用户名: 密码: 验证码:
Si-SiO_x-Sn/C复合负极材料的合成及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前锂离子电池的应用越来越广泛。与其他类型的二次电池相比锂离子电池具有较多优点,比如,工作电压和能量密度高,循环寿命长,自放电率小,无记忆效应且电极材料不含有毒物质,是现代的“绿色电池”。广泛的应用于移动电话,笔记本电脑,电动车和混合电动车中。锂电池负极材料主要采用已经商业化的碳类材料,但由于它的理论比容量较低,且由于碳材料的嵌锂电位与金属锂接近,在快速充电时存在安全隐患,所以开发高比容量和性能安全的负极材料成为必要。由于硅和锡的理论比容量高(分别为4200 mAh g-1,994 mAh g-1),成为研究热点。但由于它们在充放电过程中存在严重的体积膨胀收缩,导致容量衰减较快,循环性能较差,极大的影响了材料的实用价值。利用硅锡的复合物或其合金,可以有效地改善它们的循环性能。本论文研究了一氧化硅和二氧化锡均匀混合后在碳的作用下于高温管式炉中发生反应,合成新的具有充放电效应的电极材料。考察了温度的影响,电化学性能及交流阻抗。通过实验研究得到以下结论:
     1.将SiO、纳米Sn02和碳混合后湿磨,于氮气保护下在管式炉中加热到750℃,800℃,850℃,900℃,950℃和1000℃。经XRD分析得知,新合成的材料中温度在800℃及以上时,Sn02经碳还原转化为Sn金属,750℃时Sn02未发生变化。SiO高温下发生自身歧化反应,使得材料中含有Si02晶体和无定形硅,且在900℃时SiO2成无定形。由XRD分析得知在900℃合成的材料较理想。
     2.将各个温度下合成的材料分别与金属锂组成半电池,进行电化学性能测试。由充放电数据得知与XRD分析结果保持一致。90℃时在225 mAg-1的电流密度下,其首次放电比容量高达1144.2 mAh g-1,具有较高的比容量。由此可确定最佳合成温度是900℃。
     3.对900℃下合成的材料与金属锂组成半电池进行倍率性能测试。结果表明0.5 C、1 C、5 C、10C倍率下材料的首次放电比容量分别1144.2 mAh g-1,715.8 mAh g-1,359.0 mAh g-1和282.9 mAh g-1。倍率越大,首次放电比容量越小。
     4.900℃时合成的材料与金属锂组成的半电池在225 mA g-1电流密度下,分别在循环至第一次,第三次和第三十次时在0.02 V电压下进行交流阻抗研究。阻抗图谱曲线随着循环次数的增多,高频区的半圆逐渐增大,表明材料的充放电越来越难。电极界面和活性物质间电阻的增大也可能是造成容量衰减的一个原因。
Lithium-ion cells are considered presently the best choice for rechargeable batteries. Lithium-ion cells have many advantageous compared with other secondary batteries. Lithium-ion battery has high voltage, high energy density, long cycle life, self-discharge rate is small, no memory effect and also the electrode material does not contain toxic substances, is the modern "green battery." It is widely used in mobile phones, notebook computers, electric vehicles and hybrid electric vehicles. Since the first commercialization of Li-ion batteries by Sony in 1991, graphite carbon has been the favorable anode material for its good reversibility and stability with thousands of cycles. However since the theoretical capacity (372 mAh g-1) of graphite is limited, new anode materials with high specific capacity are searched to satisfy the requirement of advanced power sources in such applications as electric vehicles with extended range.
