用户名: 密码: 验证码:
星载SAR干涉测量技术及其在南极冰貌地形研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南极大陆常年被冰雪所覆盖,气候严寒,其四周又被浩瀚的大洋所包围,远离其它各大陆,因此,长期以来人类难以接近。直到20世纪50年代,南极洲完整的轮廓才出现在世界地图上。清晰认识了南极洲轮廓,更让人好奇的是轮廓里的世界。随着科技进步,特别是空间对地观测技术的发展,南极已经越来越清晰地呈现在我们面前。1997年,随着加拿大Radarsat-1卫星上的合成孔径雷达天线转向左视,填补了南极洲高纬度区域的空白,并得到了整个南极大陆的高分辨率影像图。
     南极与全球气候、生态环境以及人类社会未来发展等一系列重大问题密切相关。对南极的探索并不能完全离开亲临冰原,但如果只凭人类的足迹去一点一滴地揭开它的奥秘是不科学的。空间对地观测技术为人类探测南极冰盖及冰盖下的大陆,发现其资源,认知其机理打开了新的局面,为人类更深刻地认识南极提供了更广阔的途径。
     合成孔径雷达干涉测量作为一种极具潜力的空间对地观测技术,在近10年来得到迅速发展,也成为国际上的研究热点。其优势在于全天候、全天时工作,不受云雾干扰,并能一次大面积成像。对于南极地区,则能不分极昼极夜正常工作。一方面对人类难以到达的区域进行大规模、大面积的地形测量:更重要的是差分干涉测量能监测厘米甚至毫米级的形变,为监测南极冰盖、冰架、冰川的变化,探求整个南极的动态变化提供了途径,为研究极地与全球的关系提供了线索。
     本文研究目的主要有两点:其一,为我国极地科学考察提供技术支持,探索新途径。其二,为我国极地环境科学研究做出积极的贡献。在中国第16次南极科学考察1999/2000度夏期间,大地测量人员冒着极大的生命危险,历时一个月,成功地完成了Grove山核心区的野外测量任务,并于2001年4月绘制成图。但是在南极内陆这种自然条件极端恶劣的情况下,传统的测量方法并不是获取南极DEM及地图的最有效途径。因此结合中国南极科学考察,一方面对InSAR技术本身不断探索,另一方面探讨将此技术更好地应用到南极研究中。本文主要研究内容包括:(1)利用InSAR生成东南极Grove山数字高程模型
     利用ERS-1/2 tandem星载SAR数据,在综合分析实测DEM的等高线走向、冰川运动趋势及冰貌地形、在正确选择高程参考点的前提下,成功获取东南极Grove山地区的数字高程模型。基于和野外实测资料的比较分析,论证了InSAR-DEM具有较高的准确性,证明了InSAR用于南极制图的可行性。同时揭示了地面坡度对干涉相位的影响不可忽视,如果高程变化太快,干涉条纹产生重叠,会导致严重的失相关,从而无法对高程进行准确推算。
It is difficult to reach the Antarctic continent since it is covered by ice and snow, with cold weather, surrounded by the ocean and far away from the other continents. Till the fifties of the twentieth century, the outline of the Antarctic was presented in the world map. However, the more curious world is the one in the outline. With the progress of the science and technology, especially for the development of the earth observation from space, Antarctica appears before us more and more perfectly. In 1997, the Canadian Radarsat-1 satellite was rotated in orbit. With its synthetic aperture radar (SAR) antenna looking south towards Antarctica, it permitted the first high-resolution mapping of the entire continent of Antarctica.The Antarctic is in very close relationship with the global climate, ecology environment, and the future of the human being. It is impossible to explore the Antarctic without any touch. While, it is unscientific to reveal its mysteries foot by foot. The technologies of the earth observation from space provide us more approaches to understand the Antarctic profoundly, and open a new situation for us to explore the ice cap, the continent, and detect its mechanism.Synthetic aperture radar interferometry (InSAR) has been proposed as a potential earth observation technique, and it is an international research hotspot now. It has the advantage of all time, all weather operation and cost-effective data acquisition for large area. So it can be utilized for digital elevation model (DEM) generation, topographic mapping in large areas, especially those areas that are more inaccessible, even in polar night. Moreover, it can detect the surface change in cm even mm level, and can be adopted to monitor the change and movement of ice cap, ice shelf and glaciers, to obtain the dynamic change of the whole Antarctic, which provide the information and clue for the relation of the polar area and the global.The main research motive exists in two aspects: one is to support the Chinese national polar research expedition, to provide new technology and explore new way; the second is to contribute to the polar environment research. During the 16~(th) Chinese National Antarctic Research Expedition (CHINARE) 1999/2000, a field survey of Grove Mountains core area was completed with GPS and total station in one month by two geodetic surveyors. However, in Antarctica, traditional mapping methods are no longer the most efficient means of obtaining topographical maps or DEM in large areas especially in inaccessible or difficult environments. Therefore, combining with Chinese National Antarctic Research
