用户名: 密码: 验证码:
填料塔多种高效脱硫工艺的性能对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前湿法脱硫是烟气脱硫技术中最主要的工艺,为了挖掘湿式脱硫技术的潜能,研究提高脱硫效率和和脱硫的稳定性,本课题对气液并流脱硫的流体力学性能、改良的浆液脱硫工艺以及室温离子液体脱硫工艺等方面进行了深入研究,力求综合、全面的总结湿法脱硫工艺,主要研究内容如下:
     本课题对气液并流向下吸收SO_2的流体力学特性进行了系统的研究,研究内容主要包括脱硫并流规整填料和散堆填料塔的流型研究、液体喷淋密度对全塔压降的影响、气相动能因子对并流压降的影响、脱硫并流散堆填料塔的持液量的研究、液气比对并流脱硫效率的影响、气相动能因子对脱硫效率的影响以及喷射流区域内气液并流吸收SO_2的传质系数。
     为了改善浆液脱硫工艺的传质性能,课题重点讨论了进气流速、液气比、进气SO_2的浓度以及pH等因素对浆液脱硫效率的影响,并研究无机添加剂、有机添加剂以及复合型添加剂对石灰石的促溶作用,以及添加了脱硫添加剂后浆液的脱硫性能。研究发现,脱硫率与气速的函数关系存在着最值;进口气体中SO_2的浓度和浆液pH值与所需的最小液气比呈反比关系,且最适宜的pH值范围在5-6之间;添加剂对脱硫率的影响按下列顺序依次减弱:己二酸+NaCl的复合添加剂、己二酸有机添加剂、NaCl+己二酸的复合添加剂、无机添加剂NaCl,而且添加剂的添加量存在着最值。同时,为了深入研究浆液吸收SO_2的增强效应,本课题应用膜理论来描述SO_2吸收中液相的传递过程,研究发现溶解的钙离子浓度与SO_2的进口分压存在着正函数关系,而石灰石的初始溶度对钙离子浓度的影响相对比较微弱;SO_2的吸收速率与SO_2的进口分压基本上呈线性关系,而石灰石的初始溶度对SO_2吸收速率的影响相对比较微弱;溶解的钙离子浓度越大、石灰石的粒径越小越有助于增大增强因子;总亚硫酸盐浓度越小越有助于增大增强因子,且浓度越小增强效应越明显。
     研究表明,离子溶液四甲基胍乳酸盐作为综合性能优良的脱硫剂是一种具有潜力的传统吸收剂的替代品,而且该离子液体重复利用率高,溶剂损耗小,可以连续循环进行吸收-解吸SO_2的实验。应用Flory-Huggins模型能很好的描述SO_2-[C6MIm][Tf2N]体系的气液平衡关系,此理论在一定程度上可以证明SO_2-ILs体系的溶解性归根结底是由熵效应引起的。
Flue gas desulfuration by wet processes has been one of the most important techniques by now. Further researches have been made in this work to investigate the fluid dynamic performance of cocurrent gas-water desulfuration operation, the improved desulfuration process by limestone slurry and the absorption behavior of SO_2 in ionic liquids. All the efforts are made to develop the potential in increasing the efficiency and stability of SO_2 removal and to give a full summary on the wet flue gas desulfuration. The main contents are described as follows.
     Fluid dynamic properties of SO_2 absorption by using upflow gas-water cocurrent in a packed column have been systematically studied, including the flow-regime and holdup of cocurrent desulfuration in a structured and random packed column, the effect of liquid spray density on the total pressure drop, the effect of gas phase loading factor on the pressure drop, the effects of liquid-gas ratio and gas phase loading factor on the efficiency of SO_2 removal and the mass transfer coefficients for SO_2 cocurrent absorption in the region of jet flow.
