用户名: 密码: 验证码:
内循环气升式反应器流动行为与传质特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气升式反应器因其具有独特的优势在众多领域得到了广泛的应用,但是由于反应器内部多相流的流动和传质机理极其复杂,加上反应器结构、操作条件以及流体物性都会对流体流动特性和相间传质行为产生影响,在气升式反应器的设计、放大和操作等方面有很多问题尚未很好地解决。随着工业技术的迅速发展,业界对气升式反应器性能的要求也不断提高,因而如何设计更为高效的气升式反应器以及实现对反应器的优化操作成为迫切需要解决的问题。
     本文以内循环气升式反应器为研究对象,考察了喷嘴结构和筛板结构对流体流动行为和相间传质特性的影响;基于轴向扩散模型建立了反应器的宏观传质模型,对动态气液传质过程进行了深入分析;初步研究了反应器内的压力波动与水力学行为之间的相互关系,提出了基于压力波动信号的流型辨识方法。
     本文具体的研究内容以及得到的主要结论包括:
     1.选取二喷嘴、旋切四喷嘴和O型分布器为研究对象,考察了喷嘴结构对流体流动和相间传质特性的影响。实验结果表明,在保证喷口出射气速相同的情况下,喷口直径较小的喷嘴产生的平均气泡直径较小,循环液速较大,有利于提高整体气含率和传质效率;通气量一定时,喷口数目越多会导致各喷口的气体出射速度越小,气体冲击破碎的效果越差,使得气液传质性能下降。综合实验数据,本文最终确定旋切四喷嘴为最优的喷嘴结构。
     2.研究发现反应器内的流型变化对水力学行为影响很大,在均相流内,整体气含率和下降段液速都随表观气速的增大迅速增加,而在非均相流内,下降段液速基本趋于稳定,同时整体气含率的增加速度也变慢。体积氧传质系数随着表观气速的增加呈线性增加的趋势,提高表观气速对气泡比表面积(气液相界面积)的大小有显著影响,而对液膜侧氧传质系数的影响则有限。本文基于实验数据建立了预测不同流型、不同喷嘴结构下整体气含率和体积氧传质系数的经验关系式,同时根据物料守恒和压力平衡原则建立了预测下降段液速的流动模型,并对模型的有效性进行了验证。
     3.考察了筛板结构对流体流动和传质行为的影响,发现筛板能够有效地破碎气泡,起到均布流场、强化传质的作用。在上升段内加装筛板后,反应器的性能有显著提高,整体气含率和体积氧传质系数均有大幅提升。筛孔直径和开孔率是筛板的重要结构参数,较小的筛孔直径和开孔率对于气含率的提升更有利,而较大的筛孔直径和开孔率强化传质的效果更明显。此外,筛板个数和安装位置也是影响反应器性能的重要因素,适量的增加筛板的数目对气液传质更有利,筛板安装在上升段下部效果更好。本文基于实验数据建立了预测不同筛板结构参数下整体气含率和体积氧传质系数的经验关系式,结合物料守恒和压力平衡原则建立了预测有筛板情况下下降段液速的流动模型,并验证了模型的有效性。
     4.将带源相的轴向扩散模型应用于反应器内的气相和液相,建立了内循环气升式反应器的宏观传质模型。本文借助有限差分法将传质模型中的偏微分方程转化为差分方程,提出了模型的数值迭代求解方法;实验验证了模型的有效性,并结合实验数据和模型仿真结果,对反应器内的动态气液传质过程进行了详细阐述,证实了所研究的反应器具有良好的混合和传质特性;基于仿真结果得出的结论,对气液传质模型进行了简化,并通过坐标变换法求得了简化模型的解析解,计算结果表明该简化模型能较好地预测溶氧浓度的整体变化趋势。
     5.研究了气升式反应器内的压力波动现象,探讨了反应器内压力波动的来源,并根据反应器内不同波源所产生的压力波动特性的差异将其划分为全局压力波动和局部压力波动两类;利用相关分析将压力波动信号分解为相关、联合非相关、自非相关三部分,各部分分别表征不同性质的波源产生的压力波动,并进一步考察了各部分所占的能量分率随表观气速的演化与反应器内流型转变之间的关系,证实了压力波动信号能够表征流型的转变;通过功率谱分析和相关分析研究了不同流型内压力波动信号的频率特征与水力学行为之间的相互关系。
     6.对基于压力波动信号的流型辨识方法进行了深入研究,提出了流型辨识的新方法。本文分别利用小波变换、Hilbert-Huang变换、高阶统计量、Wigner-Ville分布以及混沌、分形理论对压力波动信号进行分析,提取出了压力信号中所蕴含的与流型相关的特征;通过采用小波熵、平均双谱、广义平均频率、Hurst指数、混沌特征参数作为表征流型转变的特征量,成功识别出反应器内的三种基本流型,为基于压力波动信号的流型辨识方法提供了新的研究思路。
Airlift reactors have been widely applied in chemical andbiotechnological industries due to their special advantages. However, becauseof the complexity of hydrodynamics and mass transfer in the reactor, togetherwith the influences of reactor structure, operating conditions and physicalproperties, there are still many remaining problems in designing, scaleup andoperating of the reactor. The demands on airlift reactors are increasing withthe development of industrial technologies. Thus, how to design an airliftreactor with high performance and realize the operation optimization of airliftreactors are key problems needing to be solved.
     This work focuses on the hydrodynamics and mass transfercharacteristics in an internal loop airlift reactor. The influences of reactorstructures, such as sparger structure and sieve plate, on hydrodynamicbehaviors and mass transfer in the reactor were investigated. A macro masstransfer model of the reactor was established based on the axial dispersionmodel. The dynamic mass transfer process between gas and liquid phases wasanalyzed based on experimental data and simulation results. The pressurefluctuation phenomenon in the airlift reactor was studied and the relationshipbetween pressure fluctuations and hydrodynamic behaviors were revealed.Several new flow regime identification methods based on the pressurefluctuation signal were proposed.
     The research content and main conclusions of this study including:
     1. The influences of the sparger structure on hydrodynamics and masstransfer in the reactor were investigated. Three different spargers, namely2-orifice nozzle, rotary-cut4-orifice nozzle and O-ring distributor, were tested.It’s found that under the precondition of the same gas outlet velocity of eachorifice, the sparger with the smaller orifice diameter was more efficient for themass transfer, because it produced a smaller mean bubble diameter but a higher liquid circulation velocity, and therefore a higher volumetric masstransfer coefficient. At the given airflow rate, the lager number of orificesleads to a low gas outlet velocity of each orifice, which weakens the impactbetween gas and liquid phases, resulting in the decrease of mass transferefficiency. The rotary-cut4-orifice nozzle was confirmed to be the bestsparger.
     2. The flow regime transitions have a large influence on hydrodynamicbehaviors. In the homogeneous flow, the overall gas holdup and thedowncomer liquid velocity increased with the superficial gas velocity, whilethe downcomer liquid velocity tended to be stable and the increase of gasholdup slowed down in the heterogeneous flow. The volumetric mass transfercoefficient almost increased linearly with the superficial gas velocity. Thesuperficial gas velocity strongly affected the specific interfacial area, whilehad less effect on the liquid-side mass transfer coefficient. Empiricalcorrelations were proposed to predict the gas holdup and the volumetric masstransfer coefficient for different spargers in different flow regimes. Based onthe material conservation and pressure balance principles, a fluid model wasestablished to predict the liquid velocity in the downcomer, and itseffectiveness was validated by experiment data.
     3. Effects of the sieve plate on flow and mass transfer characteristics inthe reactor were studied. It’s found that the sieve plate played an importantrole in breaking up bubbles, and thus made the flow field more uniform andenhanced the mass transfer efficiency. The installing of sieve plates in theriser could significantly enhance gas holdup and volumetric mass transfercoefficient. The sieve pore diameter and the free area ratio are importantdesign parameters of the sieve plate. Smaller sieve pore diameter and freearea ratio were more benefit to increase the gas holdup, while larger sievepore diameter and free area ratio were more efficient in enhancing the masstransfer efficiency. Moreover, the number and mounting position of the sieveplate also have strong effect on the performance of the reactor. The resultsindicated that the mass transfer coefficient was larger when more sieve plates were used. The installing of the sieve plate at the bottom section of the riserwas found to be more efficient. Empirical correlations were proposed topredict gas holdup and volumetric mass transfer coefficient for different sievestructure parameters. A fluid model was established to predict the downcomerliquid velocity in the airlift reactor with sieve plates.
