion battery materials[J].Electrochimica Acta,2000,45:2461-2466.
    [59]Besenhard J.O.,Yang J.,W'mter M.,Will advanced lithium-alloy anodes have a chance in lithium -ion batteries[J].J.Power Sources,1997,68:87-90.
    [60]Brousse T.,Retoux R.,Herterich U.,Schleich D.M.,Thin-film crystalline SnO2- Lithium electrodes[J].J Electrochem.Soc.,1998,145(1):1-4.
    [61]Li J.Z.,Li H.,Wang Z.X.,Huang X.J.,Chen L.Q.,The interaction between SnO anode and electrolytes[J].J.Power Sources,1999,81-82:346-351.
    [62]闫俊美,杨勇[J],非碳类新型锂离子蓄电池负极材料研究进展,电源技术,2004,28(7):435-439.
    [63]N.C.Li,C.R.Martin,B.Scmsati,Electrochem.Solid-State Lett,2000,3:316
    [64]N.C.Li,C.R.Maitin,J.Electrochem.Soc.,2001,148:A164
    [65]Idota Y.,Kubota T.,Tin-based amorphous oxide:A high capacity lithium-ion-storage material [J].Science,1997,276:1395-1397.
    [66]Wang Y.,Lee J Y,Zeng H C,Chem.Mater.,2005,17:3899-3903.
    [67]Wang Y.,Lee J Y,J.Phys.Chem.B,2004,108:17832-17837.
    [68]Brousse T,Lee S M,Pasquerear L,Derives D,Schkeich D M.Composite negative electrodes for lithium ion cells.SolidState Ionics,1998,113-115(1):51-56.
    [69]Aurbach D,Nimberger A,Markovsky B,Levi E,Sominski E,et al,Chem.Mater.,2002,14:4155-4163.
    [70]Li H,Huang X J,Chen L Q.,Structure and electrochemical properties of anodes consisting of modified SnO.J Power Sources,1999,81- 82:335 - 339.
    [71]Li H,Huang X J,Chen L Q.,Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries.J Power Sources,1999,81 - 82:340 - 345.
    [72]Yu Y,Chen C H,Shi Y,Adv.Mater.2007,19(7):993-997
    [73]Morimoto H,Nakai M.Mechanochemical synthesis and anode properties of Sn-based amorphous materials[J].J Electrochem.Soc.1999,146:3970-3973.
    [74]Fei Ding,Fu Zhengwen,J Electrochem.Soc.,1999,146:3554-3559.
    [75]Lei X F,Xiang J F,Ma X L,Wang C W,Sun J T,J Power Sources,2007,166:509-513.
    [76]Morales J,Sanchez L,J Electrochem.Soc.,1999,146:1640-1642.
    [77]雷钢铁,苏光耀,高德淑,李朝晖,电池,2001,31(6):294-297.
    [78]Rong A,Gao X P,Li G R,Yan T Y,Zhu H Y,Qu J Q,Song D Y,J Phys.Chem.B,2006,110:14754-14760.
    [79]Wang C,Appleb Y A J,Little F E.Electrochemical study on nano-Sn,Li4.4Sn and A1Si0.1powders used as secondary lithium battery anodes[J].J Power Sources,2001,93:174-185.
    [80]毛信表,王连邦,马淳安,浙江工业大学学报,2006,34(4):364-368.
    [81]Winter M,Besenhard J O,Spahr M E,etal,Adv.Mater.,1998,10:725-763.
    [82]孙竞晔,王莉,何向明,任建国,蒲薇华,姜长印,万春荣,科技导报,2006,24(8):73-74.
    [83]Tamura N,Ohshita R,Yonezu I,et al.J Power Sources,2002,107(1):48-55.
    [84]Tamura N,Ohshita R,Fujitani S,et al..J Electrochem Soc,2003,150(6):A679-A683.
    [85]Beattie S D,Dahn J R,J.Electrochemical Society,2003,150(7):A894-A898.
    [86]Kim D G,Kim H,Sohn H J,et al.,J Power Sources,2002,104:221-225.
    [87]Xia Y,Sakai T,Fujieda T,et al.,J.Electrochemical Society,2001,148(5):A471-A481.