     The effects of velocity of inlet gas, liquid-gas ratio, SO_2 concentration of inlet gas and pH value on the limestone slurry desulfuration were investigated to improve the mass transfer performance. In addition, the investigation of inorganic additives, organic additives and composite additives on enhancing the dissolution of limestone as well as the SO_2 removal performance by the limestone with the addition of the additives were also carried out. It can be stated that a maximum value can be found for the relation between SO_2 removal efficiency and gas velocity. The concentration of SO_2 in inlet gas and the pH value of the limestone slurry are in inverse proportion to minimum liquid-gas ratio with the most suitable range of pH of 5-6. The effects of the additives on the efficiency of SO_2 removal are in the order of adipate+NaCl > adipate > NaCl+adipate > NaCl, and a maximum value for the additive amount of the additives can be observed. Meanwhile, liquid phase mass transfer process has been described using film theory to further investigate the enhancing effect of limestone absorption SO_2. It can be seen that a positive correlation exists between the dissolved Ca2+ concentration and the SO_2 inlet partial pressure, while the effect of initial limestone concentration on the Ca2+ concentration can be neglected. SO_2 absorption rate is basically linear with SO_2 inlet partial pressure, whereas the effect of initial limestone concentration on SO_2 absorption rate can be neglected. The enhancing factor increases with the increase of the dissolved Ca2+ concentration and the decrease of the limestone particle size and the total sulfite concentration. The enhancing effect is more obvious with the less concentration of sulfite.
     The results indicate that 1,1,3,3-tetramethylguanidium lactate, as a desulfurizing agent with an excellent performance, can be used as a substitute for the traditional absorbents, and this ionic liquid with a high recycling rate and a low loss rate can be used to carry out SO_2 absorption-desorption experiment continuously. The vapor liquid equilibrium relationship of SO_2-[C6MIm][Tf2N] system can be well described by the Flory-Huggins model, which can prove to certain degree that dissolving action of SO_2-ILs systems is caused by entropy effect
引文
[1]Frandsen J B W, Kiil S, Johnsson J E, Optimisation of a wet FGD pilot plant using fine limestone and organic acids, Chemical Engineering Science, 2001, 56 (10): 3275-3287
    [2]李欣,段颖, SO2污染控制方面存在的两大问题,北方环境, 2002, 3 (1): 17
    [3]熊云威,我国SO2污染危害及其治理技术的进展,矿业安全与环保, 2000, 27 (21): 56-58
    [4]李广超,傅梅绮,大气污染控制技术,北京:化学工业出版社, 2004
    [5]安孟学,窦林萍,大气中的SO2污染与防治,科技情报开发与经济, 2001, 11 (1): 11-15
    [6]丁毓文,酸雨污染及控制对策的探讨,环境污染及其防治, 1996, 2 (1): 12-16
    [7]彭远新,林振山,能源消费产生的SO2和工业烟尘排放量时空演变分析,自然资源学报, 2010, 25 (1): 52-59
    [8]唐恒,缪应祺,烟气脱硫技术的现状和发展,废物处理与综合利用, 1999, 20 (1): 44-47