     4. A macro mass transfer model of the airlift reactor was established byapplying the axial dispersion model to gas and liquid phases. The partialdifferential equations of mass transfer model were transformed to differenceequations using the finite difference method, and a numerical method wasdeveloped to solve the mathematical model. Experiments were carried out tovalidate the effectiveness of the model. Based on experiment data andnumerical simulation results, the dynamic mass transfer process in the reactorwas illustrated in details. Based on the conclusion obtained from numericalresults, the mass transfer model was further simplified and the analyticalsolution of the simplified model was obtained by using a coordinate transformmethod. The results indicated that the simplified model could well predict thedissolved oxygen concentration when axial dispersion coefficients and axialconcentration gradients in the reactor were negligible.
     5. The origin of pressure fluctuations in airlift reactors was discussed.The pressure fluctuations in the reactor were divided into two categories:global pressure fluctuations and local pressure fluctuations. Based on thecoherence analysis, the pressure signal was decomposed into three differentparts: coherent part, joint incoherent part and exclusive incoherent part. Eachpart was related to pressure fluctuations from different sources. Therelationship between evolution of energy ratios of these three parts with thesuperficial gas velocity and flow regime transitions in the reactor wasinvestigated. The results indicated that the pressure signal was capable torepresent flow regime transitions. The power spectral and coherence analysismethods were applied to study the relationship between pressure fluctuationsand hydrodynamic behaviors in different flow regimes.
     6. The flow regime identification based on pressure fluctuation signals was deeply investigated and several new flow regime identification methodswere proposed. The wavelet transform, Hilbert-Huang transform, higher orderstatistics, Wigner-Ville distribution, chaos and fractal theories were applied toanalyze pressure fluctuation signals, and thus the flow regime characteristicswere extracted from the pressure signal. By using the wavelet entropy,average bispectrum, generalized average frequency, Hurst exponent andchaotic parameters as characteristic quantities, the three typical flow regimesin the reactor were successfully identified. These results provide a newthought for the flow regime identification based on pressure fluctuationsignals.
引文
[1] Chisti, Y. Airlift Bioreactors. London: Elsevier,1989.
    [2] Luo, H.P., Al-Dahhan, M.H. Local characteristics of hydrodynamics in draft tube airliftbioreactor. Chem. Eng. Sci.,2008,63:3057–3068.
    [3] Jin, B., Yin, P., Lant, P. Hydrodynamics and mass transfer coefficient in three-phase air-liftreactors containing activated sludge, Chem. Eng. Proc.,2006,45:608–617.
    [4]Merchuk, J., Siegel, M. Air-Lift reactors in chemical and biological technology. J. Chem.Technol. Biotechnol.,1988,40:105–120.
    [5]Fu, C.C., Fan, L.S., Wu, W.T. Flow regime transitions in an internal-loop airlift reactor. Chem.Eng. Technol.,2007,30:1077–1082.
    [6] Xu, Y.Y., Luo, L.J., Yuan, J.Q. CFD simulations to portray the bubble distribution and thehydrodynamics in an annulus sparged air-lift bioreactor. Can. J. Chem. Eng.,2011,89:360–368.
    [7]张同旺.气升式环流浆态床流动与传质行为的研究[博士学位论文].北京:清华大学,2005.
    [8]王铁峰.气液(浆)反应器流体力学行为的实验研究和数值模拟[博士学位论文].北京:清华大学,2004.
    [9] Chisti, Y., Wenge F., Moo-Young, M. Relationship between riser and downcomer gas hold-up ininternal-loop airlift reactors without gas-liquid separators. Chem. Eng. J.,1995,57: B7–B13.
    [10] Giaveno, A., Lavalle, L., Patricia C., Donati, E. Airlift reactors: characterization and applicationin biohydrometallurgy. in: E. R. Donati and W. Sand, Eds.,―Microbial Processing of MetalSulfides,‖Springer, Netherlands,2007, pp.169–191.
    [11]张元兴,许学书.生物反应器工程.上海:华东理工大学出版社,2001.
    [12] Van Baten, J.M., Ellenberger, J., Krishna, R. Hydrodynamics of internal air-lift reactors:experiments versus CFD simulations. Chem. Eng. Proc.,2003,42:733–742.
    [13] Siegel, M.H., Robinson, C.W. Applications of airlift gas-liquid-solid reactors in biotechnology.Chem. Eng. Sci.,1992,47:3215–3229.
    [14] Bello, R.A., Robinson, C.W., Moo-Young, M. Prediction of the volumetric mass transfercoefficient in pneumatic contactor. Chem. Eng. Sci.,1985,40(1):53-58.
    [15] Klein, J., Godo, S., Dolgos, O., Markos, J. Effect of a gas–liquid separator on thehydrodynamics and circulation flow regimes in internal-loop airlift reactors. J. Chem. Technol.Biotechnol.,2001,76:516–524.
    [16] Fadavi, A., Chisti, Y. Gas-liquid mass transfer in a novel forced circulation loop reactor. Chem.Eng. J.,2005,112:73–80.
    [17] Fadavi, A., Chisti, Y. Gas holdup and mixing characteristics of a novel forced circulation loopreactor. Chem. Eng. J.,2007,131:105–111.
    [18] Molina, E., Contreras, A., Chisti, Y. Gas Holdup, Liquid circulation and mixing behaviour ofviscous newtonian media in a split-cylinder airlift bioreactor. Trans. IChemE.,1999,77:27–32.
    [19] Gourich, B., Azher, N.E., Bellhaj, M.S., Delmas, H., Bouzidi, A., Ziyad, M. Contribution to thestudy of hydrodynamics and gas-liquid mass transfer in a two-and three-phase split-rectangularairlift reactor. Chem. Eng. Process.,2005,44:1047–1053.
    [20] Graen-Heedfeld, J., Schulueter, S. Gas circulation in internal airlift loop reactors. Chem. Eng.Technol.,2000,23:1051–1055.
    [21] Vial, C., Poncin, S., Wild, G., Midoux, N. Experimental and theoretical analysis of thehydrodynamics in the riser of an external loop airlift reactor. Chem. Eng. Sci.,2002,57:4745–4762.
    [22]吕效平,杨世花,谷和平,丁健,肖人卓.新型气升式内环流反应器气含率的研究.天然气化工,1997,22(4):23–26.
    [23]王尹,燕侠.表观气速对环流式反应器性能影响.化学反应工程与工艺,2007,23(2):104–108.
    [24]王文华,沈娟,徐志刚,束忠明.气升式内循环流反应器的含气率研究.现代化工,2007,27(Z1):325–328.
    [25]周平,钱易.空气提升内循环生物流化床反应器动力学研究.环境科学,1996,17(6):9–15.
    [26]张同旺,高继贤,王铁峰,王金福.三相环流反应器中的局部相含率.过程工程学报,2005,5(5):485–489.
    [27]郑裕国,汪钊,陈小龙,陈之江.带内件外循环气升式生物反应器氧传递的研究.浙江工业大学学报,1999,27(1):6–10.
    [28]吴捷,胡维兵,冯朴荪.大型气升环流反应器加置内件时氧传递规律的研究.化工学报,1992,43(1):40-46.
    [29] Kilonzo, P.M., Margaritis, A., Bergougnou, M.A. Hydrodynamics and mass transfercharacteristics in an inverse internal loop airlift-driven fibrous-bed bioreactor. Chem. Eng. J.,2010,157:146–160.
    [30] Jin, B., Lant, P. Flow regime, hydrodynamics, floc size distribution and sludge properties inactivated sludge bubble column, air-lift and aerated stirred reactors. Chem. Eng. Sci.,2004,59:2379–2388.
    [31] Jin, B., van Leeuwen, J., Doelle, H., Yu, Q. The influence of geometry on hydrodynamic andmass transfer characteristics in an external airlift reactor for the cultivation of filamentous fungi.World J. Microbiol. Biotechnol.,1999,15:73–79.
    [32] Garcia, J.C., Lavin, A.G., Diaz, M. High liquid holdup airlift tower loop reactor. I. Riserhydrodynamic characteristics. J. Chem. Technol. Biotechnol.,2000,75:369–377.
    [33] Saberi, S., Shakourzadeh, K., Bastoul, D, Militzer, J. Bubble size and velocity measurement ingas-liquid systems: application of fiber optic technique to pilot plant scale. Can. J. Chem. Eng.,1995,70:253–257.