    Expedition, InSAR technology should be studied carefully; and on the other hand, it should be applied to the Antarctic research more and more perfectly. The main contents of the thesis are:(1) Digital Elevation Model generation of Grove Mountains with InSAROn the premise of comprehensive analysis of contour tendency, glacier movement, glacier geomorphology, and the correct height reference point, the Digital Elevation Model (DEM) of Grove Mountains, east Antarctica is obtained successfully with InSAR. Based on the comparison of InSAR DEM and the field survey data, it is demonstrated that the InSAR DEM is in high accuracy and confirmed that InSAR can be utilized in Antarctic topographic mapping. Meanwhile, the results reveal that the influence of ground gradient to interferometric phase can't be neglected. If the height changes quickly, it results in interferogram overlap and severe decorelation, and the height can't be calculated correctly.(2) The filtering of InSAR-DEMConsidering the need of map and contour making in the future, the ways to filter InSAR-DEM have been investigated. By comparing and analyzing the mean filter, median filter and binomial coefficient filter, the binomial coefficient filter is demonstrated as a simple and feasible method without phase distortion of signal.(3) Using external DEM in InSAR DEM generation and differential InSARThe essential, similarities and differences of using external DEM in InSAR DEM generation and differential InSAR are analyzed in detail. Meanwhile, the benefit of external DEM in InSAR DEM generation is demonstrated, which makes the phase unwrapping much easier especially for the steep slope, and the profiles that deviate from the ground truth are corrected to be consistent with the truth. Based on the SAR image pairs in the study, the small baseline in InSAR DEM generation is analyzed that it is very sensitive to error. Therefore, it is very important to follow the optimum baseline principle.(4) Ground subsidence detected by differential InSARThe precision of the external DEM used in differential InSAR is pointed out and proved in theory, which is correlated to spatial baseline and the deformation value. The subsidence of the mining area is detected by 2-pass D-InSAR with the external DEM with 1 arc second resolution. It is further confirmed that differential InSAR is a very efficient means to monitor the subsidence, and it provides the information of the whole plane not only point and line, while traditional methods can't do and realize.(5) Analysis of the best Antarctic RAMP/DEM at present
    The comparison and analysis of RAMP/DEM and the field survey data in Antarctic area shows that the precision of RAMP/DEM can't meet the need of small-scale deformation. At present 3-pass and 4-pass are the main methods in differential InSAR application. If the high precision external DEM is available, 2-pass D-InSAR method is feasible.(6) Blue ice distribution, ice flow line and crevasses interpretation based on coherence map Based on the coherence map, blue ice distribution is extracted successfully and the relationship of blue ice and meteorite is discussed. Meanwhile, the ice flow line in the coherence map helps to analyze the glacier movement, which provides important information and reference to compare the InSAR-DEM and GPS-DEM. In addition, the crevasse interpretation is to guarantee the safety of field expedition.(7) The influence of satellite attitude to coherence in interferometrySAR image data are the basis for InSAR research. According to the low coherence of SAR image pairs since year 2000, the gyro exception of ERS-2 is presented. The quality analysis of SAR interferometry image based on coherence is brought forward. The analysis of Doppler centroid frequency difference induced by satellite attitude provides new reference for user to choose the ERS-2 data for interferometric application.
