用户名: 密码: 验证码:
PtSOS1、PtAKT1在盐生植物小花碱茅抗盐中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小花碱茅(Puccinellia tenuiflora)是一种典型的禾本科碱茅属盐生植物,广泛分布在我国北方地区,是一种重要的优良牧草,具有很强的耐盐碱能力。我们前期研究表明,小花碱茅主要耐盐机制是通过限制根部Na+的单向内流以减少Na+的净吸收,使其维持较高的根系K+、Na+选择性,以促进根系对K+的吸收和转运。但对其根系K+、Na+选择性分子机制仍不清楚。SOS1通过介导根部Na+的外排,以维持植株根系K+吸收和转运,可能小花碱茅SOS1在根系K+、Na+选择性运输中起关键作用;在钾亏缺或盐胁迫条件下,与其它阳离子相比,K+通道蛋白AKT1对于K+具有高度的选择性,并在维持根系K+吸收中起重要作用,或许小花碱茅AKT1在根系K+、Na+选择性吸收中起重要作用。鉴于此,本研究克隆和鉴定了小花碱茅PtSOS1、PtAKT1,并探讨了不同浓度NaCl、KCl以及NaCl与KC1下PtSOS1、PtAKT1的转录丰度和Na+、K+积累的关系,以期揭示PtSOS1、PtAKT1在小花碱茅抗盐中的作用。主要结果如下:
     (1) PtSOS1编码1143个氨基酸,C-末端含有一个保守环核苷酸结合域(cyclic nucleotide binding domain),与已知的植物质膜Na+/H+转运蛋白具有较高的同源性(>57%);PtAKT1编码895个氨基酸,与已知的植物AKT1类K+通道蛋白具有较高的同源性(>60%)。
     (2)不同浓度NaCI (25-150mM)下,小花碱茅根中的PtSOS1表达水平和根系根系K+、Na+选择性运输能力(ST值)呈急剧增加趋势。
     (3)添加0.1~1mM KCl显著地增加了根中PtSOS1的转录水平和根系ST值,但在5-10mM KCl下根中PtSOS1的转录水平和根系ST值下降。
     (4)高盐(150mM NaCl)处理下,随着处理时间的延长,低K+(0.1mM KCl)处理根中PtSOS1表达水平及根系ST值显著低于高K+(5mM KC1)处理。
     (5)不同浓度NaCl、KCl以及高盐与低K+或高K+互作下,小花碱茅根中PtSOS1表达水平与根系ST值间呈显著的正相关关系。可见,盐胁迫下,PtSOS1在根系K+、Na+选择性运输中起到关键性的作用。
     (6)不同浓度KCl(0~10mM)处理间小花碱茅根中的PtAKT1表达水平与整株K+浓度均无显著差异,这说明在钾亏缺及低钾条件下小花碱茅PtAKT1在维持根系对K+吸收中亦发挥重要作用。
     (7)在6-48h,150mM NaCl与0.1或5mM KCl处理的根中PtAKTl表达水平显著高于25mM NaCl与0.1或5mM KCl处理的,但随着处理时间的延长(48~96h),其根中PtAKT1表达水平或整株K+浓度降低,且各处理在48~96h间根中PtAKT1表达水平或整株K+浓度无显著差异。150mM NaCl与0.1或5mMKC1处理6-96h,其根系SA值远高于25mM NaCl与0.1或5mM KCl处理的。进一步研究发现,25mM NaCl与0.1或5mM KC1及150mM NaCl与0.1或5mMKCl处理6-96h,小花碱茅根系K+、Na+选择性吸收能力(SA值)与根中PtAKT1表达水平间呈显著的正相关关系。这说明在盐胁迫下小花碱茅PtAKT1在根系K+、Na+选择性吸收中起关键的作用。
     综上所述,PtSOS1编码的质膜Na+/H+逆向转运蛋白在调节小花碱茅根系K+、Na+选择性运输中具有重要的作用,并提出盐胁迫下SOS1通过维持木质部周围薄壁细胞膜的完整性来调节质膜上正常的K和Na转运,从而维持了根系K+、Na+选择性运输的作用模型。此外,在盐胁迫下PtAKT1编码的K+通道蛋白在小花碱茅根系K+、Na+选择性吸收中起关键作用。
P. tenuiflora is a monocotyledonous halophyte found in north China, and used as forage as well as for soil improvement. Our previous studies suggested that restricting unidirectional Na+influx into roots with a strong selectivity for K+over Na+was thought to be contributed to the salt tolerance of P. tenuiflora. However, the molecular mechanisms of selectivity for K+over Na+in the regulation of salt tolerance remains unknown. The plasma membrane Na+/H+antiporter (SOS1) was proved to be a Na+efflux protein and also involved in K+uptake and transport, PtSOS1may be contributed to maintain selective transport capacity for K+over Na+(ST) by roots under salt conditions; plants AKT1-type channels (AKT1) exhibited a high selectivity for K+over other monovalent cations and were reputed to specifically mediate K+uptake by roots under K+deficiency or salt stress, PtAKT1may play an key role in selective absorption capacity for K+over Na+(SA) by roots in P. tenuiflora exposed to salt conditions. In this study, to reveal the role of PtSOS1, PtAKT1in salt tolerance of halophyte P. tenuiflora, we isolated cDNAs for Na+/H+antiporter gene (PtSOS1) and AKT1-type K+channels (PtAKT1) from P. tenuiflora, and Na+and K+accumulations in P. tenuiflora exposed to various NaCl, KCl and NaCl plus different KCl treatments were investigated, respectively. The results are as follows;
     (1) PtSOS1consisted of1143amino acid residues with a cyclic nucleotide binding domain located at centrally in the long C-terminal tail and shared higher similarity with the known plasma membrane Na+/H+antiporters(over57%); PtAKT1consists of895amino acid residues and shares high similarity with the known AKT1-type channels (over60%).
     (2) The expression levels of PtSOS1in root increased significantly with the increase of external NaCl (25-150mM), accompanied by an increase of selective transport (ST) capacity for K+over Na+by roots.
     (3) Transcription levels of PtSOS1in root and ST values increased under0.1-1mM KCl, then declined sharply under5-10mM KCl.
     (4) Under150mM NaCl, PtSOS1expression levels in root and ST values at0.1mM KCl was significantly lower than that at5mM KCl with the prolonging of treatment time.
     (5) A significantly positive correlation was found between PtSOSI expression levels and ST values in root exposed to150mM NaCl plus0.1or5mM KCl treatments, suggesting that PtSOSI may be the major component of selective transport capacity for K+over Na+under salt conditions.