    [34] Chen, Z., Zheng, C., Hofmann, H. Local bubble behavior in three-phase fluidized beds. Can. J.Chem. Eng.,1998,76:315–31.
    [35]杨胜,罗毓珊,陈听宽,陈凤云.垂直上升管中采用光纤探针测量截面含气率的实验研究.动力工程,2006,26(6):875–878.
    [36]郑荣,杨瑞昌,沈幼庭.单纤光纤探针测量空泡份额的实验研究.工程热物理学报.1997,8(1):99–102.
    [37]高华魂,周芳德,陈学俊.用电导法测定两相流平均截面含气率的实验研究.工程热物理学报,1985,6(1):56–59.
    [38] Soo, S.L. Insutmentation for fluid-Particle flow. NewYork: Norwich,1999.
    [39]董峰,邓湘,徐立军,徐苓安.过程层析成像技术综述.仪器仪表用户,2001,8(1):6–11.
    [40]谢代梁.电容层析成像技术在两相流参数检测中的应用研究[博士学位论文].杭州:浙江大学,2005.
    [41]张兆田,熊小芸,杨五强.过程层析成像概述.中国体视学与图像分析,2005,10(3):145–148.
    [42]黄志尧,金宁德,李海青.层析成像技术在多相流检测中的应用.化学反应工程与工艺,1996,12(4):395–405.
    [43]马平,周晓宁,田沛.过程层析成像技术的发展及应用.自动化及仪表,2009,36(1):1–5.
    [44]韩玉环,靳海波.采用电阻层析成像技术测量三相外环流反应器中相含率的实验研究.过程工程学报,2009,9(3):431–436.
    [45] Razzak, S.A., Barghi, S., Zhu, J.X. Electrical Resistance Tomography for Flow Characterizationof a Gas Liquid Solid Three-phase Circulating Fluidized Bed. Chem. Eng. Sci.,2007,62(24):72537263.
    [46] Wang, Y., McNeil, B. A study of gas holdup, liquid velocity, and mixing time in a complex highviscosity, fermentation fluid in an airlift bioreactor. Chem. Eng. Technol.1996,19:143–153.
    [47] Chisti, Y., Moo-Young, M. Liquid circulation in airlift reactors. Chem. Eng. Sci.,1988,43:451–457.
    [48] Bello, R.A., Robinson, C.W., Moo-Young, M. Liquid circulation and mixing characteristics ofairlift contactors. Can. J. Chem. Eng.,1984,62:573–577.
    [49] Kilonzo, P.M., Margaritis, A., Bergougnou, M.A. Hydrodynamic characteristics in an inverseinternal-loop airlift-driven fibrous-bed bioreactor. Chem. Eng. Sci.,2010,65:692–707.
    [50] Jamshidi, A., Sohrabi, A., Vahabzadeh, F., Bonakdarpour, B. Hydrodynamic and mass transfercharacterization of a down flow jet loop bioreactor. Biochem. Eng. J.,2001,8:241–250.
    [51] Merchuk, J.C., Contreras, A., Garcia, F., Molina, E. Studies of mixing in a concentric tube airliftbioreactor with different spargers. Chem. Eng. Sci.,1998,53:709–719.
    [52] Kawase, Y., Omori, N., Tsujimura, M. Liquid-phase mixing in external-loop bioreactors. J.Chem. Technol. Biot.,1994,63:49–55.
    [53] Fhaim, M.A., Wakao, N. Parmaeter estimation from tracer response measuerments. Chem. Eng.J.,1982,25: l–8.
    [54] Gavrilescu, M., Tudose, R.Z. Mixing studies in external-loop airlift reactors. Chem. Eng. J.,1997,66:97–104.
    [55]盛森芝,徐月亭,袁辉靖.热膜热线流速仪.北京:中国科学技术出版社,2003.
    [56]杨建,张鸣远,张超杰,苏玉亮,任长春.用热膜测速仪测量水平管内气液泡状流的液相速度和紊流结构.核动力工程,2003,24(3):260–263.
    [57] Utiger, M., Guy, C., Stuber, F., Duquenne, A.M., Delmas, H. Local measurements for the studyof external loop airlift hydrodynamics. Can. J. Chem. Eng.,1999,77:375–382.
    [58] Farrar, B., Samways, A.L., Ali J., Bruun, H.H. A computer based hotfilm technique fortwo-phase flow measurements. Meas. Sci. Technol.,1995,6:1528–1537.
    [59] Hammand, F.A., Bruum, H.H. Evaluation of bubble/drop velocity and slip velocity by a singlenormal hot-film probe placed in a tw-phase flow. Meas. Sci. Technol.,2000,11:11–19.
    [60] Hogsett, S., Ishii, M. Local two-phase flow measurements using sensor techniques. Nucl. Eng.Des.1997,175:15–24.
    [61] Liu, T.J., Bankoff, S.G. Structure of Air-water bubbly flow in a vertical pipe-I. liquid meanvelocity and turbulence measurements. Int. J. Heat Transf.1993,36:1049–1060.
    [62] Iskandrani, A, Kojasoy G. Local void fraction and velocity field description in horizontal bubblyflow. Nucl. Eng. Des.,2001,204:117–128.
    [63]沈熊.激光多普勒测速技术及应用.北京:清华大学出版社,2004.
    [64]李听,刘君华,王子延.基于超声波多普勒法的流通截面分区流速测量的研究.声学学报,2002,27(2):162–166.
    [65]王素红.激光多普勒测速技术.现代物理知识,2008,20(4):31–33.
    [66] Wang, T.F., Wang, J.F., Jin, Y. Application of doppler ultrasound velocimetry in multiphaseflow. Chem. Eng. J.,2003,92:111–122.
    [67] Vial, C., Poncin, S., Wild G., Midoux, N. Experimental and theoretical analysis of thehydrodynamics in the riser of an external loop airlift reactor. Chem. Eng. Sci.,2002,57:4745–4762.
    [68]周云龙,宋连壮,周红娟.稀相颗粒二维速度场测量PTV法的研究进展.化工进展,2010,29(增刊):17–21.
    [69]粟晶.水平槽道气固两相湍流变动的PIV实验研究和直接数值模拟[博士学位论文].武汉:华中科技大学,2010.
    [70] Wu, X.X., Merchuk, J.C. Measurement of fluid flow in the downcomer of an internal loop airliftreactor using an optical trajectory-tracking system. Chem. Eng. Sci.,2003,58:1599–1614.
    [71] Hassan, Y.A., Blanchat, T.K., Seeley Jr, C.H., Canaan, R.E. Simultaneous velocity measurementof both components of a two-phase flow using particle image velocimetry. Int. J. Multiphase.Flow,1992,18:371–395.
    [72] Devanathan, N., Moslemian, D., Dudukovic, M.P. Flow mapping in bubble columns usingCARPT. Chem. Eng. Sci.,1990,45:2285–2291.
    [73] Luo, H.P., Al-Dahhan, M.H. Macro-mixing in a draft tube airlift column via the CARPTtechnique. Chem. Eng. Sci.,2008,63(6):1572–1585.
    [74] Luo, H.P., Al-Dahhan, M.H. Local characteristics of hydrodynamics in draft tube airliftbioreactor. Chem. Eng. Sci.,2008,63:3057–3068.
    [75] Gogate, P.R., Pandit, A.B. Survey of measurement techniques for gas–liquidmass transfercoefficient in bioreactors. Biochem. Eng. J.,1999,4:7–15.
    [76] Bla ej, M., Annus, J., Marko, J. Comparison of gassing-out and pressure-step dynamicmethods for kLa measurement in an airlift reactor with internal loop. Chem. Eng. Res. Des.,2004,82:1375–1382.
    [77] Gaddis, E.S. Mass transfer in gas–liquid contactors. Chem. Eng. Proc.,1999,38:503–510.
    [78] Chisti, Y., Jauregui-Haza, U.J. Oxygen transfer and mixing in mechanically agitated airliftbioreactors. Biochem. Eng. J.,2002,10:143–153.
    [79] Rainer, B.W. Determination methods of the volumetric oxygen transfer coefficient kLa inbioreactors. Chem. Biochem. Eng.,1990, Q4:185–196.
    [80] Linek, V., Benes, P., Sinkule, J., Moucha, T. Non-ideal pressure step method for kLameasurement. Chem. Eng. Sci.,1993,48:1593–1599.
    [81] Linek, V., Moucha, T., Dousova, M., Sinkule, J. Measurement of kLa by dynamic pressuremethod in pilot-plant fermentor. Biotechnol. Bioeng.,1994,43:477–482.