     The search for next-generation anode materials of Li-ion batteries has focused on Si- and Sn-based oxide materials that offer a considerably larger specific (4200 mAh g-1 and 994 mAh g-1) and volumetric capacity than conventional carbonaceous materials. Such studies indicate that silicone monoxide, SiO, has a large discharge specific capacity. However, due to their serious volume change when charging and discharging, leading to fast capacity fading and poor cycle performance, it is a great impact to the material of its practical value. The composite of Si- and Sn-based compounds or alloys can effectively improve their cycling performance. In this work, we studied Si-SiOx-Sn/C composite which was prepared by thermal reduction method, and tested it as anode material for Li-ion battery. The composites were synthesized by heating the milled mixture of SiO, SnO2 and carbon in an inert gas filled furnace. The effects of temperature, electrochemical properties and impedance were researched, and the results were as follows:
     1. Si-SiOx-Sn/C composites were prepared in following steps:the mixture of SiO powder, carbon powder and Nano-SnO2 powder was milled in a planetary ball mill for 5 h. The milled composites were dispersed into the acetone solvent. The dried solid mixtures were heated to 750℃,800℃,850℃,900℃,950℃and 1000℃for 2 h respectively in a furnace tube under an inert atmosphere. The XRD results show that SnO2 can be reduced into Sn metal above 800℃, and silicon-mono-oxide is transformed into silicon and silicon dioxide (2SiO→Si+SiO2). Further results indicated that the composite heated at 900℃for 2 h is better in performance.
     2. Charge and discharge measurements were carried out employing a two-electrode 2025 coin cell. Lithium metal was used as the counter electrode. When the composite was heated at 900℃for 2 h, the first discharge capacity of the composite anode can reach as high as 1144.2 mAh g-1 under a constant current density of 225 mA g-1.
     3. Further results show that the first discharge capacity of the composite anode heated at 900℃for 2 h can reach 1144.2 mAh g-1、715.8 mAh g-1、359.0 mAh g-1 and 282.9 mAh g-1 under 0.5 C、1 C、5 C、10 C.
     4. We researched the typical EIS Nyquist plots of composite anode heated at 900℃, after the first, third and 30 th cycles. The diameter of the semicircle becomes larger with the increase of cycle number, which indicates that the charge transfer reaction process becomes more difficult as charge and discharge cycles proceed. Increase of interface and particle contact resistance could be a cause of the capacity decay.
引文
[1]S. Yoda, K. Lshihara. The advent of battery-based society and the global environment in the 21st century. J. Power Sources,1997,68:3-7
    [2]雷永泉,万群,石永康.新能源材料[M].天津大学出版社,2000,123-124
    [3]朱华丽.控制结晶法及反电离子共掺杂制备改性锰酸锂的研究.中南大学博士论文,2005
    [4]]施志聪 杨勇,聚阴离子型锂离子电池正极材料研究进展.化学进展.2005.17(4)
    [5]K.Brandt, Historical development of secondary lithium batteries, Solid State Ionics,1994, 69(3-4):173~183
    [6]杨遇春.二次锂电池进展.电池,1993,23(5):230-233
    [7]安富强,其鲁,王剑等.电动汽车用动力锂离子二次电池系统性能的研究.北京大学学报(自然科学版),2011,47(1):1-8
    [8]L. Y. Beaulieu, K. C. Hewitt, R. L. Turner, et al. The Electrochemical Reaction of Li with Amorphous Si-Sn Alloys. Journal of The Electrochemical Society,2003,150(2):A149~A156
    [9]Hong Guo, Hailei Zhao, Chaoli Yin, Weihua Qiu. Si/SnSb alloy composite as high capacity anode materials for Li-ion batteries. Journal of Alloys and Compounds 2006,426:277~280
    [10]S.A. Needham, G.X. Wang, H.K. Liu. Electrochemical performance of SnSb and Sn/SnSb nanosize powders as anode materials in Li-ion cells. Journal of Alloys and Compounds, 2005,400:234-238
    [11]T. D. Hatcharda, and J. R. Dahna, Study of the Electrochemical Performance of Sputtered Si1-xSnx Films. Journal of The Electrochemical Society,2004,151(10):A1628~A1635
    [12]Mingqi Li, Zuolong Yu, Meizhen Qu, Preparation of SixCo0.3Cu0.3Cr0.6Al0.2/modified graphite sphere composites and their electrochemical performance as anode materials for Li-ion batteries. Journal of Alloys and Compounds,2010,491:643~648
    [14]杨书廷,锂离子电池正极材料的合成及性能研究,大连理工大学博士论文,2007.