    [88]Mukaibo H,Sumi T,Yokoshima T,Momma T,Osaka T,Electrochem.Solid-State Lett.,2003,6(10):A218-A220.
    [89]Kim H,Choi J,Sohn H,et al.,J Electrochemical Society,1999,146(12):4401-4405.
    [90]Wang G X,Sun L,Brandhurst D H,et al.,J Alloys and Compounds,2000,306:249-252.
    [91]Jung H,Park M,Yoon Y G,et al.,J Power Sources,2003,115:346-351.
    [92]任建国,王科,何向明,姜长印,万春荣,化学进展,2005,17(4):597-603.
    [93]Fransson L M L,Vaughey J T,Benedek R,et al.,Electrochemistry Communications,2001,3:317-323.
    [94]Vaughey J T,Hara J O,Thackeray M M.,Electrochemical and Solid State Letters,2000,3(1):13-16
    [95]Johnson C S,Vaughey J T,Thackeray M M.,Electrochemistry Communications,2000,2:595-600.
    [96]Lindsay M J,Wang G X,Liu H K.J Power Sources,2003,119:84-87.
    [1]陈允魁.仪器分析.上海:上海交通大学出版社,1991.
    [2]M.Thompson,J.N.wlalsh(符斌,殷欣平译).ICP光谱分析指南[M].北京:冶金出版社,1991:40-120.
    [3]殷敬华,莫志深.现代高分子物理学.北京:科学出版杜,2001.
    [1]吴宇平,戴晓兵,马军旗,等.锂离子电池[M],北京:化学工业出版社,2004,104.
    [2]黄峰,周运鸿,袁正勇,et al.[J].电池,2002,32(5):298-300.
    [3]齐智,吴锋,[J].电池,2005,35(4):268-269.
    [4]Y.Idota,T.Kubota,A.Matsufuji,Y.Maekawa,T.Miyasaka,Science 276(1997)1395.
    [5]I.A.Courtney,J.R.Dahn,J.Electrochem.Soc.144(1997)2943.
    [6]G.X.Wang,Y.Chen,L.Yang,J.Yao,S.Needham,H.K.Liu,J.H.Ahn,J.Power Sources 146(2005)487.
    [7]A.Sivashanmugam,T.Premkumar,S.Gopukumar,N.G.Renganathan,M.Wohlfahrt-Mehrens,J.Garche,J.App.Electrochem.35(2005)1045.
    [8]何则强,二氧化锡基负极材料的研究,中南大学博士学位论文,2004.
    [9]A.Ulus,Y.Rosenberg,L.Burstein,E.Peled,J.Electrochem.Soc.149(2002)635.
    [10]雷钢铁,苏光耀,高德淑,et al,[J]电池,2001,31(6):294-297.
    [11]W.F.Liu,X.J.Huang,Z.X.Wang,et al.[J].J.Electrochem.Soc.,1998,145(1):59-62.
    [12]J.O.Besenhard,J.Yang,M.Winter.[J].J.Power Sources,1997,68(1):87-90.
    [13]Hatchard T D,Obrovac M N,Dahn J R,J.Electrochem.Soc.153(2006)A282-A287.
    [14]Wagemaker M,Kentgens APM,Mulder FM,.Nature,418(2002)397-399.
    [15]齐智,吴锋,无机化学学报,21(2005)257-260
    [16]Gao X P,Pan G L.et al.J.Phys Chem.B,108(2004)5547-5551
    [17]Zhang S S,Xu K,Jow Y R.Electrochim Acta.48(2002)241
    [18]Fleischauer M D,Mar R,Dahn J R,J.Electrochem.Soc.154(2007)A151-A155.
    [19]Zhang J J,Zhang X,Xia Y Y,J.Electrochem.Soc.154(2007)A7-A13.
    [20]Wang X,Sone Y,Segami G,Naito H,Yamada C,Kibe K,J.Electrochem.Soc.154(2007)A14-A21
    [21]A.P.Rizzato,L.Broussous,Journal of Non-crystallineSolids,2001,284:61-67.
    [22]肖卓炳,刘文萍,麻明友,陈上,吉首大学学报,2006,27(3):106-109.
    [23]N.C.Li,C.R.Martin,B.Scrosati,Electrochem.Solid-State Lett.3(2000)316
    [24]侯德东,刘应开.无机材料学报,2002,17(4):691-595.