    [82] Zlokarnik, M. Sorption characteristics for gas–liquid contactingin mixing vessels, Adv.Biochem. Eng.,1978,8:133–151.
    [83] Hickman, A.D. Gas-liquid oxygen transfer and scale up, a novel experimental technique withresults for mass transfer in aerated agitated vessels. Proceedings of Sixth European Conferenceon Mixing,1988,6:369–374.
    [84] Bendjaballah, N., Dhaouadi, H., Poncin, S., Midoux, N., Hornut, J.M., Wild, G. Hydrodynamicsand flow regimes in external loop airlift reactors. Chem. Eng. Sci.,1999,54:5211–5221.
    [85] Lage, P.L.C., Esposito, R.O. Experimental determination of bubble size distributions in bubblecolumns: prediction of mean bubble diameter and gas hold up. Powder Technol.,1999,101:142-150.
    [86] Lin, T.J., Tsuchiya, K., Fan, L.S. Bubble flow characteristics in bubble columns at elevatedpressure and temperature. AIChE J.,1998,44:545–560.
    [87] Polli, M., Stanislao, M.D., Bagatin, R., Bakr, E.A., Masic, M. Bubble size distribution in thesparger region of bubble columns. Chem. Eng. Sci.,2002,57:197–205.
    [88] Zhang, T.W., Wang, J.F., Luo, Z., Jin, Y. Multiphase flow characteristics of a novel internal-loopairlift reactor. Chem. Eng. J.,2005,109:115–122.
    [89] Lo, C.S., Hwang, S.J. Local hydrodynamic properties of gas phase in an internal-loop airliftreactor. Chem. Eng. J.,2003,91:3–22.
    [90] Wang, T.F., Wang, J.F., Yang, W.G., Jin, Y. Bubble behavior in gas–liquid–solid three-phasecirculating fluidized beds. Chem. Eng. J.,2001,84:397–404.
    [91] Merchuk, J.C., Ladwa, N., Cameron, A., Bulmer, M., Berzin, I., Pickett, A.M. Liquid flow andmixing in concentric tube air-lift reactors. J. Chem. Technol. Biot.,1996,66:174–182.
    [92] Hwang, S.J., Cheng, Y.L. Gas holdup and liquid velocity in three phase internal loop airliftreactors. Chem. Eng. Sci.,1997,52:3949–3960.
    [93]沈荣春,束忠明,黄发瑞,戴迎春.导流筒结构对气升式环流反应器内气液两相流动的影响.石油化工,2005,34(10):959–964.
    [94]李飞.新型多级环流反应器流体力学研究[博士学位论文].北京:清华大学,2004.
    [95] Mohanty, K., Das, D., Biswas, M.N. Hydrodynamics of a novel multi-stage external loop airliftreactor. Chem. Eng. Sci.,2006,61(14):4617–4624.
    [96] Russell, A.B., Thomas, C.R., Lilly, M.D. The influence of vessel height and top-section size onthe characteristics of airlift fermentors. Biotechnol. Bioeng.,1994,43:69–76.
    [97] Siegel, M.H., Merchuk, J.C. Mass transfer in a rectangular airlift reactor: effects of geometryand gas recirculation. Biotechnol. Bioeng.,1988,32:1128–1137.
    [98] Wongsuchoto, P., Pavasant. P. Internal liquid circulation in annulus sparged internal loop airliftcontactor. Chem. Eng. J.,2004,100:1-9.
    [99] Young, M.A., Carbonell, R.G., Oills, D.F. Airlift bioeractors: anaylsis of local two-phasehydrodynamics. AIChE J.,1991,37(3):403–428.
    [100] Weiland, P. Influence of draft tube diameter on operation behaviour of airlift loop reactors.German Chem. Eng.,1984,7:374–385.
    [101] Gavrilescu, M., Tudose, R.Z. Concentric-tube airlift bioreactors Part I: Effects of geometry ongas holdup. Bioprocess Eng. J.,1998,19(2):37–44.
    [102] Gavrilescu, M., Tudose, R.Z. Effects of downcomer-to-riser cross sectional area ratio onoperation behaviour of external-loop airlift bioreactors. Bioproc. Biosyst. Eng.,1996,15:77–85.
    [103] Gavrilescu, M., Tudose, R.Z. Effects of geometry on hydrodynamics in external-loop airliftreactors. Chem. Eng. Comm.,1996,156:89–113.
    [104] Russell, A.B., Thomas, C.R., Lilly, M.D. The influence of vessel height and top-section size onthe characteristics of airlift fermentors. Biotechnol. Bioeng.1994,43:69–76.
    [105] Choi, K.H., Chisti, Y., Moo-Young, M. Influence of the gas—liquid separator design onhydrodynamic and mass transfer performance of split-channel airlift reactors. J. Chem. Technol.Biot.,1995,62:327–332.
    [106] Klein, J., Godo, S., Dolgo, O., Marko, J. Effect of a gas-liquid separator on thehydrodynamics and circulation flow regimes in internal-loop airlift reactors. J. Chem. Technol.Biot.,2001,76(5):516–524.
    [107] Merchuk, J.C., Yunger, R. The role of the gas-liquid separator of airlift reactors in the mixingprocess. Chem. Eng. Sci.,1990,45(9):2973–2975.
    [108] Siegel, M.H., Merchuk, J.C., Schugerl, K. Air-lift reactor analysis: Interrelationships betweenriser, downcomer, and gas-liquid separator behavior, including gas recirculation effects. AIChEJ.,1986,32:1585–1596.
    [109]任兆刚,王心良.方形气升式环流反应器的流体力学与传氧特性.西华师范大学学报(自然科学版).2003,24(4):418–422.
    [110] Gavrilescu, M., Roman, R.V., Tudos, R.Z. Hydrodynamics in external-loop airlift bioreactorswith static mixers. Bioprocess Eng. J.,1997,16:93–99.
    [111] Chisti, Y., Kasper, M., Moo-Young, M. Mass transfer in external-loop airlift bioreactors usingstatic mixers. Can. J. Chem. Eng.,1990,68:45–50.
    [112] Nikakhtari, H.G., Hill, A. Hydrodynamic and oxygen mass transfer in an external loop airliftbioreactor with a packed bed. Biochem. Eng. J.,2005,27(2):13–145.
    [113] Krichnavaruk, S., Pavasant, P. Analysis of gas–liquid mass transfer in an airlift contactor withperforated plates. Chem. Eng. J.,2002,89:203–211.
    [114] Chen, C.P., Yang, S.J., Wu, W.T. A novel rectangular airlift reactor with mesh baffle-plates.Biotech. Tech.,1997,11:439–441.
    [115] Zhao, M., Niranjan, K., Davidson, J.F. Mass transfer to viscous liquids in bubble columns andair-lift reactors: influence of baffles. Chem. Eng. Sci.,1994,49:2359–2369.
    [116] Gouveia, E.R., Hokka, C.O., Badino Jr, A.C. The effects of geometry and operational conditionson gas holdup, liquid circulation and mass transfer in an airlift reactor. Braz. J. Chem. Eng.,2003,20:363–374.
    [117] Benyahia, F., Jones, L. Scale effects on hydrodynamic and mass transfer characteristics ofexternal loop airlift reactors. J. Chern. Tech. Biotechnol.,1997,69:301–308.
    [118] Mehrnia, M.R., Towfighi, J., Bonakdarpour, B., Akbarnegad, M.M. Influence of top-sectiondesign and draft‐tube height on the performance of airlift bioreactors containing water-in-oilmicroemulsion. J. Chern. Tech. Biotechnol.,2004,79:260–267.
    [119]刘永强,李稳宏,刘德华,王军.气升式外环流反应器结构特性对传质的影响.西北大学学报(自然科学版),2001,31(2):139–142.
    [120] Bakker, W.A.M., den Hertog, M., Tramper, J., Gooijer, C.D. Oxygen transfer in a multipleair-lift loop reactor. Bioproc. Biosyst. Eng.,1995,12:167–172.
    [121] Wen, J.P., Jia, X.Q., Pan, L., Wang, C.L., Mao, G.Z. Nitrifying treatment of wastewater fromfertilizer production in a multiple airlift loop bioreactor. Biochem. Eng. J.,2005,25(1):33–37.
    [122] Bando, Y., Nishimura, M., Sota, H., Suzuki, S. Flow characteristics of countercurrent bubblecolumn with perforated draft tube. Chem. Eng. Sci.,1992,47:3371–3378.