    [9]王娟,张慧明,中国电力工业烟气脱硫的现状及发展趋势,环境污染治理技术与设备, 2004, 5 (6): 12-16
    [10]黄震,石莹,国外烟气脱硫技术,节能与环保, 2001, 4 (1): 18-21
    [11]李津,于德爽,我国烟气脱硫技术的应用现状与发展趋势,科技资讯, 2007, 26 (1): 23-27
    [12]Philip L, Deshusses M A, Sulfur dioxide treatment from flue gases using a biotrickling filter-bioreactor system, Environmental Science & Technology, 2003, 37 (9): 1978-1982
    [13]于洁,温高,湿法FGD系统中几种常用的SO2吸收塔,内蒙古科技与经济, 2007, 6 (136): 103-104
    [14]冯玲,杨景玲,烟气脱硫技术的发展及应用现状,环境工程, 1997, 15 (2): 19-21
    [15]阎维平,刘忠,电站燃煤锅炉石灰石湿法烟气脱硫装置运行与控制,北京:中国电力出版社, 2005
    [16]钟秦,燃煤烟气脱硫脱硝技术及工程实例,北京:化学工业出版社, 2002
    [17]郝吉明,王书肖,陆永琪,燃煤二氧化硫污染控制技术手册,北京:化学工业出版社, 2001
    [18]侯宇,周屈兰,惠世恩,湿法脱硫岛内气液两相流流动规律的研究,工程热物理学报, 2006, 27 (5): 799-805
    [19]方立军,惠世恩,周屈兰等,液幕式烟气脱硫塔气液两相流动特性研究,华北电力大学学报, 2007, 34 (3): 31-35
    [20]林万涛,董文杰,计算地球流体力学的回顾、进展及展望,地球科学进展, 2004, 19 (4): 104-106
    [21]廖葵,龙新峰,梁平,奥里油燃烧特性及其SO2控制技术分析,广东电力, 2006, 19 (1): 6-9
    [22]胡金榜,胡玲玲,段振亚等,湿法烟气脱硫添加剂研究进展,化学工业与工程, 2005, 22 (6): 456-460
    [23]Ukawa N, Takashina T, Oshima M, Effects of salts on limestone dissolution rate in wet limestone flue gas desulfurization, Environment Progress, 1993, 12 (4): 294-299
    [24]Warych J, Szymanowski M, Optimum values of process parameters of the "wet limestone flue gas desulfurization system", Chemical Engineering & Technology, 2002, 25 (4): 427-432
    [25]孙文寿,吴忠标,谭天恩,烟气脱硫过程中添加剂对石灰石的促溶作用,中国环境科学, 2002, 22 (4): 305-308
    [26]李玉平,谭天恩,景国红,无机盐对SO2-H2O-CaCO3气液固三相反应系统pH值的影响,环境污染与防治, 1997, 19 (5): 1-5
    [27]孙文寿,吴忠标,李悦等,添加剂强化石灰石/石灰FGD过程的某些浆料特性,环境科学研究, 2003, 16 (4): 50-53
    [28]孙文寿,吴忠标,谭天恩,石灰石湿法烟气脱硫工艺中添加剂的研究,环境工程, 2001, 19 (4): 30-33
    [29]孙文寿,谭天恩,以石灰石和石灰为脱硫剂的镁强化FGD过程对比研究,上海环境科学, 2003, 22 (12): 1001-1003
    [30]Daniel X J, Magnesium enrichment improves flue gas scrubbing, Power Engineering, 1980, 85 (9): 71-72
    [31]崔丽琴,吴顺志,范祥子,氧化镁添加剂对旋流塔板石灰湿法脱硫效果的影响分析,煤矿环境保护, 1996, 10 (5): 21-23
    [32]曹宏伟,董芃,烟气脱硫添加剂的研究现状,节能技术, 2003, 21 (2): 10-12
    [33]Rochelle G T, King C J, The effect of additives on mass transfer in CaCO3 or CaO slurry scrubbing of SO2 from waste gases, Industrial & Engineering Chemistry Fundamentals, 1977, 16 (1): 67-75
    [34]Chang C S, Rochelle G T, Effect of organic acid additive on SO2 absorption into CaO/CaCO3 slurries AIChE Journal, 1982, 28 (2): 261-266
    [35]孙华,施正伦,高翔等,喷淋式湿法脱硫装置的试验研究,动力工程, 2001, 21 (5): 459-463
    [36]仲兆平,兰计香,三相流态化烟气脱硫模拟中试试验研究,环境工程, 2001, 19 (5): 27-29
    [37]石发恩,李振坦,石灰湿式烟气脱硫中复合添加剂的研究,四川有色金属, 2003, 18 (3): 27-29
    [38]Harjania J R, Naraa S J, Salunkhe M M, Fries rearrangement in ionic melts Tetrahedron Letters, 2001, 42 (10): 1979-1981
    [39]顾彦龙,石峰,邓友全,室温离子液体:一类新型的软介质和功能材料,科学通报, 2004, 49 (6): 515-521
    [40]Seddon K R, Ionic liquids for clean technology, Journal of Chemical Technology and Biotechnology, 1999, 68 (4): 351-356
    [41]寇元,杨雅立,功能化的酸性离子液体,石油化工, 2004, 33 (4): 297-302