     (6) No significant differences were observed in the expression of PtAKT1in root or whole plant K+concentrations among KCl treatments, indicating that PtAKT1contributes to maintain K+uptake by roots under K+deficiency.
     (7) The expression of PtAKTl in root at150mM NaCl plus0.1or5mM KCl was significantly higher than that at25mM NaCl plus0.1or5mM KCl treatment for6-48h.. However, the expression of PtAKTl or whole plant K+concentrations in root was down-regulated by different concentrations of NaCl plus KCl treatments for with the increase of treatment time (48-96h), and there were no significant differences in the expression levels of PtAKT1in root or whole plant K concentrations among treatments for48-96h.. SA values in root at150mM NaCl plus0.1or5mM KCl was significantly higher than that at25mM NaCl plus0.1or5mM KCl treatment for6-96h. Furthermore, a significantly positive correlation was found between selective absorption capacity for K+over Na+values and PtAKT1expression levels in root under various concentrations of NaC1plus KCl treatments, suggesting that PtAKT1may play an important role in selective absorption capacity for K+over+Na by roots in P. tenuiflora exposed to salt conditions.
     In summary, we proposed that PtSOS1seems likely to be the major component of selective transport capacity for K+over Na+and hence salt tolerance of P. tenuiflora. Finally, we hypothesized a function model of SOS1in regulating K+and Na+transport system in the membrane of xylem parenchyma cells by sustaining the membrane integrity under salt stress. In addition, PtAKT1may contribute to maintaining selective absorption capacity for K+over Na+by roots in response to salt stress.
引文
包爱科.拟南芥液泡膜H+_焦磷酸酶基因AVPI改良紫花苜蓿(Medicago sativa L1)抗逆性研究[博士学位论文].兰州:兰州大学.2009.
    陈敏,彭建云,王宝山.整株水平上Na+转运体与植物的抗盐性[J].植物学通报.2008,25(4):381-391.
    郭强,周向睿,王沛,张金林,包爱科,伍国强,王锁民.盐生植物小花碱茅K+通道PtAKT1基因片段的克隆及序列分析[J].草地学报.2010,18(5):683-688.
    郭兆奎,杨谦等.拟南芥AtNHX1基因对植物吸钾功能的作用.高技术通讯.2007,11:1174-1179.
    郭兆奎,杨谦等.酿酒酵母TRK1和TRK2钾吸收缺陷型菌株制备.微生物通报.2008,35(2):1-5.
    李共福.耐低钾水稻品种筛选利用的研究:水稻不同品种在低钾条件下的产量差异及耐低钾品种对钾的吸收利用特点[J].湖南农业科学.1985,3:15-17.
    陆静梅,李建东,景德章,杨凤清,张洪芹.星星草解剖研究[J].东北师范大学学报(自然科学版).1994,1:63-66.
    吕慧颖,李银心,孔凡江,杨庆凯.植物Na+/H+逆向转运蛋白研究进展.植物学通报.2003,20(3):363-369.
    刘雪松.小花碱茅拒Na+机制的研究[硕士学位论文].兰州:兰州大学.2006
    李浩东.拟南芥钾营养突变的筛选和低钾敏感基因LKs1的功能与分子调控机制研究[博士论文].北京,中国农业大学.2005.
    马清,包爱科,伍国强,王锁民.质膜Na+/H+逆向转运蛋白与植物耐盐性[J].植物学报.2011,46(2):206-215.
    沈禹颖.三种盐生植物叶表的扫描电镜观察[J].草业学报.1997,6(3):32-36.
    施卫明,王校常,严蔚东,汤利,安志装,何锶洁,田文忠,曹志洪.外源钾通道基因在水稻中的表达及其钾吸收特征研究[J].作物学报.2002,28:374-378.
    王遵亲,祝寿泉,俞仁培,黎立群,单光宗,尤文瑞,曾宪修,张粹雯,张丽君,宋荣华[M].中国盐渍土.北京:科学出版社.1993
    王锁民,朱兴运,舒孝喜.碱茅离子吸收与分配特性的研究[J].草业学报.1994,3(1):39-43.
    王春梅,李湛,伍国强,张金林,王锁民.用核素示踪研究小麦根部Na+外排速率的两种方法[J].核农学报.2008a,22(3):370-373.
    王春梅.Na+在拒盐型小花碱茅(Puccinellia tenuiflura)、积盐型霸王(Zygophyllum xanthoxylum)逆境适应中的作用研究[硕士学位论文].兰州,兰州大学.2008b
    伍国强,席杰军,周向睿,等.一种改进的多浆旱生植物霸王叶和根总RNA提取方法[J].分子植物育种2008,6(1):197-200.
    伍国强.霸王Na+/H+逆向转运蛋白基因NHX1的克隆和表达分析[硕士学位论文].兰州,兰州大学.2008
    王毅,武维华.植物钾营养高效分子遗传机制.植物学报.2009,44(1):27-36.
    王生银,张永超,李莉,张金林,王春梅,郭强,包爱科.拒盐型盐生植物小花碱茅肌动蛋白基因片段的克隆及序列分析[J].基因组学与应用生物学.2009,4(28):673-677.
    阎秀峰,孙国荣,李景信,李敬兰,佟振宇,赵彬.星星草泌盐能力的初步研究[J].草业科学.1994,11(3):36-39.
    阎顺国.碱茅叶表面超微结构的观察一碱茅不是泌盐植物的结构证据[J].草业学报.1997, 6(3):55-59.
    严蔚东,王校常,何锶洁,等.利用外源钾通道基因改良水稻钾素营养[J].中国水稻科学.2002,16(1):77-79.
    闵水珠.植物钾离子通道的分子生物学研究进展[J].浙江农业学报.2005,17(3):163-169.
    杨青川,康俊梅,郭文山,等.紫花苜蓿耐盐新种质一般配合力分析与轮回选择[J].草地学报.2006,14:4-8.
    朱兴运,王锁民,阎顺国,沈禹颖,赵银.碱茅属植物抗盐性与抗盐机制的研究进展[J].草业科学.1994,11(3):9-15.
    朱宇旌,张勇,胡自治,阎顺国小花碱茅根适应盐胁迫的显微结构研究[J].中国草地.2001,23(1):23-26.
    周晓馥,王兴智.植物耐盐相关基因:SOS基因家族研究进展[J].遗传.2002,24(2):190-192.
    中国植物志[M].第九卷,第二分册.北京:科学出版社,11,242.2002
    张宏飞,王锁民.高等植物Na+吸收、转运及细胞内Na+稳态平衡研究进展[J].植物学通报.2007,24(5):561-571.