    [123] Choi, K.H., Chisti, Y., Moo-Young, M. Split-channel rectangular airlift reactors: enhance ofperformance by geometric modifications. Chem. Eng. Commun.,1995,138:171–181.
    [124] Kilonzo, P.M., Margaritis, A., Bergougnou, M.A., Yu, J.T., Ye, Q. Effects of geometrical designon hydrodynamic and mass transfer characteristics of a rectangular-column airlift bioreactor.Biochem. Eng. J.,2007,34:279–288.
    [125] Lu, X.P., Ding, J., Wang, Y.R., Shi, J. Comparison of the hydrodynamics and mass transfercharacteristics of a modified square airlift reactor with common airlift reactors. Chem. Eng. Sci.,2000,55:2257–2263.
    [126] Merchuk, J.C., Stein, Y. Local holdup and liquid velocity in airlift reactors. AIChE J.,1981,27:377–388.
    [127] McManamey, W.J., Wase, D.A.J., Raymahasay, S., Thayanithy, K. The influence of gas inletdesign on gas holdup values for water and various solutions in loop-type airlift fermenter. J.Chem. Technol. Biot.,1984,34:151–164.
    [128] Lin, J., Han, M.H., Wang, T.F., Zhang, T.W., Wang, J.F., Jin, Y. Influence of the gas distributoron the local hydrodynamic behavior of an external loop airlift reactor. Chem. Eng. J.,2004,102(1):51–59.
    [129]王娟,毛羽,刘艳升,曹睿,江华,钟安海.分布器结构对环流反应器气含率分布的影响.化工学报,2005,56(1):58–63.
    [130] Contreras, A., Garcia, F., Molina, E., Merchuk, J.C. Influence of sparger on energy dissipation,shear rate, and mass transfer to sea water in a concentric-tube airlift bioreactor. Enzyme Microb.Tech.,1999,25:820–830.
    [131] Snape, J.B., Fialova, M., Zahradnik, J., Thomas, N.H. Hydrodynamic studies in an external loopairlift reactor containing aqueous electrolyte and sugar solutions. Chem. Eng. Sci.,1992,47:3387–3394.
    [132] Wongsuchoto, P., Charinpanitkul T., Pavasant, P. Bubble size distribution and gas-liquid masstransfer in airlift contactors. Chem. Eng. J.,2003,92:81–90.
    [133] Bla ej, M., Ki a, M., Marko, J. Scale influence on the hydrodynamics of an internal loop airliftreactor. Chem. Eng. Proc.,2004,43:1519–1527.
    [134] Luo, L.J., Liu, F.N., Xu, Y.Y., Yuan, J.Q. Hydrodynamics and mass transfer characteristics in aninternal loop airlift reactor with different spargers. Chem. Eng. J.,2011,175:494–504.
    [135] Kochbeck B., Lindert M., Hempel D.C. Hydrodynmaics and local parameters inthree-phase-flow in airlift-loop reactors of deffirent scale. Chem. Eng. Sci.,1992,47:3443–3450.
    [136] Heijnen, J.J., Hols, J., van der Lans, R.G.J.M., van Leeuwen, H.L.J.M., A. Mulder, Weltevrede,R. A simple hydrodynamic model for the liquid circulation velocity in a full scale three phaseairlift reactor. Chem. Eng. Sci.,1997,52:2527–2539.
    [137] Glasgow, L.A., Erickson, L.E., Lee C.H., Patel, S.A. Wall pressure fluctuations and bubble sizedistributions at several positions in an airlift fermentor. Chem. Eng. Commun.,1984,29:311–336.
    [138] Wenge, F., Chisti, Y., Moo-Young, M. Split-cylinder airlift reactors: hydraulics andhydrodynamics of a new mode of operation. Chem. Eng. Commun.,1996,155:19–44.
    [139] Bentifraouine, C., Xuereb, C., Riba, J.P. Effect of gas liquid separator and liquid height on theglobal hydrodynamic parameters of an external loop airlift contactor. Chem. Eng. J.,1997,66:91–95.
    [140] Choi, K.H. Effect of unaerated liquid height on hydrodynamic characteristics of anexternal-loop airlift reactor. Chem. Eng. Commun.,2002,189:23–39.
    [141] Yu W., Wang T.F., Liu M.L., Wang Z.W. Bubble circulation regimes in a multi-stageinternal-loop airlift reactor. Chem. Eng. J.,2008,142:301–308.
    [142]赵东胜,刘桂敏,赵艳丽,吴兆亮.气升式反应器研究进展.化工进展,2007,26(6):810–813.
    [143] Merchuk, J.C., Gluz, M. Bioreactors, air-lift reactors, in: M.C. Flickinger, S.W. Drew (Eds.),Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation, NewYork: Wiley,1999, vol.1, pp.320–353.
    [144] Schafer, R., Merten C., Eigenberger, G. Bubble size distributions in a bubble column reactorunder industrial conditions. Exp. Therm. Fluid Sci.,2002,26:595–604.
    [145] Letzel, H.M., Schouten, J.C., Krishna, R., van den Bleek, C.M. Gas holdup and mass transfer inbubble column reactors operated at elevated pressure. Chem. Eng. Sci.,1999,54:2237–2246.
    [146] Bai, F.W., Wang, L.P., Huang, H.J., Xu, J.F., Caesar, J., Ridgway, D., Gu, T.Y., Moo-Young, M.Oxygen mass-transfer performance of low viscosity gas-liquid-solid system in a split-cylinderairlift bioreactor. Biotechnol. Lett.,2001,23:1109–1113.
    [147] Wei, C.H., Xie, B., Xiao, H.L., Wang. D.S. Volumetric mass transfer coefficient of oxygen in aninternal loop airlift reactor with a convergence-divergence draft Tube. Chem. Eng. Technol.,2000,23:597–603.
    [148] Freitas, C., Teixeira, J.A. Oxygen mass transfer in a high solids loading three-phaseinternal-loop airlift reactor. Chem. Eng. J.,2001,84(1):57–61.
    [149] Al-Masry, W.A. Effects of antifoam and scale-up on operationof bioreactors. Chem. Eng.Process.,1999,38(3):197–201.
    [150] Al-Masry, W.A., Dukkan, A.R. Role of gas disengagement and surface active agents onhydrodynamic and mass transfer characteristics of airlift reactors. Chem. Eng. J.,1997,65(3):263–271.
    [151] Nicol, R.S., Davidson, J.F. Effect of surfactants on the gas holdup in circulating bubblecolumns, Chem. Eng. Res. Des.,1988,66(2):159–164.
    [152] Muthukumar, K., Velan, M. Influence of additives and geometric design on hydrodynamiccharacteristics of an internal loop airlift reactor. J. Chem. Eng. Japan,2005,38(4):253–263.
    [153] Azher, N.E., Gourich, B., Vial, C., Bellhaj, M.S., Bouzidi, A., Barkaoui, M., Ziyad, M.Influence of alcohol addition on gas holdup, liquid circulation velocity and mass transfercoefficient in a split-rectangular airlift bioreactor. Biochem. Eng. J.,2005,23(2):161–167.
    [154] Albijani, B., Havran, V., Petrovi, D.Lj., Duri, M., Teki, M.N. Hydrodynamics and masstransfer in a draft tube airlift reactor with dilute alcohol solutions. AIChE J.,2007,53:2897–2904.
    [155] Moraveji, M.K., Sajjadi, B., Davarnejad, R. Gas-liquid hydrodynamics and mass transfer inaqueous alcohol solutions in a split-cylinder airlift reactor. Chem. Eng. Technol.,2011,34:465–474.
    [156] ija ki, I.M., olovi, R.R., Petrovi, D.Lj., M.N. Teki, M.N., Duri, M.S. Diluted alcoholsolutions in bubble columns and draft tube airlift reactors with a single orifice sparger:experiments and simple correlations. J. Chem. Technol. Biot.,2010,85:39–49.
    [157] Freitas, C., Fialová, M., Zahradnik, J., Teixeira, J.A. Hydrodynamic model for three-phaseinternal and external-loop airlift reactors. Chem. Eng. Sci.,1999,54:5253–5258.
    [158] Freitas, C., Fialová, M., Zahradnik, J., Teixeira, J.A. Hydrodynamics of a three-phaseexternal-loop airlift bioreactor. Chem. Eng. Sci.,2000,55:4961–4972.