    [13]贺本林,锂离子电池的新研究.兰州大学博士论文,2007
    [15]杜翠薇.锂离子电池非碳负极材料的研究进展[C].第二十四届中国化学与物理电源学术会论文集,哈尔滨,2000,294-295
    [16]汪继强.锂离子蓄电池技术发展及市场前景.电源技术,1996,26(4):147-151
    [17]陈立泉.锂离子正极材料的研究进展.电池,2002,32(6):6-8
    [18]吴宇平,万春荣,姜长印.锂离子二次电池.北京:化学工业出版社,2002:57-59
    [19]吴宇平.锂离子蓄电池锡基负极材料的研究.电源技术,1999,23(3):191-193
    [20]王涛.胶态锂离子电池及其材料的研究.复旦大学博士学位论文,上海,2003
    [21]邱祥云,庄全超,王红明等.电解液组成对尖晶石LiMn2O4中锂离子嵌脱过程的影响.物理化学学报,2010,26(2):1499-1506
    [22]J. Lipkowski., Philip N. R., The electrochemistry of novel materials [M], New York:VCH Publisher Inc,1994:116~117
    [23]刘建睿,王猛,尹大川等.锂离子蓄电池正极材料锂钒氧化物研究进展.电源技术,2001,25(3):305-311
    [24]徐峙晖,锂离子电池正极材料LIFePO4的合成与电化学性能研究.四川大学博士论文,2006
    [25]马贵龙,孙延先,乔峰华等.磷酸铁锂电池的新发展.科技园地,2008
    [26]Masataka Wakihara, Recent developments in lithium ion batteries, Materials Science and Engineering R,2001,33 (4):109~134
    [27]彭文杰.锂离子电池正极材料的合成与性能及电池制作技术研究.中南大学,博十学位论文.2001
    [28]J.M. Tarascon, M.Amrnad. Issues and challenges facing rechargeable lithium battery, Nature, 2001,414:359~367
    [29]任学佑.锂离子电池及其发展前景.电池,1996,26(1):38-40
    [30]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M]化学工业出版社2007:130-131
    [31]徐华云.锂离子电池正极材料的制备改性及表征.中国科学技术大学博士论文,2007
    [32]H.Shi, J.Barker, M.Y.Saidi, R. Koksbang.Structure and lithium intercalation properties of synthetic and natural graphite. J.Electrochem.Soc,1996,143 (11):3466~3472
    [33]Masataka Wakihara, Recent developments in lithium ion batteries, Materials Science and Engineering R,2001,33 (4):109~134
    [34]Bruno Scrosati, Lithium rocking chair batteries:an old concept. J. Electrochem.Soc,1992, 139 (10):2776~2781
    [35]A.C.Dillion, K.M.Jones, T.A.Bekkedah, et al. Storage of hydrogen in single-walled carbon nanotubes, Nature,1997,386:377~379
    [36]B.Z.Fang, H.S.Zhou, Itaru Honma, Ordered Porous Carbon with Tailored Pore Size for Electrochemical Hydrogen Storage Application.J.Phy, Chem.B,2006,110:4875~4880
    [37]殷雪峰,刘贵昌.锂离子电池炭负极材料表面改性的研究进展.炭素,2005,4(124),31-34
    [38]孙颢,何向明,李建军等.锂离子电池Li3Mx N(M:Co, Ni,Cu)系列负极材料研究进展.化工新型材料,2006,34(10)
    [39]宋粤华,非化学计量氮化锂基锂离子电池阳极材料研究.盐湖研究,2002,10(2)
    [40]J. Yang, Y. Takeda, N. Imanishi, et al. SiOx-based anodes for secondary lithium batteries. Solid State Ionics,2002,152~153,125~129
    [41]Q. Si, K. Hanai, T. Ichikawa, A. Hirano, et al. A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries. Journal of Power Sources.2010,195, 1720~1725
    [42]A. Timmons, A. D. W. Todd, S. D. Mead, et al. Studies of Si1-xCx Electrode Materials Prepared by High-Energy Mechanical Milling and Combinatorial Sputter Deposition. Journal of The Electrochemical Society,2007,154 (9):A865-A874
    [43]H. Huang, E.M. Kelder, L. Chen, et al. Electrochemical characteristics of Sn 1-xSix O2 as anode for lithium-ion batteries. Journal of Power Sources,1999,81~82,362~367