    Aleman F, Nieves-Cordones M, Martinez V, Rubio F. Potassium/sodium steady-state homeostasis in Thellungiella halophila and Arabidopsis thaliana under long-term salinity conditions. Plant Science 2009,176:768-774.
    Aleman F, Nieves-Cordones M, Martinez V, Rubio F. Root K+ acquisition in plants:The Arabidopsis thaliana model. Plant Cell Physiology 2011,52:1603-1612.
    Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema MR, Hedrich R. GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana is a K+-selective, K+-sensing ion channel. FEBS Letters 2000,486:93-98.
    Ahlfors R, Lang S, Overmyer K, Jaspers P, Brosche M, Tauriainen A, Kollist H, Tuominen H, Belles-Boix E, Piippo M, Inze D, Palva ET, Kangasjarvi J. Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell 2004, 16:1925-1937.
    Ajayi O, Maynard DN, Barker AV. The effect of potassium on ammonium nutrition of tomato (Lvcopersicon esculentuin Mill). Agronomy Journal 1970,62:818-821.
    Amtmann A, Armengaud P, Volkov V. Potassium nutrition and salt stress. In Membrane Transport in Plants, Blatt, M.R., ed. Oxford, Blackwell 2004, pp.293-339.
    Amtmann A. Learning from evolution:Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Molecular Plant 2009,2:3-12.
    Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proceedings of the National Academy of Science of the United States of America 1992,89:3736-3740.
    Anne AV, et al. Molecular mechanisms and regulation of K+ transport in higher plants. Annual Review Plant Biology 2003,54:575-603.
    Apse MP, Aharon GS, Snedden WA, Blumwald E. Salt tolerance conferred by over-expression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 1999,285:1256-1258.
    Apse MP, Sottosanto JB, Blumwald E. Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHXl, the Arabidopsis vacuolar Na+/H+ antiporter. The Plant Journal 2003,36:229-239.
    Ardie SW, Liu SK, Takano T. Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Report 2010, 29:865-874.
    Ashley MK, Grant M, Grabov A. Plant responses to potassium deficiencies:a role for potassium transport proteins. Journal of Experimental Botany 2006,57:425-436.
    Banuelos MA, Sychrova H, Bleykasten-Grosshans C, Souciet JL, Potier S. The Nhal antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology 1998, 144:2749-2758.
    Bauer CS. Differential expression and regulation of K+ channels in the maize coleoptile:molecular and biophysical analysis of cells isolated from cortex and vasculature. The Plant Journal 2000, 24:139-145.
    Belles-Boix E, Babiychuk E, Van Montagu M, Inze D, Kushnir S. CEO1, a new protein from Arabidopsis thaliana, protects yeast against oxidative damage. FEBS Letters 2000,482:19-24.
    Benlloch M, Moreno I, Rodriguez-Navarro A. Two modes of rubidium uptake in sunflower plants. Plant Physiology 1989,90:939-942.
    Benito B, Rodriguez-Navarro A. Molecular cloning and characterization of a sodium pump ATPase of the moss Physcomitrella patens. The Plant Journal 2003,36:382-389.
    Bertl A, Anderson JA, Slayman CL, Gaber RF. Use of Saccharomyces cerevisiae for patch-clamp analysis of heterologous membrane-proteins-characterization of KAT1, an inward-rectifying K+channel from Arabidopsis thaliana, and comparison with endogeneous yeast channels and carriers. Proceedings of the National Academy of Science of the United States of America 1995, 92:2701-2705.
    Bertl A, Reid JD, Sentenac H, Slayman CL. Functional comparison of plant inward-rectifier channels expressed in yeast. Journal of Experimental Botany 1997,48:405-413.
    Brett CL, Donowitz M, Rao R. Evolutionary origins of eukaryotic sodium/proton exchangers. The American Journal of Physiology Cell Physiology 2005,288:C223-C239.
    Brown AM. Functional bases for interpreting amino acid sequences of voltage-dependent K+ channels. Annual Review of Biophysics and Biomolecular Structure 1993,22:173-198.
    Buschmann PH, Vaidyanathan R, Gassmann W, Schroeder Jl. Enhancement of Na+ uptake currents, time-dependent inward rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells. Plant Physiology 2000,122:1387-1397.
    Boscari A, Clement M, Volkov V, Golldack D, Hybiak J, Miller AJ, Amtmann A, Fricke, W. Potassium channels in barley:cloning, functional characterization and expression analyses in relation to leaf growth and development. Plant, Cell & Environment 2009,12:1761-1777.
    Cao YW, Glass ADM, Crawford NM. Ammonium inhibition of Arabidopsis root growth can be reversed by potassium and by auxin resistance mutations auxl, axrl, and axr2. Plant Physiology 1993,102:983-989.
    Cao Y, Ward JM, Kelly WB, Ichida AM, Gaber RF, Anderson JA, Uozumi N, Schroeder JI, Crawford NM. Multiple genes, tissue specificity, and expression dependent modulation contribute to the functional diversity of potassium channels in Arabidopsis thaliana. Plant Physiology 1995,109:1093-1106.
    Cassmann W, Schroeder JI. Inward rectifying K+ channels in root hairs of wheat. Plant Physiology 1994,105:1399-1408.
    Cherel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H, Thibaud JB. Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell 2002,14:1133-1146.
    Cherel I. Regulation of K+ channel activities in plants:from physiological to molecular aspects. Journal of Experimental Botany 2004,55:337-351.
    Chen Z H, Pottosn I I, Cuin T A, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou MX, Palmgren MG, Newman IA, Shabala S. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley. Plant Physiology 2007,145:1714-1725.
    Chomczynski P, Sacchi N. Single step method of RNA isolation by acid guanidinium thiocynate-phenol-chloroform extraction. Analytical Biochemistry 1987,162:156-159.
    Chung JS, Zhu JK, Bressan RA, Hasegawa PM, Shi H. Reactive oxygen species mediate Na+ induced SOS I mRNA stability in Arabidopsis. The Plant Journal 2008,53:554-565.
    Clarkson DT, Hanson JB.The mineral nutrition of higher plants. Annual Review Plant Physiology 1980,31:239-298.
    Clarkson DT. Factors affecting mineral nutrient acquisition. Annual Review of Plant Physiology 1985,36:77-115.
    Cosentino C, Fischer-Schliebs E, Bertl A, Thiel G, Homann U. Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum. New Physiologist 2010,186(3):669-680.