    [42]Nara S J, Naik P U, Harjani J R, et al., Potential of ionic liquids in greener methodologies involving biocatalysis and other synthetically important transformations, Indian Journal of Chemistry -Section B, 2006, 45B (10): 2257-2269
    [43]韩志飞,芮玉兰,功能化离子液体吸收SO2研究进展,化工生产与技术, 2009, 16 (5): 29-32
    [44]李学良,席俊松,汪华等,离子液体AHNR3与AOHNR3的SO2吸收解吸行为研究合肥工业大学学报(自然科学版), 2009, 32 (11): 1723-1726
    [45]何川,钟琴,杜红彩等,微波法合成醇胺类离子液体及其吸收SO2研究,化学工程, 2009, 37 (2): 8-11
    [46]Jiang T, Gao H, Han B, Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles, Tetrahedron Letters, 2004, 45 (9): 3017-3019
    [47]Gao H, Han B, Li J, Effect of ionic liquids on the chemical equilibrium of esterification of carboxylic acids with alcohols, Synthetic Communication, 2004, 34 (17): 3083-3089
    [48]An D, Wu L, li B G, Synthesis and SO2 absorption/desorption properties of poly (1,1,3,3-tetramethylguanidine acrylate), Macromolecules, 2007, 40 (9): 3388-3393
    [49]Anderson J L, Dixon J K, Maginn E J, Measurement of SO2 solubility in ionic liquids, The Journal of Physical Chemistry B, 2006, 110 (31): 15059-15062
    [50]Jiang Y, Zhou Z, Jiao Z, SO2 gas separation using supported ionic liquid membranes, Journal of Physical Chemistry, 2007, 111 (19): 5058-5061
    [51]何晓萍,离子溶液法脱除工业废气中SO2的研究:[硕士学位论文],天津;天津大学,2010
    [52]Ando R A, Siqueìra L J A, Bazito F C, The sulfur dioxide-1-buty-1-3-methy limidazolium bromide interaction: drastic changes in structural and physical properties, Journal of Physical Chemistry B, 2007, 111 (30): 8717-8719
    [53]Wang Y, Pan H, Li H, et al., Force field of the TMGL ionic liquid and the solubility of SO2 and CO2 in theTMGL from molecular dynamics simulation, Journal of Physical Chemistry B, 2007, 111 (1): 10461-10467
    [54]夏博娅,徐震宇,莫锡荣,气液向下并流填料塔的流型和压降,化学工程, 1991, 19 (5): 60-65
    [55]唐涌濂,佘蔚芝,气液并流填料塔的持液量,化学工程, 1991, 19 (4): 41-49
    [56]张受谦,气液并流向上填充床及其进展,青岛化工学院学报, 1993, 14 (4): 6-11
    [57]Anter A M,肖琼,程振东,气液向上或向下并流固定床动持液量测定,化工学报, 2000, 51 (4): 535-539
    [58]佘颖,陈五平,喷射塔中SO2吸收传质系数的关联和回归,化学工程, 1990, 18 (2): 67-69
    [59]任爽,徐坚强,石灰石-石膏湿法烟气脱硫系统中的一些关键参数对SO2吸收速率影响的研究,广东电力, 2006, 19 (2): 22-26
    [60]杜亚荣,张明智,浆液pH对湿法脱硫的影响机理研究,工业安全与环保, 2010, 36 (5): 60-62
    [61]Bravo R V, Camacho R F, Moya V M, et al., Desulphurization of SO2-N2mixtures by limestone slurries, Chemical Engineering Science, 2002, 57 (11): 2047-2058
    [62]Fellner P, Khandl V, Characterization of limestone reactivity for absorption of SO2 from fume gases, Chemical Paper, 1998, 53 (4): 238-241
    [63]Tseng P C, Rochelle G, Dissolution rate of calcium sulfite hemihydrate in flue gas desulfurization processes, Environmental progress, 1986, 5 (1): 34-40
    [64]Uchida S, Moriguchi H, Maejima H, Absorption of sulfur dioxide into limestone slurry in a stirred tank reactor, Canadian Journal of Chemical Engineering, 1978, 56 (6): 690-697