    [25]Feng Li,Jiaqiang Xu,Sensors and Actuators B 2002,81:165-169.
    [26]F.Li,X.Yu,H.Pan,M.Wang,X.Xin,Solid State Sciences 2(2000)767.
    [27]Zhu Luping,Jia Zhijie,Tang Yiwen,et.al,Chin.J.Chem.Phy,2005,18:237.
    [28]Cherian M,Rao M.Catalysis,2002,18:225-230.
    [29]R.Zhang,J.Y.Lee,Z.L.Liu,J.Power Sources 112(2002)596.
    [30]I.A.Courtney,J.R.Dahn.[J].J.Electrochem.Soc.,1997,144(6):2043-2052.
    [31]Y.Wang,J.Y.Lee,J.Phys.Chem.B,108(2004),17832-17837.
    [32]L i H,Huang X J,Chen L Q.J Power Source[J],81-82(1999):340
    [1]曹高劭,赵新兵.金属Sb与石墨复合材料的电化学吸放锂性质[J].稀有金属材料与工程,2003,32(11):915-918.
    [1]董健,李晓锋,严磊,等.锂离子电池碳阳极材料的研究进展[J].新型碳材料,1998,13(3):55-62.
    [1]Y.Idota,A.Matsufuji,Y.Mackawa,T.Miyasaka,Science 276(1997)1395-1397.
    [4]S.Kim,H.Ikuta,M.Wakihara,Solid State Ionics 139(2001)57-65.
    [5]P.Poizot,E.Baudrin,S.Laruelle,L.Dupont,M.Touboul,J.-M.Tarascon,Solid State Ionics 138(2000)31-40.
    [6]R.Kalai Selvan,N.Kalaiselvi,C.O.Augustin,C.H.Doh,C.Sanjeeviraja,J.Power Sources 157(2006)522-527.
    [7]G.X.Wang,Y.Chen,L.Yang,J.Yao,S.Needham,H.K.Liu,J.H.Ahn,J.Power Sources 146(2005)487-491.
    [8]M.Mohamedi,S.-J.Lee,D.Takahashi,M.Nishizawa,T.Itoh,I.Uchida,Electrochim.Acta.46(2001)1161-1168.
    [9]N.Li,C.R.Martin,B.Scrosati,J.Power Sources 97-98(2001)240-243.
    [10]Lei X F,Xiang J F,Ma X L,Wang C W,Sun J T,J.Power Sources 166(2007)509-513.
    [11]Zhao Y M,Zhou Q,Liu L,Xu J,Yan M M,Jiang Z Y,Electrochim.Acta.51(2006)2639-2645.
    [12]Zhao Q R,Xie Y,Dong T,Zhang Z G,J.Phys.Chem.C 111(2007)11598-11603.
    [13]Aurbach D,Nimberger A,Markovsky B,Levi E,Sominiski E,Gedanken A,Chem.Mater.14(2002)4155-4163.
    [14]齐智,吴锋,电池,35(2005)268-269.
    [15]何则强,熊利芝,肖卓炳,黄可龙,麻明友,吴显明,精细化工,23(2006)12-15.
    [16]Park M S,Wang G X,Kang Y M,Wexler D,Dou S X,Liu H K,Angew.Chem.119(2007)764-767.
    [17]I.A.Courtney,J.R.Dahn,J.Electrochem.Soc.144(6)(1997)2045-2052.
    [18]I.A.Courtney,J.R.Dahn,J.Electrochem.Soc.144(9)(1997)2943-2948.
    [19]S.Machill,T.Shodai,Y.Sakurai,J-I.Yamaki,J.Power Sources 73(1998)216-223.
    [20]Z.Q.He,X.H.Li,L.Z.Xiong,X.M.Wu,Z.B.Xiao,M.Y.Ma,Materials Research Bulletin 40(2005)861-868.
    [21]H.Morimoto,M.Nakai,M.Tatsumisago,T.Minami,J.Electrochem.Soc.146(1999)3970-3973.
    [22]S.Machill,T.Shodai,Y.Sakurai,J-I.Yamaki,J.Solid State Electrochem.3(1999)97-103.