    [159] Zuber, N., Findlay, J.A. Average volumetric concentration in two-phase flow systems. J. HeatTrans.,1965,87:453–468.
    [160] Bello, R.A., Robinson, C.W., Young, M.M. Gas hold-up and overall volumetric oxygen transfercoefficient in airlift contactors. Biotechnol. Bioeng.,1985,27:369–381.
    [161] Chisti, M.Y. Airlift reactors: characteristics, applications and design considerations. Chem. Eng.Commun.,1987,60:195–242.
    [162] Kawase, Y., Halard, B., Young, M.M. Theoretical prediction of volumetric mass transfercoefficients in bubble columns for newtonian and non-newtonian fluids. Chem. Eng. Sci.,1987,42(7):1609–1617.
    [163] Popovic, M., Robinson, C.W. External circulation-loop airlift bioreactors: Study of the liquidcirculating velocity in highly viscous non-Newtonian liquids. Biotechnol. Bioeng.,1988,32(3):301–312.
    [164] Glennon, B., Al-Masry, W., MacOuglilin, P.F., Malone, D.M. Hydrodynamie modeling in anair-lift loop reactor. Chem. Eng. Commun.,1993,121:181–192.
    [165] Garcia-Calvo E. Fluid dymainic of airlift reactors: two-phase friction factors. AIChE J.,1992,38(10):1662–1666.
    [166] Popovic, M., Robinson, C.W. Estimation of some important design parameters fornon-Newtonian liquids in pneumatically-agited fermentors. Proceeding of the34th CanadianChemical Engineering Conference, Quebec,1984, pp.258–263.
    [167] Choi, K.H., Lee, W.K. Cicrulation liquid velocity, gas holdup and volumetric oxygen transefercoefficient in external loop airlift reactors. J. Chem. Technol. Biot.,1993,56:51–58.
    [168] Merchuk, J.C., Stein, Y., Mateles, R.I. Distributed parameter model of an airlift fermentor.Biotechnol. Bioeng.,1980,22:1189–1211.
    [169] Luttman, R., Thoma, M., Buchholz, H., Schugerl, K. Model development, parameteridentification, and simulation of SCP production processes in air lift tower reactor with externalloop-I. Comput. Chem. Eng.,1983,7:43–50.
    [170] Luttman, R., Thoma, M., Buchholz, H., Schugerl, K. Model development, parameteridentification, and simulation of SCP production processes in air lift tower reactor with externalloop-II. Comput. Chem. Eng.,1983,7:51–63.
    [171] Andre, G., Robinson, C.W., Moo-Young, M. New criteria for application of the well-mixedmodel to gas–liquid mass transfer studies. Chem. Eng. Sci.,1983,38:1845–1854.
    [172] Pigache, S., Trystram, G., Dhoms, P. Oxygen transfer modeling and simulation for an industrialcontinuous airlift fermentor. Biotechnol. Bioeng.,1992,39:923–931.
    [173] Sikula, I., Jurascik, M., Markos, J. Modeling of fermentation in an internal loop airliftbioreactor. Chem. Eng. Sci.,2007,62:5216–5221.
    [174] Zhang, T.W., Zhao, B., Wang, J.F. Mathematical models for macro-scale mass transfer in airliftloop reactors. Chem. Eng. J.,2006,119:19–26.
    [175] Znad, H., Bales, V., Kawase, Y. Modeling and scale up of airlift bioreactor. Comput. Chem.Eng.,2004,28:2765–2777.
    [176] Dhaouadi, H., Poncin, S., Midoux, N., Wild, G. Gas–liquid mass transfer in an airliftreactor-analytical solution and experimental confirmation. Chem. Eng. Process.,2001,40:129–133.
    [177] Guo, Y.X., Rathor, M.N., Ti, H.C. Hydrodynamics and mass transfer studies in a novelexternal-loop airlift reactor. Chem. Eng. J.,1997,67:205–214.
    [178] Shin, C.S., Hong, M.S., Lee, J. Oxygen transfer correlation in high cell density culture ofrecombinant E. coli. Biotechnol. Technol.,1996,10:679–682.
    [179] Ryu, D.Y., Humphrey, A.E. A reassessment of oxygen transfer rates in antibiotics fermentations.J. Ferment. Technol.,1972,50:424–431.
    [180] Tobajas M., Garcia-Calvo E., Siegel M.H., Apitz S.E., Hydrodynmaics and mass transferprediction in a three-phase airlift reactor for marine sendiment biotreatment. Chem. Eng. Sci.,1999,54(l):5347–5354.
    [181] Ayazi Shamlou, P., Pollard, D.J., Ison, A.P. Volumetric mass transfer coefficient inconcentric-tube airlift Bioreactor. Chem. Eng. Sci.,1995,50:1579–1590.
    [182] Vial, C., Camarasa, E., Poncin, S., Wild, G., Midoux, N., Bouillard, J. Study of hydrodynamicbehaviour in bubble columns and external loop airlift reactors through analysis of pressurefluctuations. Chem. Eng. Sci.,2000,55:2957–2973.
    [183] Vial, C., Poncin, S., Wild, G., Midoux, N. A simple method for regime identification and flowcharacterisation in bubble columns and airlift reactors. Chem. Eng. Process.2001,40:135–151.
    [184] Joshi, J.B., Ranade, V.V., Gharat, S.D., Lele, S.S. Sparged loop reactors. Can. J. Chem. Eng.,1990,68:705–741.
    [185] Van Benthum, W.A.J., van der Lans, R.G.J.M., van Loosdrecht, M.C.M., Heijnen, J.J. Bubblerecirculation regimes in an internal-loop airlift reactor. Chem. Eng. Sci.,1999,54:3995–4006.
    [186] Olivieri, G., Marzocchella, A., van Ommen, J.R., Salatino, P. Local and global hydrodynamicsin a two-phase internal loop airlift. Chem. Eng. Sci.,2007,62:7068–7077.
    [187] Briens, L.A., Briens, C.L., Margaritis, A., Hay, J. Minimum liquid fluidization velocity ingas–liquid–solid fluidized bed of lowdensity particles. Chem. Eng. Sci.,1997,52:4231–4238.
    [188] Bakshi, B.R., Zhong, H., Jiang, P., Fan, L.S. Analysis of flow in gas–liquid bubble columnsusing multi-resolution methods. Trans. Inst. Chem. Eng.,1995,73:608–614.
    [189] Thimmapuram, P.R., Rao, N.S., Saxena, S.C. Characterization of hydrodynamic regimes in abubble column. Chem. Eng. Sci.,1992,47:3355–3362.
    [190] Glasgow, L.A., Hua, J., Yiin, T.Y., Erikson, L.E. Acoustic studies of interfacial effects in airliftreactors. Chem. Eng. Commun.,1992,113:151–181.
    [191] AI-Masry, W.A., Ali, E.M., AI-Kalbani, M.N. Prediction of regime transitions in bubblecolumns using acoustic and differential pressure signals. Chem. Eng. J.,2007,133:139–149.
    [192] Briens, L.A., Ellis, N. Hydrodynamics of three-phase fluidized bed systems examined bystatistical, fractal, chaos and wavelet analysis methods. Chem. Eng. Sci.,2005,60:6094–6106.
    [193] Letzel, H.M., Schouten, J.C., Krishna, R., van den Bleek, C.M. Characterization of regimes andregime transitions in bubble columns by chaos analysis of pressure signal. Chem. Eng. Sci.,1997,52:4447–4459.
    [194] Draho, J., Zahradnik, J., Puncochar, M., Fialova, M., Bradka, F. Effect of operating conditionson the characteristics of pressure fluctuations in a bubble column. Chem. Eng. Process.,1991,29:107–115.
    [195] Draho, J., Bradka, F., Puncochar, M. Fractal behavior of pressure fluctuations in bubblecolumn. Chem. Eng. Sci.,1992,47:4069–4075.
    [196] Sasic, S., Leckner, B., Johnsson, F. Time-frequency investigation of different modes of bubbleflow in a gas-solid fluidized bed. Chem. Eng. J.,2006,121:27–35.
    [197] Zhao, G.B., Yang, Y.R. Multiscale resolution of fluidized-bed pressure fluctuations. AIChE J.2003,49:869–882.
    [198] Lin, T.J., Juang, R.C., Chen, Y.C., Chen, C.C. Prediction of flow transitions in a bubble columnsby chaotic time series analysis of pressure fluctuation signals. Chem. Eng. Sci.,2001,56:1057–1065.