    [65]谭长斌,填料塔气液并流接触压降与吸收效率的研究,:[硕士学位论文],天津;天津大学,2010
    [66]吴忠标,谭天恩,石灰/石灰石湿法脱硫中添加剂的研究,中国环境科学, 1995, 15 (6): 438-442
    [67]Liu S Y, Xiao W D, Modeling and simulation of a bubbling SO2 absorber with granular limestone slurry and an organic acid additive, Chemical Engineering & Technology, 2006, 29 (10): 1167-1173
    [68]Chan P K, Rochelle G T, Limestone dissolution: effects of pH, CO2, and buffers modeled by mass transfer, ACS Symposium Series, 1982, 188 (1): 75-97
    [69]Ramachandran P A, Sharma M M, Absorption with fast reaction in a slurry containing sparingly soluble fine particles, Chemical Engineering Science, 1969, 24 (11): 1681-1686
    [70]Michalski J A, The influence of aerodynamic characteristics on mass exchange efficiency in FGD scrubbers, Chemical Engineering & Technology, 1999, 22 (4): 343-351
    [71]Astarita G, Savage D W, Bisio A, Gas treatment with chemical solvents, New York: Wiley Interscience, 1983
    [72]Armenante P M, Kirwan D J, Mass transfer to microparticles in agitated systems, Chemical engineering science, 1989, 44 (12): 2781-2796
    [73]Onsager L, Fuoss R M, Irreversible processes in electrolytes. Diffusion, conductance and viscous flow in arbitrary mixtures of strong electrolytes, The Journal of Physical Chemistry, 1932, 36 (11): 2689-2778
    [74]GB7477-87,水质钙的测定EDTA滴定法,北京:国家环保总局, 2002
    [75]曹仲文,袁惠新,李正兴,旋流反应器气液相界面积的化学吸收法测定技术, 2008, 39 (1): 53-55
    [76]Ahlbeck J, Engman T, Falten S, et al., Measuring the reactivity of limestone for wet flue-gas desulfurization, Chemical Engineering Science, 1995, 50 (7): 1081-1089
    [77]Lancia A, Musmarra D, Pepe F, et al., SO2 absorption in a bubbling reactor using limestone suspensions, Chemical Engineering Science, 1994, 49 (24A): 4523-4532
    [78]Kiil S, Johnsson J E, Dam-Johansen K, Modeling of limestone dissolution in wet FGD systems: The importance of an accurate particle size distribution, Power Plant Chemistry, 1999, 1 (5): 26-30
    [79]高继贤,王铁峰,王光润等,烟气水蒸汽含量对变温吸附烟气脱硫过程的影响,过程工程学报, 2009, 9 (1): 18-22
    [80]Wu W, Han B, Gao H, et al., Desulfurization of flue gas: SO2 absorption by an ionic liquid, Angewandte Chemie International Edition, 2004, 43 (18): 2415-2417
    [81]黄蔚霞,李云龙,汪燮卿等,离子液体在催化裂化汽油脱硫中的应用,化工进展, 2004, 23 (3): 297-299
    [82]Bates E D, Mayton R D, Ntai I, et al., CO2 capture by a task-specific ionic liquid, Journal of the American Chemical Society, 2002, 124 (6): 926-927
    [83]Andanson J, Jutz F, Baiker A, Supercritical CO2/ionic liquid systems: What can we extract from infrared and raman spectra? The Journal of Physical Chemistry B, 2009, 113 (30): 10249-10254
    [84]Shiflett M B, Yokozeki A, Separation of carbon dioxide and sulfur dioxide using room-temperature ionic liquid [bmim][MeSO4], Energy & Fuels, 2010, 24 (2): 1001-1008
    [85]Siqueira L J A, Ando R A, Bazito F C, Shielding of ionic interactions by sulfur dioxide in an ionic liquid, Journal of Physical Chemistry, 2008, 112 (20): 6430-6435