    [23]H.Morimoto,M.Tatsumisago,T.Minami,Electrochem.Solid-State Lett.4(2001)A 16-A 18.
    [24]H.Huang,E.M.Kelder,L.Chen,J.Schoonman,J.Power Sources 81-82(1999)362-367.
    [25]H.Huang,E.M.Kelder,L.Chen,J.Schoonman,Solid State Ionics 120(1999)205-210
    [26]Tsutomu M.Lithium ion secondary battery[P].EP:0762 521,1997.
    [27]C.Xu,J.Tamaki,N.Miura,N.Yamazoe,J.Mater.Sci.,27(1992)963.
    [28]Nam S C,Yoon Y S,Cho W I,et al.Electrochemistry Communications,2001,3(1):6-10.
    [29]H Li,X Huang,L Chen.Electrochemical and Solid-State Lett.,1998,1(6):241-243.
    [30]J.Wang,I.D.Raistrick,R.A.Huggins,J.Electrochem.Soc.133(1986)457-460.
    [1]Beaulieu L Y,Hewitt K C,Dahn J R,et al.The electrochemical reaction of Li with amorphous Si-Sn alloys[J].J Electrochem Soc,2003,150(2):A149-A156.
    [2]Wanuk C,Jeong Y L,Bok H J,et al.Microstructure and electrochemical properties of a nanometer-scale tin anode for lithium secondary batteries[J].J Power Sources,2004,136:154-159.
    [3]Yang J,Takeda Y,Imanishi N,et al.SnSbx-based composite electrodes for lithium ion cells[J].Solid State Ionics,2000,135:175-180.
    [4]Kepler K D,Vaughey J T,Thackeray M M.J Power Sources,1999,81-82:383-387.
    [5]Kim D G,Kim H,Kang T,et al.Nanosized Sn-Cu-B alloy anode prepared by chemical reduction for secondary lithium batteries[J].J Power Sources,2002,104(2):221-2251.
    [6]LIU Yu(刘宇),XIE Jing-ying(解品莹),YANG Jun(杨军),et al.锂离子电池中SnCu_x/CMS 复合材料的制备[J].Electrochemistry(电化学),2003,9(1):87-91.
    [7]Wang G.X.,Sun L,Bradhurst D H,et al..Journal of Alloys and Compounds,2000,299:L12-L15.
    [8]Mao Ou,Dunlap R A,Dahn J R.Mechanically alloyed Sn-Fe(-C)powders as anode materials for Li-ion batteries Ⅰ.The Sn2Fe-C system[J].J Electrochem Soc,1999,146:405-413.
    [9]LEI Gang-tie(雷钢铁),SU Guang-yang(苏光耀),GAO De-shu(高德淑),et al.锂离子电池锡基负极材料研究概况[J].Battery Biomonthly(电池),2001,31(6):294-297.
    [10]Chen Z H,Christensen L,Dahn J R..Electrochemistry Communi- cations,2003,5(11):919-923.
    [11]PU Wei-hua(蒲薇华),REN Jian-guo(任建国),WAN Chun-rong(万春荣),et al.电沉积制备的锂离子电池合金负极及性能研究[J].Inorganic Materials(无机材料学报),2004,19(1):86-92
    [12]C.Wagner,G.Muilnberg,Handbook of X-ray photoelectron spectroscopy:Physical Electronics Division.Perkin-Elmer Corp.,MN,1979.
    [13]J.Wang,P.King,R.A.Huggins,Solid State Ionics 20(1986)185.
    [14]T.Fujieda,S.Takahashi,S.Higuchi,J.Power Sources 40(1992)283.
    [15]I.A.Courtney,J.R.Dahn,J.Electrochem.Soc.144(1997)2943.
    [16]Belliard F,Irvine J T S..J Power Sources,2001,97-98:219-224.
    [1]J.R.Dahn,Tao Zheng.Yinghu Liu.J.S.Xue,[J].Science,1990,270:570-593
    [2]Weihua Qiu,Gang Zhang.Shigang Lu,qingguo Liu.[J].Solid State Ionics.1999.121:73-77.
    [3]谢健,某些纳米锑基金属间化合物的合成及电化学吸放锂行为,浙江大学博士学位论文,2005.