    Counillon L, Pouyssegur J. The expanding family of eucaryotic Na(+)/H(+) exchangers. The Journal of Biological Chemistry 2000,275(1):1-4.
    Cuin TA, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S. Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat:in planta quantification methods. Plant, Cell & Environment 2011,34:947-961.
    Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R. Control of sodium transport in durum wheat. Plant Physiology 2005,137:807-818.
    Davenport RJ, Munoz-Mayor A, Jha D, Essah PA, Rus A, Tester M. The Na+transporter AtHKTl;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant, Cell & Environment 2007,30:497-507.
    Deane-Drummond CE, Class ADM. Short term studies of nitrate uptake into barley plants using ion specific electrodes and ClO3-.Ⅱ. Regulation of NO3- efflux by NH4+. Plant Physiology 1983, 73:105-110.
    Deeken R, Sanders C, Ache P, Hedrieh R.Developmental and light dependent regulation of a phloem localized K+ channel of Arabidopsis thaliana. The plant journal 2000,23:285-290.
    Dibrov P, Smith JJ, Young PG, Fliegel L. Identification and localization of the sod2 gene product in fission yeast. FEBS Letters 1997,405:119-124.
    Ding L, Zhu JK. Reduced Na+ uptake in the NaCl hypersensitive sosl mutant of Arabidopsis thaliana. Plant Physiology 1997,113:795-799.
    Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K. Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Letters 2004,569:317-320.
    Dortje G, Francoise Q, Christine B. M, et al. Salinity stress tolerant and2sensitive rice (Oryza sativa L.) regulates AKT1 type potassium channel transcripts differently. Plant Molecular Biology 2003,51:71-81.
    Elphick CH, Sanders D, Maathuis FJM. Critical role of divalent cations and Na+ efflux in Arabidopsis thaliana salt tolerance. Plant, Cell & Environment 2001,24:733-740.
    Elumalai RP, Nagpal P, Reed JW. A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoots cell expansion. Plant Cell 2002,14:119-131.
    Epstein E, Rans DW, Elzam OE. Resolution of dual mechanisms of potassium absorption by barley roots. Proceedings of the National Academy of Science of the United States of America 1963,49:684-692.
    Epstein E, Norlyn JD,.Rush DW, Kingsbury RW, Cunninham GA, Wrona AF. Saline culture of corps:a genetic approach. Science 1980,210:399-409.
    Elide F, Serena V, Alex C, Patrick D, Monica B, Alessia N, Cristiana P, Franco G, Fiorella Lo S. DKT1, a novel K+ channel from carrot, forms functional heteromeric channels with KDC1. FEBS Letters 2004,573:61-67.
    Figdore S, Gerloff C, Gabelman WH. The effect of increasing sodium chloride levels on potassium utilization efficiency of tomato grown under low-potassium stress. Plant and Soil 1989,119:295-304.
    Flowers TJ, Troke PF, Yeo AR. The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology 1977,28:89-121.
    Flowers TJ, Yeo AR. Breeding for salinity resistance in crop plants:where next? Australian Journal of Plant Physiology 1995,22:875-884.
    Flowers TJ. Improving crop salt tolerance. Journal of Experimental Botany 2004,55:307-319.
    Flowers TJ, Colmer TD. Salinity tolerance in halophytes. New Physiologist 2008,179:945-963.
    Fuchs I, Stolzle S, Ivashikina N, Hedrich R. Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 2005,221:212-221.
    Fuster D, Moe OW, Hilgemann DW.Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry. The Journal of General Physiology 2008,132:465-480.
    Garciadeblas B, Haro R, Benito B. Cloning of two SOS1 transporters from the seagrass Cymodocea nodosa.SOSl transporters from Cymodocea and Arabidopsis mediate potassium uptake in bacteria. Plant Molecular Biology 2007,63:479-490.
    Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferriere N, Thibaud JB, Sentenac H. Identification and disruption of a plant Shaker like outward channel involved in K+ release into the xylem sap. Cell 1998,94:647-655.
    Gerloff GC, Gabelman WH. Genetics basis of inorganic plant nutrition. In Lauchi, A., and Bieleski, RL (eds.) Encyclopedia of plant physiology,1983, New series. Vol.15B. (Springer-Verlag, Berlin).
    Gierth M, Maser P, Schroeder JI. The potassium transporter AtHAK5 functions in K+deprivation induced high affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiology 2005,137:1105-1114.
    Gierth M, Maser P. Potassium transporters in plants involvement in K+ acquisition, redistribution and homeostasis. FEBS Letters,2007,581:2348-2356.
    Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJ. Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a nonselective ion transporter involved in germination and cation transport. Journal of Experimental Botany 2006,57:791-800.
    Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ. Salinity stress tolerant and-sensitive rice(Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Molecular Biology 2003,51:71-81.
    Gong Z, Koiwa H, Cushman MA et al. Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiology 2001,126:363-375.
    Greenway H, Munns R (1980). Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology 1980,31:149-190.
    Guo KM, Babourina O, Rengel Z. Na+/H+ antiporter activity of the SOS1 gene:lifetime imaging analysis and electrophysiological studies on Arabidopsis seedlings. Physiologia Plantarum 2009,137:155-165.
    Hahnenberger KM, Jia Z, Young PG. Functional expression of the Schizosaccharomyces pombe Na+/H+ antiporter gene, sod2, in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences USA 1996,93:5031-5036.
    Halfter U, Ishitani M, Zhu JK. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium binding protein SOS3. Proceedings of the National Academy of Sciences USA 2000,97:3735-3740.
    Hartje S. Functional characterization of LKT1. A K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta 2000,210 (5):723-731.
    Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annual review of plant physiology and plant molecular biology 2000,51:463-499
    Hauser F, Horie T. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant, Cell & Environment 2010,33:552-565.
    Horie T, Hauser F, Schroeder JI. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science 2009,14:660-668.
    Fuchs I, Philippar K, Ljung K, Sandberg G, Hedrich R.Blue light regulates an auxin induced K+ channel gene in the maize coleoptile. Proceedings of the National Academy of Sciences USA 2003,100:11795-11800.
    Hirsch RE, Lewis BD, Spalding EP, Sussman MR. A role for the AKT1 potassium channel in plant nutrition. Science,1998,280:918-921.
    Horie T, Hauser F, Schroeder JI. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Cell 2009,14(12):660-668.
    Horie T, Schroeder JI. Sodium transporters in plants. Diverse genes and phys iological function. Plant Physiology 2004,136:2457-2462.
    Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang CQ, Quist TM, Goodwin SM, Zhu JH, et al.. Salt Cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiology 2004,135:1718-1737.