    [44]Jishi Zhao, LiWang, Xiangming He, et al. A Si-SnSb/pyrolytic PAN composite anode for lithium-ion batteries. Electrochimica Acta.2008,53,7048~7053
    [45]Mijung Noh, Yoojung Kwon, Hyojin Lee, et al. Amorphous Carbon-Coated Tin Anode Material for Lithium Secondary Battery. Chem. Mater.2005,17,1926~1929
    [46]A. Aboulaich, M. Mouyane, F. Robert, et al. New Sn-based composites as anode materials for Li-ion batteries. Journal of Power Sources,2007,174,1224~1228
    [47]A. Palenzona, P. Manfrinetti, M.L. Fornasini. Phase diagram of the Ca-Sn system. Journal of Alloys and Compounds,2000,312,165-171
    [48]Hyo-Jin Ahn, Youn-Su Kim, Kyung-Won Park, et al. Use of Sn-Si nanocomposite electrodes for Li rechargeable batteries. Chem. Commun,2005,43~45
    [49]Yoo-Sung Lee, Jong-Hyuk Lee, Yeon-Wook Kim, et al. Rapidly solidified Ti-Si alloys/carbon composites as anode for Li-ion batteries. Electrochimica Acta,2006,52, 1523~1526
    [50]何则强,熊利芝,肖卓炳.纳米SnO的溶胶-凝胶法制备与电化学性能.无机化学学报,2006,22(2)
    [51]任玉荣,瞿美臻,于作龙.SiO/CNTs:新型锂离子电池负极材料.中国科学:化学,2009,39(12):1593-1597
    [52]梁英,张勇,田志高等.纳米SnO2-SiO2复合氧化物的制备与电化学性能.电源技术,2008,32(12):841-844
    [53]Ying Liang, Jing Fan, Xiao-hong Xia, et al. Modified hydrothermal synthesis of SnOy-SiO2 for lithium-ion battery anodes. Electrochimica Acta,2007,52,5891~5895
    [54]V. Subramanian, William W. Burke, H.W. Zhu, et al. Nanostructured SnO2:Microwave Synthesis and Electrochemical Properties as Lithium Battery Anode Materials. ECS Meeting,
    [55]王保峰,二次锂电池中高容量硅/碳复合负极材料的合成及电化学研究.中国科学院研究生院博土学位论文.2004
    [56]M Jean, A Tranchant, R Messina. Reactivity of lithium intercalated into petroleum coke in carbonate electrolytes. J. Electrochemical. Soc,1996,143(2):391~394
    [57]Kuniaki T, Karim Z, Yoshihiro. Anode performance of vapor-grown carbon fibers in secondary lithium-ion batteries. J Electrochemical Soc,1995,142(4):1090~1096
    [58]T Zheng, Y H Liu, J R Dahn, et al. Lithium insertion in High Capacity carbonaceous materials. J.Electrochem.Soc.1995,142:2581~2590
    [59]T Zheng, Q Zhong, J R Dahn. High-Capacity carbons prepared from phenolic resin for anodes of lithium-ion batteries. J.Electrochem.Soc.1995,142:L211-L214
    [60]W Xing, J. S. Xue, J. R. Dahn. Optimizing Pyrolysis of Sugar Carbons for Use as Anode Materials in Lithium-Ion Batteries. J.Electrochem.Soc.1996,143:3046~3052
    [61]梁英.锡基负极材料的制备及电化学吸脱锂性质.华中师范大学博十论文,2008
    [62]Hiroyuki Fujimoto,AkihiroMabuchi,Chinnasamy Natarajan, et al.On the behavior of different types of graphite anodes [J].Carbon,2002,40:567~574
    [63]杨绍斌,费晓飞,綦瑞萍,等.石油沥青包覆对石墨负极电化学性能的影响.电源技术,2008,32(11):745-747
    [65]C.H. Hu, Y. Yang, Z.Z. Zhu. Structural and electronic properties of lithium ion battery anode material LiMN (M= Ni, Co, Cu). Solid State Sciences,2009,11(11):1898~1902
    [64]C Menachem, Y Wang, J Flo wers, et al. J. Power Sources,1998,76:180~185.