引文
1.陈立奇,南极和北极地区在全球变化中的作用研究,地学前缘,2002,Vol.9,No.2:245-253
    2.程彦杰,陆龙骅,卞林根,东南极格罗夫山地区夏季的天气特征,极地研究,1999,Vol.11,No.4:291-300
    3.丁士俊,彭文钧,南极格罗夫山地形图测绘,测绘通报,2001,No.3:17-18
    4.丁晓利,陈永奇,李志林,等,合成孔径雷达干涉技术及其在地表形变监测中的应用,紫金山天文台台刊,2000,Vol.19,No.2:158-167
    5.鄂栋臣主编,南极现代地壳运动与遥感成图研究,1996,武汉测绘科技大学出版社
    6.傅肃性,遥感专题分析与地学图谱,2002年,第1版,科学出版社,
    7.胡庆东,毛士艺,洪文,干涉合成孔径雷达系统的最优基线,电子学报,1999,Vol.27,No.5:93-95
    8.黄声亨,鄂栋臣,陈春明,等,中国南极第三次内陆冰盖考察剖面的雪貌及气象特征,武汉测绘科技大学学报,2000,Vol.25,No.3:252-256
    9.郭华东,雷达对地观测理论与应用,2000,第1版,科学出版社
    10.郭树桂编,卫星遥感与制图,中国人民解放军测绘学院,1984年1月
    11.国家海洋局极地考察办公室,中国地名委员会办公室编,南极洲地名词典,1998,第1版,海洋出版社
    12.琚宜太,刘小汉,格罗夫山地区陨石回收,极地研究,2000,Vol.12,No.2:137-142
    13.李震,郭华东,李新武,等,SAR干涉测量的相干性特征分析及积雪划分,遥感学报,2002,Vol.6,No.5:334-338
    14.廖明生,由InSAR影像高精度自动生成干涉图的关键技术研究,2000,武汉测绘科技大学博士学位论文
    15.廖明生,林晖,雷达干涉测量—原理与信号处理基础,2003,第1版,测绘出版社
    16.刘国祥,丁晓利,陈永奇,等,使用卫星雷达差分干涉技术测量香港赤腊角机场沉降场,2001,Vol.46,No.14:1224-1228
    17.刘小汉,琚宜太,格罗夫山:我国新发现的一个陨石富集区,极地研究,2002,Vol.14,No.4:243-247
    18.彭军还,数字滤波器的频谱窗和噪声压缩度,测绘学院学报,2001,Vol.18,No.4:246~249
    19.彭文钧,丁士俊,陈春明,后处理差分GPS在南极格罗夫山中小比例尺地形图测图中的应用,极地研究,2001,Vol.13,No.4:301-306
    20.秦大河,任贾文主编,南极冰川学,2001,第1版,科学出版社
    21.秦大河,任贾文,康世昌,中国南极冰川学研究10年回顾与展望,冰川冻土,1998,Vol.20,No.3:227~232
    22.史世平,使用ERS-1/2干涉测量SAR数据生成DEM,测绘学报,2000,Vol.29,No.4:317-323
    23.舒宁,微波遥感原理,2000,第1版,武汉大学出版社
    24.孙家抦,遥感方法探测南极Grove山地陨石分布,遥感信息,2001:27-29
    25.孙家抦,格罗夫山无地面控制卫星数字卫星影像数字制图和地貌、蓝冰及陨石分布分析,极地研究,2001b,Vol.13,No.1:21-31
    26.孙家捅,霍东民,孙朝辉,极记录冰川和达尔克冰川流速的遥感监测研究,极地研究,2001,Vol.13.No.2:117-128
    27.任贾文,Ian Allison,效存德,等,东南极冰盖Lambert冰川流域的物质平衡研究,中国科学, 2002,Vol.32.No.2:134-140
    28.单新建,宋晓宇,柳稼航,等,星载INSAR技术在不同地形地貌区域的DEM提取及其应用评价,科学通报,2001,Vol.46,No.24:2074-2079
    29.王超,张红,刘智,星载合成孔径雷达干涉测量,2002,第1版,科学出版社
    30.王道德,林杨挺,戴诚达,等,南极陨石与沙漠陨石的对比研究,极地研究,1999,Vol.11,No.2:125-127
    31.王清华,东南极Lambert冰川—Amery冰架系统冰川运动学研究,2002,武汉大学博十学位论文
    32.王清华,鄂栋臣,陈春明,中山站至A冰穹考察及沿线GPS复测结果分析,武汉大学学报信息科学版,2001,Vol.26,No.3:200-204
    33.魏钟铨等著,合成孔径雷达卫星,2001,第1版,科学出版社
    34.温家洪,南极冰下湖的发现及其意义,极地研究.1998,Vol.10,No.2:155-160
    35.温家洪,国际南极冰盖与海平面变化研究述评,地球科学进展,2000,Vol.26,No.3:586-591
    36.徐华平,周荫清,李春升,星载干涉SAR中的基线问题,电子学报,2003,Vol.31,No.3:437-439
    37.杨杰,星载SAR影像定位和从星载InSAR影像自动提取高程信息的研究,2004,武汉大学博士学位论文
    38.游新兆,乔学军,王琪,等,合成孔径雷达干涉测量原理与应用,大地测量与地球动力学,2002,Vol.22,No.3:109-116
    39.袁孝康,星载合成孔径雷达导论,2003,第1版,国防工业出版社,
    40.张红,D-InSAR与POLinSAR的方法及应用研究,2002,中国科学院遥感应用研究所博士学位论文
    41.赵英时等,遥感应用分析原理与方法,2003,第1版,科学出版社
    42.周春霞,鄂栋臣,廖明生,InSAR用于南极测图的可行性研究,武汉大学学报信息科学版,2004,Vol.29,No.7:619-623
    43.朱述龙,张占睦,遥感图像获取与分析,2000,第1版,科学出版社
    44. ASF, SAR Overview, http://www.asf.alaska.edu/saroverview.html
    45. Askne, J., J.O. Hagberg, Potential of interferometric SAR for classification of land surfaces, Geoscience and Remote Sensing Symposium, Proceedings of IGARSS '93, 1993, Vol. 3:985 -987
    46. Atlantis Scientific Incorporation, A Brief Overview of SAR Interferometry, Atlantis Scientific Inc., 1999.
    47. Atlantis Scientific Incorporation, EVInSAR User's Guide, Atlantis Scientific Inc., 20 Colonnade Road, Suite 10, Nepean, Ontario, Canada, K2E 7M6