    Ivashikina N, Beckern, Ache P. Meyerhoff O. Felle HH, Hedrich R. K+ channel profile and electrical properties of Arabidopsis roots hairs. FEBS letters 2001,508:463-469.
    Jan LY, Jan YN. Cloned potassium channels from eukaryotes and prokaryotes. Annual Review of Neuroscience 1997,20:91-123.
    Jha D, Shirley N, Tester M, Roy SJ. Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes linked to differences in the natural expression levels of transporters involved in sodium transport. Plant Cell & Environment 2010,33:793-804.
    Jiang JF, Shi HZ. Signaling control of SOS1 mRNA stability. Plant Signaling & Behavior 2008,3: 687-688.
    Kaddour R, Nasri N, M'rah S, Berthomieu P, Lachaal M. Comparative effect of potassium in K and Na uptake and transport in two accessions of Arabidopsis thaliana during salinity stress. Comptes rendus biologies 2009,332:784-794.
    Kant S, Kant P, Raven E, Barak S. Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+uptake in T. halophila. Plant Cell & Environment 2006,29:1220-1234.
    Kang JG, Pyo YJ, Cho JW. Comparative proteome analysis of differentially expressed proteins induced by K+ deficiency in Arabidopsis thaliana. Proteomics 2004,4:3549-3559.
    Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu JK. The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences USA 2006, 103:18816-18821.
    Kinclova O, Ramos J, Potier S, Sychrova H. Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Molecular Microbiology 2001,40:656-668.
    Krishnamurthy P, Franke RR, Prakash HS, Schreiber L, Mathew MK. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta 2009,230:119-134
    Kochian LV, Lucas WJ. Potassium transport in corn roots:Ⅰ. Resolution of kinetics into a saturable and linear component. Plant Physiology 1982,70:1723-1731.
    Kronzucker HJ, Szczerba MW, Moazami-Goudarzi M, Britto DT.The cytosolic Na+/K+ ratio does not explain salinity-induced growth impairment in barley:a dual-tracer study using 42K+ and 24Na+. Plant, Cell & Environment 2006,29:2228-2237.
    Kronzucker HJ, Szczerba MW, Schulze LM, Britto DT. Non-reciprocal interactions between K+ and Na+ ions in barley (Hordeum vulgare L.). Journal of Experimental Botany 2008, 59:2793-2801.
    Kronzucker HJ, Britto DT. Sodium transport in plants:a critical review. New Physiologist 2011, 189:54-81.
    Kuhn AJ, Walter H, Schroder, Bauch J. The kinetics of calcium and magnesium entry into mycorrhizal spruce roots. Planta 2000,210:488-496.
    Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB. A Shaker-like K+ channel with weak rectification is expressed in both source and sinks phloem tissues of Arabidopsis. Plant Cell 2000,12:837-851.
    Lacombe B, Becker D, Hedrich R, Chiu J, DeSalle R, Heinemann S,Hollmann M, Kwak J, Lenovere N, Nam HG, Sakmann B, Schroeder JI, Spalding EP, Tester M, Turano FJ, Coruzzi G. On the identity of plant glutamate receptors. Science 2001,292:1486-1487.
    Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Grignon C. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K nutrition. The Plant Journal 1996,9:195-203.
    Lebaudy A, Very AA, Sentenac H. K+ channel activity in plants:Genes, regulations and functions. FEBS Letters 2007,581:2357-2366.
    Lee SC, Lan WZ, Kim BG, Li LG, Cheong YH, Pandey GK, Lu GH, Buchanan BB, Luan S. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proceedings of the National Academy of Science of the United States of America 2007, 104:15959-15964.
    Lefebvre DD. Increased potassium absorption confers resistance to group IA cations in rubidium-selected suspension cells of Brassica napus. Plant Physiology 1989,91:1460-1466.
    Leigh RA, Wyn-Jones RG. A hypothesis relating critical potassium concentrations for growth to the distribution and function of this ion in the plant cell. New Phytologist 1984,97:1-13.
    Lewis BD, Spalding EP. Nonselective block by La3+ of Arabidopsis ion channels involved in signal transduction. Journal of Membrane Biology 1998,162:81-90.
    Li L, Kim BG, Cheong YH, Pandey GK, Luan S. A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proceedings of the National Academy of Science of the United States of America 2006,103:12625-12630.
    Liam D, Julia D. Cell expansion in roots. Current Opinion in Plant Biology 2004,7:33-39.
    Liu JP, Zhu JK. A calcium sensor homolog requires for plant salt tolerance. Science 1998, 280:1943-1945.
    Liu J, Ishitani M, Halfter U et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences USA 2000, 97:3730-3734.
    Luan S. The CBL-CIPK network in plant calcium signaling. Trends in Plant Science 2008, 14:37-42.
    Maathuis FJM, Sander SD. Mechanism of high affinity potassium uptake in roots of Arabidopsis thaliana. Proceedings of the National Academy of Science of the United States of America 1994,91:9272-9276.
    Maathuis FJ, Sanders D. Contrasting roles in ion transport of two K (+)-channel types in root cells of Arabidopsis thaliana. Planta 1995,197:456-464.
    Maathuis FJM, Sander SD. Mechanisms of potassium absorption by higher plant roots. Physiologia Plantarum 1996,96:158-168.
    Maathuis FJM, Amtmann A. K+nutrition and Na+toxicity:the basis of cellular K+/Na ratios. Annals of Botany 1999,84:123-133.
    Maathuis FJM, Sanders D. Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiology 2001,127:1617-1625.
    Maathuis FJ. cGMP modulates gene transcription and cation transport in Arabidopsis roots. The Plant Journal 2009,45:700-711.
    Mahajan S, Pandey GK, Tuteja N. Calcium and salt stress signaling in plants:Shedding light on SOS pathway. Archives of Biochemistry and Biophysics 2008,471:146-158.
    Makmur A, Gerloff GC, Gabelman WH. Physiology and inheritance of potassium utilization in tomatoes grown under potassium stress. Journal of the American Society for Horticultural Science 1978,103:545-549.
    Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ. Conservation of the salt overly sensitive pathway in rice. Plant Physiology 2007, 143:1001-1012.
    Marschner H, Kylin A, Kuiper PJC.Genotypic differences in the response of sugar beet plants to replacement of potassium by sodium. Physiologia Plantarum 1981,51:77-82.
    Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, Hoshi T, Hedrich R. AKT3, a phloem-localized K+channel, is blocked by protons. Proceedings of the National Academy of Science of the United States of America 1999,96:7581-7586.