    [4]Takamtn,Saloh A,Ohsaki T,et al.Electrochimica Acta,1997,42(16):2537-2543.
    [5]Zheng T,Liu Y,fuller E W,et al.J Electrochem.Soc,1995,142(8):2581,2590.
    [6]Tarascon J M,Armand M.Nature,2001,414:359-367.
    [7]吴宇平,戴晓兵,马军旗,等.锂离子电池[M],北京:化学工业出版社,2004,104.
    [8]Y.Idota,Y.Kubota,A.Matsufuji,Y.Maekawa,T.Miyasaka,Science 276(1997)1395.
    [9]I.A.Courtney,J.R.Dahn,J.Electrochem.Soc.144(1997)2943-2948.
    [10]G.X.Wang,Y.Chen,L.Yang,J.Yao,S.Needham,H.K.Liu,J.H.Ahn,J.Power Sources 146(2005)487.
    [11]A.Sivashanmugam,Y.Premkumar,S.Gopukumar,N.G.Renganathan,M.Wohlfahrt-Mehrens,J.Garche,J.App.Electrochem.35(2005)1045.
    [12]何则强,二氧化锡基负极材料的研究,中南大学博士学位论文,2004.
    [13]A.Ulus,Y.Rosenberg,L.Burstein,E.Peled,J.Electrochem.Soc.149(2002)635.
    [14]雷钢铁,苏光耀,高德淑,et al,[J]电池,2001,31(6):294-297.
    [15]W.F.Liu,X.J.Huang,Z.X.Wang,et al.[J].J.Electrochem.Soc.,1998,145(1):59-62.
    [16]J.O.Besenhard,J.Yang,M.Winter.[J].J.Power Sources,1997,68(1):87-90.
    [17]蒋小兵,赵新兵,张丽娟,曹高劭,周邦昌,邬正泰,材料科学与工程,2001,19(1):60.
    [18]赵海鹏,何向明,姜长印,万春荣.化学进展,2006,18(12):1710.
    [19]Larcher D,Beaulieu L Y,Macreil D D,Dahn J R.,J.Electrochemical Society,2000.147(5):1658-1662.
    [20]Winter M,Besenhard J O.Electrochim Acta,1999,45:31-50.
    [21]林克芝,王晓琳,徐艳辉,电源技术,2005,29:62.
    [22]Wachtler M,Besenhard J O,Winter M.,J.Power Sources,94(2001):189-193.
    [23]Yang J,Takeda Y,Imanishi N.,et al.,J.Electrochemical Society,146(1999):4009-4013.
    [24]Li H,Wang Q,Shi J,et al.Chem.Mater.,14(2002)103-108.
    [25]任建国,王科,何向明,姜长印,万春荣,化学进展,17(4)(2005):597-603.
    [26]蒲薇华,任建国,万春荣,杜志明,无机材料学报,19(2004)86-92
    [27]Kim D G,Kim H,Sohn H J,J Power Sources,104(2002)221-225.
    [28]Hassoun J,Panero S,Simon P,Tabema P L,Scrosati B,Adv.Mater.,19(2007)1632-1635.
    [29]Xie J,Zhao X B,Cao G S,Tu J P,J Power Sources,164(2007)386-389.
    [30]Fernández A,Martín F.,Morales J.,Ramos-Barrado J R,Sánchez L,Electrochem.Acta,51(2006)3391-3398.
    [31]谢维,Al与Al基金属间化合物作为锂离子二次电池负极材料的研究,中南工业大学博士学位论文,2005.
    [32]郭炳琨,徐徽,王先友,et al.锂离子电池[M].第二版,长沙:中南大学出版社,2002.
    [33]Li H,PH.D Thesis,Studying on Anode Materials and Kinetic in Lithium Ion Batteries[D].Beijing:Institute of Physics,Chinese Academy of Science,1999.
    [34]Thackeray MM,Johnson CS,Kahaian AJ,Kepler KD,Vaughey JT,et al,J.Power Sources 1999;81-82:60-6.
    [35]Kepler KD,Vaughey JT,Thackeray MM,J.Power Sources 1999;81-82:383-7.
    [36]Courtney I.A.,Dahn J.R.,J.Electrochem.Soc.,1997,144(6):2045-2052.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700