    [199] Ellis, N., Briens, L.A., Grace, J.R., Bi, H.T., Lim, C.J. Characterization of dynamic behaviour ingas-solid turbulent fluidized bed using chaos and wavelet analyses. Chem. Eng. J.,2003,96:105–116.
    [200] Bi, H. T. A critical review of the complex pressure fluctuation phenomenon in gas-solidsfluidized beds. Chem. Eng. Sci.,2007,62,3473–3493.
    [201] Van Ommen, J.R., van der Schaaf, J., Schouten, J.C., van Wachem, B.G.M., Coppens, M.O.C.,van den Bleek, M. Optimal placement of probes for dynamic pressure measurements inlarge-scale fluidized beds. Powder Technol.,2004,139,264–276.
    [202] Zhang, W.H., Li, X.G. Origin of pressure fluctuations in an internal-loop airlift reactor and itsapplication in flow regime detection. Chem. Eng. Sci.,2009,64:1009–1018.
    [203] Van der Schaaf, J., Schouten, J.C., Johnsson, F., van den Bleek, C.M. Non-intrusivedetermination of bubble and slug length scales in fluidized beds by decomposition of the powerspectral density of pressure time series. Int. J. Multiphase Flow,2002,28:865–880.
    [204] Bi, H.T., Grace, J.R., Zhu, J. Propagation of pressure wave and forced oscillations in gas–solidfluidized beds and their influence on diagnostics of local hydrodynamics. Powder Technol.,1995,82:239–253.
    [205] Kok, J.B.W., Benschop, A.J. Propagation velocity and rate of attenuation of surface waves on ahomogeneously fluidized bed. Int. J. Multiphase Flow,1994,20:651–657.
    [206] Musmarra, D., Poletto, M., Vaccaro, S., Clift, R. Dynamic Wave in Fluidized Beds. PowderTechnol.,1995,82:255–268.
    [207] Roy, R., Davidson, J.F., Tupogonov, V.G. The velocity of sound in fluidised beds. Chem. Eng.Sci.,1990,45:3233–3245.
    [208] Johnsson, F., Larsson, G., Leckner, B. Pressure and flow fluctuations in a fluidizedbed—interaction with the air-feed system. Chem. Eng. Sci.,2002,57:1379–1392.
    [209] Chyang, C.S., Lin, Y.C. Influence of the nature of the roots blower on pressure fluctuations in afluidized bed. Powder Technol.,2002,127:19–31.
    [210] Sasic, S., Leckner, B., Johnsson, F. Fluctuations and waves in fluidized bed systems: theinfluence of the air-supply system. Powder Technol.,2005,153:176–195.
    [211] Van den Bleek, C.M., Coppens, M.O., Schouten, J.C. Application of chaos analysis tomultiphase reactors. Chem. Eng. Sci.,2002,57:4763–4778.
    [212]张文晖.内循环气升式反应器内流体力学行为与传质性能的研究[博士学位论文].天津:天津大学,2009.
    [213]飞思科技产品研发中心编著.小波分析理论与MATLAB7实现.北京:电子工业出版社,2005.
    [214] Wu, B., Kantzas, A., Bellehumeur, C.T., He, Z., Kryuchkov, S. Multiresolution analysis ofpressure fluctuations in a gas–solids fluidized bed: Application to glass beads and polyethylenepowder systems. Chem. Eng. J.,2007,131,23–33.
    [215] Shannon, C.E. A mathematical theory of communication. Bell. Syst. Tech. J.,1948,27:379and623.
    [216] Huang, N.E., Shen, Z., Long, S.R., Wu, M., Shih, H., Zheng, Q., Yeng, N., Tung, C., Liu, H.The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationarytime series analysis. Proc. R. Soc. Lond. A,1998,454:903–995.
    [217] Huang, N.E., Shen, Z., Long, S.R. A new view of nonlinear water waves: the Hilbert spectrum.Annu. Rev. Fluid Mech.,1999,31:417–457.
    [218] Huang, N.E., Shen, S.S.P. Hilbert–Huang transform and its applications. Singapore: WorldScientific,2005.
    [219]郑祖光,刘莉红.经验模态分解与小波分析及其应用.北京:气象出版社,2010.
    [220] Choudhury, M.A.A.S., Shah, S.L., Thornhill, N.F. Diagnosis of poor control loop performanceusing higher order statistics. Automatica,2004,40:1719–1728.
    [221]张贤达.时间序列分析-高阶统计量方法.北京:清华大学出版社,1996.
    [222] Mendel, J.M. Tutorial on higher-order statistics (spectra) in signal processing and systemtheory: Theoretical results and some applications. Proc. IEEE,1991,79(3):278–305.
    [223] Nikias, C.L., Mendel, J.M. Signal processing with higher-order spectra. IEEE Signal Process.Mag.,1993,10(3):10–37.
    [224] Swami, A., Mendel, J.M., Nikias, C.L. Higher-Order Spectral Analysis Toolbox User’s Guide.2001.
    [225] Choudhury, M.A.A.S., Shah, S.L., Thornhill, N.F. Detection and diagnosis of systemnonlinearities using higher order statistics. In:15th IFAC World Congress, Barcelona, Spain,2002.
    [226] Nikias, C.L., Petropulu, A.P. Higher-Order Spectra Analysis: A nonlinear signal processingframework. Prentice-Hall, Englewood Cliffs, NJ,1993.
    [227] Lee, S.K., White, P.R. Higher-order time frequency analysis and its application to fault detectionin rotating machinery. Mech. Syst. Signal Pr.,1997,11:637–650.
    [228] Rosero, J.A., Romeral, L., Ortega, J.A., Rosero, E. Short-circuit detection by means ofempirical mode decomposition and Wigner–Ville distribution for PMSM running underdynamic condition. IEEE Trans. Ind. Electron.,2009,56:4534–4547.
    [229]吴正国,夏立,伊为民.现代信号处理技术.武汉:武汉大学出版社,2003.
    [230] Rajagopalan, S., Restrepo, J.A., Aller, J.M., Habetler, T.G., Harley, R.G. Wigner-Villedistributions for detection of rotor faults in brushless DC (BLDC) motors operating undernon-stationary conditions. In Proc. IEEE Int. Symp. Diagnostics Elect. Mach., Power Electron.and Drives, Vienna, Austria,2005, pp.313–319.
    [231] Wu, Y., Munson, D.C. Wide-angle ISAR passive imaging using smoothed pseudo Wigner-Villedistribution. In Proc. IEEE Radar Conf.,2001, pp.363–368.
    [232] Fonollosa, J.R., Nikias, C.L. Wigner higher order moment spectra: Definition, properties,computation, and application to transient signal analysis. IEEE Trans. Signal Processing,1993,41:245–266.
    [233] Fonollosa, J.R., Nikias, C.L. Wigner higher-order moment spectra: A review. In: AdvancedSignal Processing Algorithms, Architectures and Implementations III,1992, pp.280–289.
    [234] Fonolosa, J.R., Nikias, C.L. Analysis of transient signals using higher order time-frequencydistributions. In: Proceedings of the IEEE International Conference on Acoustics, Speech andSignal Processing,1992, pp.197–200.
    [235] Choi, H., Williams, W.J. Improved time-frequency representation of multicomponent signalsusing exponential kernels. IEEE Trans. ASSP,1989,37:862–871.
    [236]韩敏.混沌时间序列预测理论与方法.北京:中国水利水电出版社,2007.
    [237]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社,2002.
    [238] Takens, F. Lecture notes in mathematics, New York: Springer,1981.
    [239] Cao, L. Practical method for determining the minimum embedding dimension of a scalar timeseries. Physica D1997,110:43–50.
    [240] Rosentein, M.T., Collins, J.J., DeLuca, C.J. A practical method for calculating largest Lyapunovexponents from small data sets. Physica D,1993,65:117–134.
    [241] Grassberger, P., Procaccia, I. Characterization of strange attractors. Physical Review Letts,1983,50(5):346–349.
    [242] Grassberger, P., Procaccia, I. Measuring the strangeness of strange attractors. Physica D:Nonlinear Phenomena,1983,9:189208.
    [243] Grassberger, P., Procaccia, I. Estimation of the Kolmogorov entropy from a chaotic signal. Phys.Rev. A,1983,28:2591–2593.
    [244] Jura ík, M., Bla ej, M., Annus, J., Marko, J. Experimental measurements of volumetric masstransfer coefficient by the dynamic pressure-step method in internal loop airlift reactors ofdifferent scale. Chem. Eng. J.,2006,125:81–87.