    Maughan PJ, Turner TB, Coleman CE. Characterization of salt overly sensitive 1 (SOS1) gene homoeologs in quinoa(Chenopodium quinoa Willd.). Genome 2009,52:647-657.
    Ma Q, Yue LJ, Zhang JL, Wu GQ, Bao AK, Wang SM. Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiology 2012, 32:4-13
    Muller-Rober B, Ellenberg J, Provart N, Willmitzer L, Busch H, Becker D, Dietrich P, Hoth S, Hedrich R. Cloning and electrophysiological analysis of KST1, an inward-rectifying K+ channel expressed in potato guard cells. The EMBO Journal 1995,14:2409-2416.
    Munns R. Genes and salt tolerance:bringing them together. New Physiologist 2005,167:645-663.
    Munns R. Prophylactively parking sodiumin the plant. New Physiologist 2007,176:501-504.
    Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review Plant Biology 2008, 59:651-681.
    Nakamura RL, Mckendree WL, Hirsch RE, Sedbrook JC, Caber RF, Sussman MR. Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiology 1995,109:371-374.
    Nielsen KH, Schjoerring JK. Regulation of apoplastic NH4+ concentration in leaves of oil seed rape. Plant Physiology 1998,118:1361-1368.
    Nieves-Cordones M, Aleman F, Martinez V, Rubio F. The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions. Molecular Plant 2010,3:326-333.
    Niu X, Bressan RA, Hasegawa PM, Pardo JM. Ion homeostasis in NaCl stress environments. Plant Physiology 1995,109:735-742.
    Obata T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y. Rice shaker potassium channel OsKATl confers tolerance to salinity stress on yeast and rice cells. Plant Physiology 2007, 144:1978-1985.
    Oh DH, Gong QQ, Ulanov A, Zhang Q, Li YZ, Ma WY, Yun DJ, Bressan RA, Bohnert HJ. Sodium stress in the halophyte Thellugiella halophila and transcriptional changes in a thsosl-RHA interference line. Journal of Integrative Plant Biology 2007,49:1484-1496.
    Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, Durzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ. Loss of halophytism by interference with SOS1 expression. Plant Physiology 2009a 151:210-222.
    Oh DH, Zahir A, Yun DJ, Bressan RA, Bohnert HJ. SOS1 and halophytism. Plant Signaling& Behavior 2009b,4:1081-1083.
    Oh DH, Lee SY, Bressan RA, Yun DJ, Bohnert HJ. Intracellular consequences of SOS 1 deficiency during salt stress. Journal of Experimental Botany 2010,61:1205-1213.
    Olias R, Eljakaoui Z, Li J, De Morales PA, Marin-Manzano MC, Pardo JM, Belver A. The plasma membrane Na+/H antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na between plant organs. Plant Cell & Environment 2009,32:904-916.
    Padan E, Maisler N, Taglicht D, Karpel R, Schuldiner S. Deletion of ant in Escherichia coli reveals its function in adaptation to high salinity and an alternative Na+/H+ antiporter system (s).The Journal of Biological Chemistry 1989,264:20297-20302.
    Pardo JM, Quintero FJ. Plants and sodium ions:keeping company with the enemy. Genome Biology 2002,3:10171-10174.
    Pardo JM, Marti nez-Atienza J, Quintero FJ. Function of the SOS system on the salinity tolerance of plants. Society of Experimental Biology Annual Main Meeting,11-15 July 2005, Barcelona, Spain. Comparative Biochemistry and Physiology Part A 2005,141:S341.
    Pardo JM, Cubero B, Leidi EO, Quintero FJ. Alkali cation exchangers:roles in cellular homeostasis and stress tolerance. Journal of Experimental Botany 2006,57:1181-1199.
    Pardo JM. Biotechnology of water and salinity stress tolerance. Current Opinion in Biotechnology 2010,21:185-196.
    Peng YH, Zhu YF, Mao YQ, Wang SM, Su WA, Tang ZC. Alkali grass resists salt stress through high [K+] and an endodermis barrier to Na+. Journal of Experimental Botany 2004,55:939-949.
    Preston GM, Jung JS, Guggino WB, Agre P. Membrane topology of aquaporin CHIP. Analysis of functional epitope-scanning mutants by vectorial proteolysis. The Journal of Biological Chemistry 1994,269:1668-1673.
    Pilot G, Gaymard F, Mouline K, Chere 1, Sentenac H. Regulated expression of Arabidopsjs shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Molecular Biology 2003,51:773-787.
    Pilot G, Pratelli R, Gaymard F, Meyer Y, Sentenac H. Five group distribution of the Shaker like K+ channel family in higher plants. Journal of Molecular Evoloution 2003,56(4):418-434.
    Prior C, Potier S, Souciet JL, Sychrova H. Characterization of the NHA1 gene encoding a Na+/H+ antiporter of the yeast Saccharomyces cerevisiae. FEBS Letters 1996,387:89-93.
    Pitman MG Transport across the root and shoot/root interactions. In:Staples RC, Toennissen GH (eds) Salinity tolerance in plants:strategies for crop improvement. Wiley, New York,1984, pp 93-123.
    Pyo YJ, Gierth M, Schroeder JI, Cho MH. High affinity K+transport in Arabidopsis:AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low potassium conditions. Plant physiology 2010,153:863-875
    Qi Z, Spalding EP. Protection of plasma membrane K+ transport by the salt overlay sensitive Na+/H+ antiporter during salinity stress. Plant Physiology 2004,136:2548-2555.
    Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences USA 2002,99:8436-8441.
    Qiu QS, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu JK. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the Salt Overly Sensitive (SOS) pathway. The Journal of Biological Chemistry 2004,279:207-215.
    Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Science of the United States of America 2002,99:9061-9066.
    Ratner A, Jacoby B Effect of K+, its counter anion and pH on sodium efflux from barley roots. Journal of Experiment Botany 1976,87:843-852.
    Reintanz B, Szyroki A, Ivashikina N, Peter A, Matthias G, Dirk B, Klaus P, Rainer H. AtKCl, a silent Arabidopsis potassium channel subunit modulates root hair K+ influx. Proceedings of the National Academy of Science of the United States of America 2002,99:4079.
    Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics 2005, 37:1141-1146.
    Rozema J, Flowers TJ. Crops for a salinized world. Science 2008,322:1478-1480.
    Romheld V, Kirkby E. Research on potassium in agriculture:needs and prospects. Plant and Soil 2010,335:155-180.
    Rubio F, Nieves-Cordones M, Aleman F, Martinez V. Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high affinity range of concentrations. Physiologia Plant 2008, 134:598-608.