    48. Bindschadler, R., M. Fahnestock,, and A. Sigmund, Comparison of Greenland Ice Sheet Topography Measured by TOPSAR and Airborne Laser Altimetry, IEEE Transactions on Geoscience and Remote Sensing, 1999, Vol. 17, No.5: 2530-2535
    49. Byrd Polar Research Center, RADARSAT-1 Antarctic Mapping Project, http://www-bprc.mps.ohio-state.edu/rsl/radarsat/radarsat.html
    50. Chang, H.C., M.H. Chen, L. Qin, L. Ge, and C. Rizos, Ground subsidence monitored by L-band Satellite Radar Interferometry, Geomatics Research Australasia, 2003, Vol. 79:75-89
    51. E, D.C, C.X. Zhou, and M.L. Liao, Application of SAR Interferometry on DEM Generation of the Grove Mountains, Photogrammetric Engineering & Remote Sensing, 2004, Vol.70, No.10: 1145-1149
    52. ESA, http://earth.esa.int
    53. Esteban, F.D., P.J. Meadows, B. Schaittler, and P. Mancini, ERS attitude errors and its impact on the processing of SAR data, Proceedings of the CEOS SAR Workshop, 26-29 October 1999, Toulouse, France. ESA publication SP-450: 597-605
    54. Fahenstock, M., R. Bindschadler, R. Kwok, and K. Jezek, Greenland ice sheet surface properties and ice dynamics from ERS-1 SAR imagery, Science, 1993, Vol.262: 1530-1534
    55. Ferretti, A., C. Prati, and F. Rocca, Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing,2000, Vol.38, No.5: 2202-2212
    56. Ferretti, A., C. Prati, and F. Rocca, Permanent scatterers in SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 2001, Vol.39, No.1: 8-20
    57. Forster, R., K.C. Jezek, H.G Sohn, A.L. Gray, K. Mattar, Analysis of Glacier Flow Dynamics from Preliminary RADARSAT InSAR Data of the Antarctic Mapping Mission, IGARSS'98, 1998, Seattle, WA, USA, 2225-2227
    58. Franceschetti, G; A. Iodice, M. Migliaccio, D. Riccio, On the baseline decorrelation, Geoscience and Remote Sensing Symposium, IGARSS '96, 1996, Vol.1: 680 -682
    59. Gabriel, A.K., R.M. Goldstein, and H.A. Zebker, 1989, Mapping small elevation changes over large areas: Differential radar interferometry, J. Geophys. Res. Vol.94, No.B7: 9183-9191
    60. Ge, L., X.J. Li, C. Rizos, and M. Omura, GPS and GIS Assisted Radar Interferometry, Photogrammetric Engineering & Remote Sensing, 2004, Vol.70, No.10: 1173-1178
    61. Gens, R. and J.L. Van Genderen, SAR interferometry—Issues, techniques, applications, International Journal of Remote Sensing, 1996, Vol. 17, No. 10: 1803-1835
    62. Goldstein, R., Atmospheric limitations to repeat-track radar interferometry, Geophysical Research Letters, 1995, Vol.22, No.18: 2517-2520
    63. Goldstein, R.M., H. Engelhardt, B. Kamb, and R.M. Frolich, Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream, Science, 1993, Vol.262: 1525-1530
    64. Goldstein, R.M., H.A. Zebker, and C.L. Werner, Satellite Radar Interferometry: Two-Dimensional Phase Unwrapping, Radio Science, 1988, Vol.23, No. 4: 713-720
    65. Gray, A. L., K.E. Mattar, P. Vachon, R. Bindschadler, K. Jezek, R. Forster, and J. P Crawford, InSAR results from the RADARSAT Antarctic Mapping Mission Data: estimation of glacier motion using a simple registration procedure, Proc. IGARSS '98, 1998: 1638-1640