    [245] Snape, J.B., Zahradnik, J., Fialova, M., Thomas, N.H. Liquid-phase properties and spargerdesign effects in an external-loop airlift reactor. Chem. Eng. Sci.,1995,50:3175–3188.
    [246] Tung, H.L., Chiou, S.Y., Tu, C.C., Wu, W.T. An airlift reactor with double net draft tubes and itsapplication in fermentation. Bioproc. Eng.,1997,17:1–5.
    [247] Lu, W.J., Hwang, S.J., Chang, C.M. Liquid velocity and gas holdup in three-phase internal loopairlift reactors with low-density particles. Chem. Eng. Sci.,1995,50:1301–1310.
    [248] Cerri, M.O., Baldacin, J.C., Cruz, A.J.G., Hokka, C.O., Badino, A.C. Prediction of mean bubblesize in pneumatic reactors. Biochem. Eng. J.,2010,53:12–17.
    [249] Calderbank, P.H. Physical rate processes in industrial fermentation. Part I. The interfacial areain gas–liquid contacting with mechanical agitation. Chem. Eng. Res. Des.,1958,36:443–463.
    [250] Abashar, M.E., Narsingh, U., Rouillard, A.E., Judd, R. Hydrodynamic flow regimes, gasholdup, and liquid circulation in airlift reactors. Ind. Eng. Chem. Res.,1998,37:1251–1259.
    [251] Camarasa, E., Carvalho, E., Meleiro, L.A.C., Filho, R.M., Domingues, A., Wild, G., Poncin, S.,Midoux, N., Bouillard, J. A hydrodynamic model for air-lift reactors. Chem. Eng. Process.,2001,40:121–128.
    [252] Kubota, H., Hosono, Y., Fujie, K. Characteristics evaluations of ICI air-lift type deep shaftaerator. J. Chem. Eng. Japan.,1978,11:319–325.
    [253] Hsu, Y.C., Dudokovic, M. Gas hold-up and liquid circulation in gas–liquid reactors. Chem. Eng.Sci.,1980,35:135–141.
    [254] Verlaan, P., Tramper, J., Van't Riet, K. A hydrodynamic model for an airlift-loop reactor. Chem.Eng. J.,1986,33:B43–B53.
    [255] Lee, C.H., Glasgow, L.A., Erickson, L.E., Patel, S.A. Liquid circulation in airlift fermenters.Paper8d, presented at the A.I.Ch.E. Annual Meeting, Miami Beach, November2–7,1986.
    [256] Garcia-Calvo, E. A fluid dynamic model for airlift reactors. Chem. Eng. Commun.,1989,44:321–323.
    [257] Garcia-Calvo, E., Letón, P. A fluid dynamic model for bubble columns and airlift reactors.Chem. Eng. Sci.,1991,46:2947–2951.
    [258] Garcia-Calvo, E., Letón, P. Prediction of gas hold-up and liquid velocity in airlift reactors usingtwo-phase flow friction coefficients. J. Chem. Tech. Biotech.,1996,67:388–396.
    [259] Wallis, G.B. One-dimensional two-phase flow. New York: McGraw-Hill,1969.
    [260] Kemblowski, Z., Przywarski, J., Diab, A. An average gas holdup and liquid circulation velocityin airlift reactors with external loop. Chem. Eng. Sci.,1993,48:4023–4035.
    [261] Perry, R.H., Green, D.W. Perry's chemical engineers handbook (6th ed.). New York:McGraw-Hill,1984, pp.564.
    [262] Puthli, M.S., Rathod, V.K., Pandit, A.B. Gas–liquid mass transfer studies with triple implersystem on a laboratory scale bioreactor. Biochem. Eng. J.,2004,23:25–30.
    [263] Zhang, T.W., Wang, J.F., Zhao, B., Ren, F., Jin, Y. Local hydrodynamics in an external loopairlift slurry reactor with and without a resistance-regulating element. Chem. Eng. Comm.,2004,191:1024–1042.
    [264] Brodkey, R.S., Hershey, H.C. Transport Phenomena—a unified approach. New York:McGraw-Hill,1988, pp.400–442.
    [265] Young, M.A., Carbonell, R.G., Ollis, D.F. Airlift bioreactors: analysis of local two-phasehydrodynamics. AIChE J.,1991,37:403–428.
    [266] Fried, E., Idelchik, I.E. Flow resistance: A design guide for engineers. New York: HemispherePublishing,1989.
    [267]华绍曾,杨学宁.实用流体阻力手册.北京:国防工业出版社,1985.
    [268] Znad, H., Tokumura, M., Kawase, Y. Axial distribution of oxygen concentration in differentairlift bioreactor scales: mathematical modeling and simulation. Chem. Eng. Technol.,2006,29:1042–1047.
    [269] Todt, J., Lucke, J., Schugerl, K., Renken, A. Gas holdup and longitudinal dispersion in differenttypes of multiphase reactor and their possible application for microbial processes. Chem. Eng.Sci.,1977,32:369–375.
    [270] Sander, R. Compilation of Henry’s law constants for inorganic and organic species of potentialimportance in environmental chemistry. http://www.mpch-mainz.mpg.de/~sander/res/henry.html,1999.
    [271] Mohr, P.J., Taylor, B.N., Newell, D.B. CODATA recommended values of the fundamentalphysical constants:2006. Rev. Mod. Phys.,2008,80:633–730.
    [272] Talaia, M.A.R. Terminal velocity of a bubble rise in a liquid column. in: Proceedings of WorldAcademy of Science Engineering and Technology22,2008, pp.264–268.
    [273] Chriastel, L., Kawase, Y., Znad, H. Hydrodynamic modelling of internal loop airlift reactorapplying drift-flux model in bubbly flow regime. Can. J. Chem. Eng.,2007,85:226–232.
    [274] Deckwer, W.D., Burkhart, R., Zoll, G. Mixing and mass transfer in tall bubble columns. Chem.Eng. Sci.,1974,29:2177–2188.
    [275] Towell, G.D., Ackerman, G.H. Axial mixing of liquid and gas in large bubble reactors,Proceedings of2nd International Symposium on Chem. React. Eng., Amsterdam, TheNetherlands,1972, pp. B3.1-B3.13.
    [276] Talvy, S., Cockx, A., Line, A. Modeling of oxygen mass transfer in a gas–liquid airlift reactor.AIChE J.,2007,53:316–326.
    [277] Ruthiya, K.C., Chilekar, V.P., Warnier, M.J.F., van der Schaff, J., Kuster, B.F.M., Schouten, J.C.,van Ommen, J.R. Detecting regime transitions in slurry bubble columns using pressure timeseries. AIChE J.,2005,51:1951–1965.
    [278] Zhang, W.H., Li, H., Li, X.G. Identification of regime transitions in an inner-loop airlift reactorusing local bubble-induced pressure fluctuation signals. Chem. Eng. J.,2010,162:296–300.
    [279] Al-Masry, W.A., Ali, E.M., Al-Kalbani, M.N. Prediction of regime transitions in bubblecolumns using acoustic and differential pressure signals. Chem. Eng. J.,2007,133:139–149.
    [280] Draho, J., Cermák, J. Diagnostics of gas-liquid flow patterns in chemical engineering systems.Chem. Eng. Process.,1989,26:147–164.
    [281] Gourich, B., Vial, C., Essadki, A.H., Allam, F., Soulami, M.B., Ziya, M. Identification of flowregimes and transition points in a bubble column through analysis of differential pressuresignal—Influence of the coalescence behavior of the liquid phase. Chem. Eng. Process.,2006,45:214–223.
    [282] Luo, H., Svendsen, H.F. Theoretical model for drop and bubble breakup in turbulentdispersions. AIChE J.,1996,42:1225–1233.
    [283] Ellenberger, J., Krishna, R. A unified approach to the scale-up of gas-solid fluidized bed andgas-liquid bubble column reactors. Chem. Eng. Sci.,1994,49:5391–5411.
    [284] Van der Schaaf, J., Schouten, J.C., van den Bleek, C.M. Origin, propagation and attenuation ofpressure waves in gas-solid fluidized beds. Powder Technol.,1998,95:220–233.
    [285] Bai, D., Issangya, A.S., Grace, J.R. Characteristics of gas-fluidized beds in different flowregimes. Ind. Eng. Chem. Res.,1999,38:803–811.
    [286] Chatfield, C. The Analysis of Time Series: An Introduction. London: Chapman and Hall,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700