    Rufty TWJ, Jackson WA, Raper CDJ. Inhibition of nitrate assimilation in roots in the presence of ammonium:the moderating influence of potassium. Journal of Experiment Botany 1982, 33:1122-1137.
    Saitou N, Nei M. The neighbour-joining method:a new method for reconstructing phylogentic trees. Molecular Biology Evolution 1987,4:406-425
    Santa-Maria GE, Rubio F, Dubcovsky J, Rodriguez-Navarro A. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 1997,9:2281-2289.
    Sato Y, Sakaguehi M, Goshima S, et al. Integration of shaker type channel, KAT1, into the endoplasmic reticulum membrane:Synergistic insertion of voltage sensing segments, S3-S4, and independent insertion of pore forming segments S5-P2-S6. Proceedings of the National Academy of Science of the United States of America 2002,99 (1):60.
    Schachtman OP, Liu WH. Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends in Plant Science 1999,4:281-287.
    Schachtman DP. Molecular insights into the structure and function of plant K+transport mechanisms. Biochimica et Biophysica Acta 2000,1465:127-139.
    Schroeder JI, Ward JM, Gassmann W. Perspectives in the physiology and structure of inward rectifying K+ channels in higher-plants-biophysical implications for K+ uptake. Annual Review of Biophysics and Biomolecular Structure 1994,23:441-471.
    Schroeder JI, Hedrich R. Potassium selective single channels in guard cell protoplasts of Vicia faba. Nature,1984,312:361-363.
    Schreiber L, Hartmann K, Skrabs M, Zeier J. Apoplastic barriers in roots:chemical composition of endodermal and hypodermal cell walls. Journal of Experiment Botany 1999,50:1267-1280.
    Scherer HW, Mackown CT, Leggett JE. Potassium ammonium uptake interactions in tobacoo seedings. Journal of Experiment Botany 1984,35:1060-1070.
    Schwarz TL, Tempel B, Papazian DM, Jan YN, Jan LY. Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature 1988, 331:137-142.
    Sentenac H, Bonneaud N, Minet M, et al. Cloning and expression in yeast of a plant potassium ion transport system. Science,1992,256:663.
    Shea PF, Gerloff GC, Gabelman WH. Differing efficiencies of potassium utilization in strains of snap beans Phaseolus vulgaris. Plant and Soil 1968,28:337-346.
    Shabala L, Cuin TA, Newman IA, Shabala S. Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta 2005,222:1041-1050.
    Shabala S, Cuin TA. Potassium transport and plant salt tolerance. Physiologia Plantarum 2008, 133,651-669.
    Shabala S, Shabala S, Cuin TA, Pang JY, Percey W, Chen ZH, Conn S, Eing C, Wegner LH. Xylem ionic relations and salinity tolerance in barley. Plant Journal 2010,61:839-853
    Shi H, Ishitani M, Kim C, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Science of the United States of America 2000,97:6896-6901.
    Shi H, Quintero FJ, Pardo JM, Zhu JK. The putative plasma membrane Na+/H+ antiporter SOS 1 controls long-distance Na+ transport in plants. Plant Cell 2002,14:65-477.
    Shi H, Lee BH, Wu SJ, Zhu JK. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology 2003,21:81-85.
    Sottocornola B, Visconti S, Orsi S, Gazzarrini S, Giacometti S, Olivari C, Camoni L, Aducci P, Marra M, Abenavoli A, Thiel G, Moroni A. The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins. Journal of Biological Chemistry 2006,281:35735-35741.
    Spalding EP, Hirsch RE, Lewis DR, Qi Z., Sussman MR, Lewis BD. Potassium uptake supporting plant growth in the absence of AKT1 channel activity:inhibition by ammonium and stimulation by sodium. The Journal of General Physiology,1999,113:909-918.
    Steudle E. Water uptake by roots:effect of water deficit. Journal of Experiment Botany 2000, 51:1531-1542.
    Su H, Golldack D, Katsuhara M, Zhao C, Bohnert HJ. Expression and stress dependent induction of potassium channel transcripts in the common ice plant. Plant Physiology 2001,125:604-614.
    Sunarpi HT, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. The Plant Jouranl 2005,44:928-938.
    Szczerba MW, Britto DT, Balkos KD, Kronzucker HJ. Alleviation of rapid, futile ammonium cycling at the plasma membrane by potassium reveals K+ sensitive and insensitive components of NH4+ transport. Journal of Experimental of Botany.2008a,59:303-313.
    Szczerba MW, Britto DT, Ali SA, Balkos KD, Kronzucker HJ. NH4+ stimulated and-inhibited components of K+ transport in rice(Oryza saliva L.). Journal of Experimenal Botany 2008b, 59:3415-3423.
    Szyroki A, Ivashikina N, Dietrich P, Roelfsema MR, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R, Palme K, Hedrich R. KAT1 is not essential for stomatal opening. Proceedings of the National Academy of Science of the United States of America 2001 98:2917-2921.
    Taleisnik E, Grunberg K. Ion balance in tomato cultivars differing in salt tolerance. I. Sodium and potassium accumulation and fluxes under moderate salinity. Physiologia Plantarum 1994, 92:528-5234.
    Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiology 2004,135:1697-1709.
    Takahashi R, Liu SK, Takano T. Isolation and characterization of plasma membrane Na+/H+ antiporter genes from salt-sensitive and salt-tolerant reed plants. Journal of Plant Physiology 2009,166:301-309.
    Tamura K, Dudley J, Nei M, Kumar S. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology Evolution 2007,24:1596-1599.
    Tang RJ, Liu H, Bao Y, Lv QD, Yang L, Zhang HX. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Molecular Biology 2010,74:367-380.
    Tester M, Davenport R. Na+ tolerance and Na+transport in higher plants. Annals of Botany 2003, 91:503-527.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The Clustal X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 1997,25:4876-4882.
    Utsugi J, Inaba K, Kuroda T, Tsuda M, Tsuchiya T. Cloning and sequencing of a novel Na+/H+ antiporter gene from Pseudomonas aeruginosa. Biochimica et Biophysica Acta 1998, 1398:330-334.
    Vale FR, Jackson WA, Volk RJ. Potassium influx into maize root systems influence of root potassium concentration and ambient ammonium. Plant Physiology 1987,84(4):1416-1420.
    Vale FR, Jackson WA, Volk RJ.Nitrogen-stimulated potassium influx into maize roots differential response of components resistant and sensitive to ambient ammonium. Plant Cell & Environment 1988a,11:493-500.