    66. Hanssen, R.F., Radar Interferometry: Data Interpretation and Error Analysis, Kluwer Academic Publishers, Dordrecht, 2001
    67. Hirose, K., Y. Maruyama, D. Murdohardono, A. Effendi, H.Z. Abidin, Land subsidence detection using JERS-1 SAR Interferometry, The 22nd Asian Conference on Remote Sensing, 5-9 November 2001, Singapore.
    68. Jezek, K.C, H.G. Sohn, and K.F. Noltimier, The RADARSAT Antarctic Mapping Project, Geoscience and Remote Sensing Symposium, IGARSS '98, 1998, Vol.5: 2462-2464
    69. Jezek, K.C, and RAMP Product Team, RAMP AMM-1 SAR Image Mosaic of Antarctica, Fairbanks, AK: Alaska Satellite Facility, in association with the National Snow and Ice Data Center, Boulder, CO. Digital media, 2002
    70. Joughin, I., D. Winebrenner, M. Fahnestock, R. Kwok, and W. Krabill, Measurement of ice-sheet topography using satellite radar interferometry, Journal of Glaciology, 1996, Vol.42, No.140: 10-22
    71. Joughin, I., R. Kwok, M. Fahnestock, Estimation of Ice Sheet Motion Using Satellite Radar Interferometry: Method and Error Analysis with Application to the Humboldt Glacier, Greenland, Journal of Glaciology, 1996b, Vol.42, No.142: 564-575
    72. Joughin, I.R., R. Kwok, M.A. Fahnestock, Interferometric estimation of three-dimensional ice-flow using ascending and descending passes, IEEE Transactions on Geoscience and Remote Sensing, 1998, Vol.36, No.1: 25-37
    73. JPL, Ice Sheets and Glaciers, http://southport.jpl.nasa.gov/nrc/chapter5.html
    74. JPL, SRTM home page, http://www.ipl.nasa.gov/srtm/
    75. Kampes, B., Delft Object-oriented Radar Interferometric Software User's manual and technical documentation, http://www.geo.tudelft.nl/doris/, Delft University of Technology
    76. Kenyi, L.W., H. Raggam, Atmospheric induced errors in interferometric DEM generation, Geoscience and Remote Sensing Symposium, IGARSS'96, 1996, Vol.1: 353 -355
    77. Konig, M., J.G. Winther, and E. Isaksson, Measuring snow and glacier ice properties from satellite, Reviews of Geophysics, 2001, Vol.39, No.1: 1-27
    78. Kwok, R., M.A. Fahnestock, Ice sheet motion and topography from radar interferometry, IEEE Transactions on Geoscience and Remote Sensing, 1996, Vol. 34, No.1: 189-200
    79. Li, F.K., R.M. Goldstein, Studies of multibaseline spaceborne interferometric synthetic aperture radars, IEEE Transactions on Geoscience and Remote Sensing, 1990. Vol.28, No.l: 88-97
    80. Madsen, S.N., H.A. Zebker, and J.M. Martin, Topographic Mapping Using Radar Interferometry: Processing Techniques, IEEE Transactions on Geoscience and Remote Sensing, 1993, Vol.31, No.l: 246-256
    81. Madsen, S.N., J.M. Martin, and H.A. Zebker, Analysis and evaluation of the NASA/JPL TOPSAR across-track interferometric SAR System, IEEE Transactions on Geoscience and Remote Sensing, 1995, Vol.33, No.2: 383-391
    82. Massonnet, D., and T. Rabaute, Radar interferometry: limits and potential, IEEE Transactions on Geoscience and Remote Sensing, 1993, Vol.31, No.2: 455-464