    [66]M.Nishijimg, dokoro, Y.Takeda, et al. Li deintercalation-intercalation reaction and Structural change in lithium transition metal nitride,Li7MnN4. J.Electrochem.Soc,1994, 141(11):2966~2971.
    [67]S.Suzuki,T.Shodai. Electronic structure and electrochemical properties of electrode material Li7-xMnN4. Solid State lonies,1999, (116):1~9
    [68]M.Nishijima, T.Kagohashi, M.Ilnanishi, et al. Synthesis and electrochemical studies of a new anode material Li3-xCoxN. Solid State Ionics,1996,83(1-2):107~111
    [69]D.H.Gregory,P.M.O' Meara, A.G.Gordon,et al. Layered ternary transition metal nitrides; synthesis, structure and physical properties. J. Alloys and Compounds,2001, 317-318:237-244
    [70]毛信表,王连邦,马淳安,浙江工业大学学报,2006,34(4):364-368
    [71]Wang C, Appleb Y A J, Little F E. Electrochemical study on nano-Sn, Li4.4Sn and AlSi0.1 powders used as secondary lithium battery anodes. J Powder Source,2001,93:174~185
    [72]Tamura N, Ohshita R, Fujitani S, et al. J Electrochem Soc,2003,150(6):A679-A68
    [73]Wang G X, Sun L, Brandhurst D H, et al. J Alloys and Compounds,2000,306:249~252
    [74]赵薇,黄可龙,刘素等.SiO的电化学性能及其电极过程动力学研究.无机化学学报,2007,23(9)
    [75]Mariko Miyachi, Hironori Yamamoto et al. Analysis of SiO Anodes for Lithium-Ion Batteries. Journal of The Electrochemical Society,2009,152(10) A2089-A2091
    [76]Yasutaka Nagao, Hiroki Sakaguchi, et al. Structural analysis of pure and electrochemically Lithiated SiO using neutron elastic scattering. Journal of The Electrochemical Society,2004, 151(10)A1572-A1575
    [77]Taeahn Kim, Sangjin Park, and Seung M. Oh. Solid-State NMR and electrochemical dilatometry study on Li+ Uptake/Extraction mechanism in SiO electrode. Journal of The Electrochemical Society,2007,154 (12) A1112~A1117
    [78]Yang X, Wen Z, Xu X, et al. Nanosized silicon-based composite derived by in situ mechanochemical reduction for lithium ion batteries. J Power Sources,2007,164(2): 880~884
    [79]张文庆,韩红梅,宁欣.一维纳米结构SnO2的制备及其电化学性能研究.广州化工,2009,37(5):101-103
    [80]何则强,熊利芝,肖卓炳,等.纳米SnO的溶胶-凝胶法制备与电化学性能.无机化学学报,2002,22(2):253-257
    [81]YQ Chu,Z W Fu, Q Z Qin. Electrochem. Acta,2004,49,4915
    [82]马江虹,翟玉春,田艳文等.材料与冶金学报,2004,3,39
    [83]姜前蕾,贾梦秋,薛锐生,等.聚苯胺改性对M C M B电极性能的影响.电源技术,2007,131(1):38-40
    [84]王志远.天然石墨锂离子电池负极材料的包覆改性研究.天津理工大学,2008:46-47
    [85]杨瑞芝,张东煜,张红波,等.树脂炭包覆石墨作为锂离子电池负电极的研究.无机材料学报,2000,15(4):711-716
    [86]Wu Y P, Jiang C, Wan C, et al. Modified natural graphite as anode material for lithium ion batteries, Journal of Power Sources,2002,111:329~334
    [87]郭华军,李向群,王志兴,等.锂掺杂对石墨电化学性能的影响.中国有色金属学报,2003,13(5):1112-1115
    [88]吴宇平,方世璧,江英彦,等.磷的掺杂对碳负极材料性能的影响.应用化学,1998,15(6):37-40
    [89]郭洪,赵海雷,仇卫华,等.一种高容量锡锑镍合金复合物锂离子电池负极材料的制备方法.中国专利,200510130618.0
    [90]Tamura N, Ohshita R, Fujitani S, et al. Advanced Structures in Electrodeposited Tin Base Negative Electrodes for Lithium Secondary Batteries. J. Electrochem. Soc,2003,150 (6) A679-A683