    [86]Kanakubo M, Umecky T, Hiejima Y, et al., Solution structures of 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid saturated with CO2: Experimental evidence of specific anion-CO2 interaction, Journal of Physical Chemistry, 2005, 109 (29): 13847-13850
    [87]Pomelli C, Chiappe C, Vidis A, et al., Influence of the interaction between hydrogen sulfide and ionic liquids on solubility: Experimental and theoretical investigation, Journal of Physical Chemistry B, 2007, 111 (45): 13014-13019
    [88]Huang J, Maginn E, Brennecke J, Tuning ionic liquids for high gas solubility and reversible gas sorption, Journal of Molecular Catalysis A: Chemical, 2008, 279 (2): 170-176
    [89]Deschamps J, Gomes M F C, Padua A A H, Molecular simulation study of interactions of carbon dioxide and water with ionic liquids, Chemical Physics and Physical Chemistry, 2004, 5 (7): 1049-1052
    [90]Pison L, Lopes J N C, Rebelo L P N, et al., Interactions of fluorinated gases with ionic liquids: Solubility of CF4, C2F6, and C3F8 in trihexyltetradecylphosphonium bis (trifluoromethylsulfonyl) amide, Journal of Physical Chemistry B, 2008, 112 (39): 12394-12400
    [91]Ren S, Hou Y, Wu W, et al., Properties of ionic liquids absorbing SO2 and the mechanism of the absorption, Journal of Physical Chemistry B, 2010, 114 (6): 2175-2179
    [92]Carvalho J P, Coutinho J A P, Non-ideality of solutions of NH3,SO2, and H2S in ionic liquids and the prediction of their solubilities using the Flory-Huggins model, Energy & Fuels, 2010, 24 (12): 6662-6666
    [93]Carvalho P J, Coutinho J A P, On the non-ideality of CO2 solutions in ionic liquids and other low volatile solvents, The Journal of Physical Chemistry Letters 2010, 1 (1): 774-780
    [94]环境保护部,关于公布全国城镇污水处理设施和燃煤机组脱硫脱硝设施的公告, 2011年第29号
    [95] GB 13223-2011,火电厂大气污染物排放标准[S]
    [96]李守信,纪立国等,石灰石-石膏湿法烟气脱硫工艺原理,华北电力大学学报,2002,29(4):91~94
    [97]张建斌,马凯等,湿法烟气脱硫技术,精细石油化工,2007,24(2):64~68
    [98]姚淑华,石中亮等,有色金属冶炼烟气SO2的回收治理及其资源化,化工生产与技术,2003,10(5):22~25
    [99]吴忠标,刘越等,双碱法烟气脱硫工艺的研究,环境科学学报,2001,21(5):534~537
    [100]张庆刚,燃煤烟气氨法脱硫工艺探讨,环境科学与管理,2009,34(7):87~89
    [101]郭鲁钢,王海增等,海水脱硫技术现状,海洋技术,2006,25(3):10~14
    [102]董学德,彭斯干等,烟气海水脱硫技术及其应用,中国电力,1996,29(10):52~57
    [103]王姣,离子液循环吸收脱硫法在锌冶炼工程中的应用,硫酸工业,2009(4):44~46
    [104]王睿,裴家炜,离子液循环吸收烟气脱硫技术及其应用前景,烧结球团,2009年34卷2期:5~10
    [105]张进,朴香兰等,离子液体在化工分离过程中的应用进展,化学试剂,2007,29(5):269~272;283
    [106] [德]莱恩哈特.毕力特著,魏建华等译.填料塔(Packed Towers)[M].化学工业出版社,1998:74-86
    [107]吴洪波.火电厂湿法氧化镁烟气脱硫除尘一体化技术应用分析.2005,92(1):22~25
    [108]刘增辉,烟气脱硫脱硝集成技术工艺分析及试验:[硕士学位论文],天津;天津大学,2007
    [109]黄震,国外烟气脱硫技术研究开发进展,《2001中国国际环保展专题报告会论文集》,2001
    [110]黄霞,石莹,国外烟气脱硫技术,节能与环保, 2001, 4 (1): 18-21
    [111]郝继锋,汪莉,宋存义,钢铁厂烧结烟气脱硫技术的探讨,太原理工大学学报, 2005,36(4):491-494

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700