    83. Mattar, K.E., P.W. Vachon, D. Geudtner, A.L. Gray, I. Cumming, and M. Brugman, Validation of alpine glacier velocity measurements using ERS tandem mission SAR data, IEEE Transactions on Geoscience Remote Sensing, 1998, Vol.36, No.3: 974-984
    84. Meadows, P.J., The ERS-2 SAR performance: another further update, Proc. of CEOS Working Group on Calibration/Validation SAR Workshop, London, United Kingdom, 24-26 September 2002, ESA publication SP-526
    85. Meadows, P., B. Rosich, D. Esteban, The performance of the ERS-2 synthetic Aperture Radar, ERS-Envisat Symposium, Gothenburg, Sweden, 16-20 October 2000, ESA publication SP-461
    86. Moisseev D., R. Hanssen and J. Sabater, Towards an atmosphere free interferogram; first comparison between ENVISAT's ASAR and MERIS water vapor observations, Geoscience and Remote Sensing Symposium, IGARSS '03, 2003, Vol.5: 2977-2980
    87. Mora, O., J.J. Mallorqui, J. Duro, and A. Broquetas, Long-term subsidence monitoring of urban areas using differential interferometric SAR techniques, Proceeding of IGARSS'01, 2001, Vol. 3: 1104-1106
    88. NASA/JPL, http://www.ipl.nasa.gov/images/earth/antarctica/
    89. Nolin, A.W., F.M. Fetterer, and T.A. Scambos, Surface roughness characterizations of sea ice and ice sheets case studies with MISR data, IEEE Transactions on Geoscience and Remote Sensing, 2002, Vol.40, No.7: 1605-1615
    90. NSIDC, Radarsat Antarctic Mapping Project Digital Elevation Model Version 2, http://nsidc.org/data/docs/daac/nsidc0082 ramp dem v2.gd.html
    91. NSIDC, RAMP AMM-1 SAR Image Mosaic of Antarctica, http://nsidc.org/data/docs/daac/nsidc0103 ramp mosaic.gd.html
    92. Poidomani, C, D. Costantini, P. Pasquali, et al., National-scale DEM generation using ERS-Tandem data in alpine regions, ERS-ENVISAT Symposium, Gothenburg, 2000
    93. Price, S.F. and I.M. Whillans, Crevasse patterns at the onset to Ice Stream B, West Antarctica, Journal of Glaciology, 2001, Vol.47, No.156: 29-36
    94. Rau, F., M. Braun, The regional distribution of the dry snow zone on the Antarctic Peninsula north of 70° South, Annals of Glaciology, 2002, Vol.34: 95-100
    95. Reigber, Ch., Y. Xia, H. Kaufmann, F.H. Massmann, L. Timmen, J. Bodechtel, and M. Frei, Impact of precise orbits on SAR interferometry, Proceedings of the 'Fringe 96' Workshop on ERS SAR Interferometry, 1996, ESA SP-406
    96. Rosen, P.A., I.R. Joughin, F.K. Li, S.N. Madsen, E. Rodriguez, and R.M. Goldstein, Synthetic aperture radar interferometry, Proceedings of the IEEE, 2000, Vol.88, No.3: 333-382
    97. Rosich, B., D. Esteban, G. Emiliani, P. Meadows, B. Schattler, Assessment of the new ERS-2 mono-gyro piloting mode on the quality of ERS SAR data and ERS SAR applications performance, ERS-Envisat Symposium, Gothenburg, Sweden, 16-20 October 2000, ESA publication SP-461
    98. Rufino, G, A. Moccia, and S. Esposito, DEM Generation by Means of ERS Tandem Data, IEEE Transactions on Geoscience and Remote Sensing, 1998, Vol.36, No.6: 1905-1912
    99. Schreier, G. (Ed.), SAR Geocoding: Data and Systems, Wichmann Verlag, Karlsruhe, 1993
    100. Schwabisch, M., Large scale interferometric DEM generation using ERS tandem data: Example of the Czech Republic, IEEE Proceedings of IGARSS'98, 1998, Vol.3: 1641-1643