    [91]W K Choi, T Tanaka, R Miyauchi, et al. Electrochemical and structural characteristics of Ti surface modified by Ball-Milling with MgNi. J.Alloys and Comp,2000,299:141~147
    [92]M Bououdina, D L Sun, H Enoki, et al. Improved kinetics by the muitphase alloys prepared from laves phases and LaNi5. J.Alloys and Comp,1999,288:229~237
    [93]J S Yu, K Y Lee, J Y Lee. Effect of Ni containing surface phase on the electrode characteristics of Ti1.0Mn1.0V0.5. J.Alloys and Comp,1997,259:270~275
    [94]E Higuchi, E Toyoda, Z P Li, et al. Effects of fluorination of AB2-type alloys and mixing with AB5-type alloys on the charge-discharge characteristics.Electrochimica Acta,2001,46: 1191-1194
    [95]徐国财,张立德编著.纳米复合材料,化学工业出版社,2002:3-4
    [96]Nicolaus L Roke, Prashant N Kumta. Synthesis and characterization of electrochemically active graphite-silicon-tin composite anodes for Li-ion applications. Journal of Power Sources,2007,164:829~838
    [97]Tomokazu M, Norio T. Nano Si cluster-SiOx-C composite material as High-Capacity anode material for rechargeable lithium batteries. J Electrochemical Society,2006,153(2): A425-A430
    [98]H Huang, E M Kelder, L Chen, et al. Electrochemical characteristics of Sn1-xSixO2 as anode for lithium-ion batteries. Journal of Power Sourees,1999,81-82:362~367
    [99]文钟晟,锂离子电池用高容量含硅负极材料研究.中国科学院研究生院博士学位论文.2004
    [100]L.Y Beaulieu, K C Hewitt, R L Turner, et al. The Electrochemical reaction of Li with Amorphous Si-Sn Alloys, Journal of the Electrochemical Society,2003,150(2): A149-A156
    [101]N Cui, B Luan, H J Zhao,et al. Synthesis and electrode characteristics of the new composite alloys Mg2Ni-xwt.%Ti2Ni. J.Alloys and Comp,1996,240:229~234
    [102]D Sun,M Latroche, A.P.Guegan. Activation behavior of mechanically Ni-Coated Zr-Based laves phase hydride electrode. J. Alloys and Comp,1997,257:302~305
    [103]S B Ng, Jim Y Lee, Z L Liu. Si-O network er capsulated graphite-silicon mixtures as negative electrodes for lithium-ion batteries. J Power Sources,2001,94:63~67
    [104]A.M.WilsonandJ.R.Dahn, J.Electrochem.Soc.,1995,142:326~332
    [105]MasakeYoshio, Hongyu W, KenjiFukuda, et al. Carbon-Coated Si as a Lithium-ion battery anode material, Journal of the Electrochemical Society,2002,149(12):A1598~A1603
    [106]Yuki Yamada, Yasutoshi Iriyama, Takeshi Abe, et al. Kinetics of electrochemical insertion and extraction of lithium ion at SiO. Journal of the Electrochemical Society,2010, 157(1):A26-A30
    [107]齐智,吴锋.SnO2超细粉的制备与嵌锂性能.电池,2005,35(2):268-269
    [108]Jeong-Hoon Jeun, Hyun-Sam Ryu, Seong-Hyeon Hong. Gas sensing property of porous SnO2 layer synthesized through anodic oxidation. ECS Transactions,2008,16 (3):77~81
    [109]赵海雷,尹朝丽,吴恒亮,等.一种锂离子电池负极用锡锑合金材料的制备方法.中国专利,2005,200510011683.1
    [110]赵海雷,何见超,贾喜娣.一种锂离子电池锡钴碳复合负极材料的制备方法.中国专利,2008,200710176459.7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700