    101. Schwabisch, M., M. Matschke, W. Knopfle, and A. Roth, Quality assessment of InSAR-derived DEMs generated with ERS tandem data, IEEE Proceedings of IGARSS'96, 1996, Vol.2: 802-804
    102. Small, D., C. Werner, D. Nuesch, Baseline modelling for ERS-1 SAR interferometry, Geoscience and Remote Sensing Symposium, IGARSS '93, 1993, Vol.3: 1204 -1206
    103. Smith, A.M., DEM refinement via D-InSAR processing, Advanced Workshop on InSAR for Measuring Topography and Deformation of the Earth Surface, Hong Kong, China, 2002
    104. Strozzi, T., U. Wegmuller, Land subsidence in Mexico City mapped by ERS differential SAR interferometry, Geoscience and Remote Sensing Symposium, IGARSS '99, 1999, Vol.4, No.28: 1940 -1942
    105. Strozzi T., U. Wegmuller, C.L. Werner, A. Wiesmann, and V. Spreckels, JERS SAR interferometry for land subsidence monitoring, IEEE Transactions on Geoscience and Remote Sensing, 2003, Vol.41, No.7: 1702-1708
    106. Takeuchi, S., S. Yamada, and C. Yonezawa, Comparison of InSAR capability for land subsidence detection between C-band and L-band SAR, Geoscience and Remote Sensing Symposium, IGARSS'02, 2002, Vol.4: 2379 -2381
    107. Wegmuller, U., T. Strozzi, and C. Werner, Land subsidence in the Po river Valley, Italy, Geoscience and Remote Sensing Symposium Proceedings, IGARSS '98, 1998, Vol.3: 1376 -1378
    108. Xia Y., H. Kaufmann and X. F. Guo, Differential SAR Interferometry Using Corner Reflectors, IGARSS 2002, Toronto Canada, 24-28 June 2002, pp: 1243-1246
    109. Yonezawa C, and S. Takeuchi, Effect of clouds on ERS SAR interferograms applied to land subsidence detection, International Journal of Remote Sensing, 2003, Vol.24, No.1: 169-174
    110. Yonezawa, C, and S. Takeuchi, Land subsidence detection using long interval ERS/SAR data pairs, Geoscience and Remote Sensing Symposium, IGARSS'2000, 2000, Vol.4: 1539 -1541
    111.Zebker, H.A., and R.M. Goldstein, Topographic mapping from interferometric SAR observations, Journal of Geophysical Research, 1986, Vol.91: 4993-4999
    112. Zebker, H.A., C.L Werner, P.A. Rosen, and S. Hensley, Accuracy of topographic maps derived from ERS-1 interferometric radar, IEEE Transactions on Geoscience and Remote Sensing, 1994, Vol.32, No.4: 823-836
    113. Zebker, H.A., J. Villasenor, Decorrelation in interferometric radar echoes, IEEE Transactions on Geoscience and Remote Sensing, 1992, Vol.30, No.5: 950-959
    114. Zebker, H. A., P. A. Rosen, and S. Hensley, Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, Journal of Geophysical Research, 1997 vol.102, No. B4:7547-7563
    115.Zebker, H.A., T. G Farr, R.P. Salazar, and T.H. Dixon, Mapping the world's topography using radar interferometry: the TOPSAT mission, IEEE Proceedings, 1994, Vol.82, No.12: 1774-1786
    116. Zhao, Z.Y., Surface velocities of the east Antarctic ice streams from RADARSAT-1 interferometric synthetic aperture radar data, PhD dissertation, The Ohio State University, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700