    Vale FR, Volk RJ, Jackson WA.Simultaneous influx of ammonium and potassium into maize roots-kinetics and interactions. Planta 1988b,173:424-431.
    Very AA, Gaymard F, Bosseux C, Sentenac H, Thibaud JB. Expression of a cloned plant K+ channel in Xenopus oocytes analysis of macroscopic currents. The Plant Journal 1995,7 (2):321-332.
    Very AA, Sentenac H. Molecular mechanisms and regulation of K+ transport in higher plants. Annual Review Plant Biology 2003,54:575-603.
    Volkov V, Amtmann A. Thellungiella halophila, a salt tolerance relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. The Plant Journal 2006,48:342-353.
    Volkov V, Boscari A, Clement M, Miller AJ, Amtmann A, Fricke W. Electrophysiological characterization of pathways for K (+) uptake into growing and non-growing leaf cells of barley. Plant, Cell & Environment 2009,32:1778-1790.
    Wang B, Davenport RJ, Volkov V, Amtmann A. Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. Journal of Experimental Botany 2006,57:1161-1170.
    Wang CM, Zhang JL, Liu XS, Li Z, Wu GQ, Cai JY, Flowers TJ, Wang SM. Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+influx resulting in a high selectivity for K+ over Na+. Plant Cell & Environment 2009,32:486-496.
    Wang SM, Zheng WJ, Ren JZ, Zhang CL. Selectivity of various types of salt-resistant plants for K+ over Na+. Journal of Arid Environments 2002,52:457-472.
    Wang SM, Zhao GQ, Gao YS, Tang ZC, Zhang CL. Puccinellia tenuiflora exhibits stronger selectivity for K+over Na+than wheat. Journal of Plant Nutrition 2004a,27:1841-1857.
    Wang SM, Wan CG, Wang YR. The characteristics of Na+, K+ and free proline distribution in several drought resistant plants of the Alxa Desert, China. Journal of Arid Environments 2004b, 56:525-539.
    Wang SM, Zhang JL, Flowers TJ. Low affinity Na+uptake in the halophyte Suaeda maritima. Plant Physiology 2007a,145:559-571.
    Wang XQ, Ullah H, Jones AM, Assmann SM. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 2001,292:2070-2072.
    Wang Y, He L, Li HD, Xu J, Wu WH. Potassium channel alpha-subunit AtKCl negatively regulates AKT1-mediated K(+) uptake in Arabidopsis roots under low-K(+) stress. Cell Research 2010,20:826-837.
    Wang YC, Chu YG, Liu GF, Wang MH, Jiang J, Hou YJ, Qu GZ, Yang CP. Identification of expressed sequence tags in an alkali grass(Puccinellia tenuiflora) cDNA library. Journal of Plant Physiology 2007a,164:78-89.
    Wang YC, Yang CP, Liu GF, Jiang J. Development of a cDNA microarray to identify gene expression of Puccinellia tenuiflora under saline-alkali stress. Plant Physiology and Biochemistry 2007b,45:567-576.
    Wang YQ, Wang XL, Shan YH, Sheng HJ, Feng K. Membrane-potential alteration during K+ uptake of different salt-tolerant wheat varieties. Agricultural Sciences in China 2010, 9:101-106.
    Watad AEA, Reuveni M, Bressan RA, Hasegawa PM. Enhanced net K+ uptake capacity of NaCl adapted cells. Plant Physiology 1991,95:1265-1269.
    Watson R, Pritchard J, Malone M. Direct measurement of sodium and potassium in the transpiration stream of salt-excluding and non-excluding varieties of wheat. Journal of Experiment Botany 2001,52:1873-1881.
    Wegner LH, Raschke K. Ion channels in the xylem parenchyma of barley roots. A procedure to isolate protoplasts from this tissue and patch-clamp exploration of salt passageways into xylem vessels. Plant Physiology 1994,105:799-813.
    Wegner LH, DeBoer AH. Properties of two outward-rectifying channels in root xylem parenchyma cells suggest a role in K+ homeostasis and long-distance signaling. Plant Physiology 1997, 115:1707-1719.
    Wu GQ, Xi JJ, Wang Q, Bao AK, Ma Q, Zhang JL, Wang SM. The ZxNHX gene encoding tonoplast Na+/H+ antiporter from the xerophyte Zygophyllum xanthoxylum plays important roles in response to salt and drought. Journal of Plant Physiology 2011,168:758-767.
    Wu SJ, Ding L, Zhu JK. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 1996,8:617-627.
    Wu YS, Ding N, Zhao X, Zhao MG, Chang ZQ, Liu JQ, Zhang LX. Molecular characterization of PeSOS1:the putative Na_/H+ antiporter of Populus euphratica. Plant Molecular Biology 2007, 65:1-11.
    Wu YS, Hu YB, Xu GH. Interactive effects of potassium and sodium on root growth and expression of K/Na transporter genes in rice. Plant Growth Regulation 2009,57:271-280.
    Xiong L, Zhu JK. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell & Environment 2002,25:131-139.
    Xu HX, Jiang XY, Zhan KH, Cheng XY, Cheng XJ, Pardo JM, Cui D. Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Archives of Biochemistry and Biophysics 2008,473:8-15.
    Xu J, Li H D, Chen L Q, Wang Y, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 2006,125:1347-1360.
    Xu QF, Tsai CL, Tsai CY. Interaction of potassium with the form and amount of nitrogen nutrition on growth and nitrogen uptake of maize. Journal of Plant Nutrition 1992,15:23-33.
    Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong ZZ. Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Molecular Plant 2009,2:22-31.
    Yoshioka K, Moeder W, Kang HG, Kachroo P, Masmoudi K, Berkowitz G, Klessig DF. The chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 activates multiple pathogen resistance responses. Plant Cell 2006,18:747-763.
    Zhang JL, Flowers TJ, Wang SM. Mechanisms of sodium uptake by roots of higher plant. Plant and Soil 2010,326(1):45-60.
    Zhou GA, Jiang Y, Yang Q, Wang JF, Huang J, Zhang HS. Isolation and characterization of a new Na+/H+ antiporter gene OsNHAl from rice (Oryza sativa L.). DNA Sequence 2006,17:24-30.
    Zhu JK, Liu JP, Xiong LM. Genetic analysis of salt tolerance in Arabidopsis:evidence for a critical role of potassium nutrition. Plant Cell 1998,10:1181-1191.
    Zhu JK. Plant salt tolerance. Trends in Plant Science 2001,6:66-71.
    Zhu JK. Cell signaling under salt, water and cold stresses. Current Opinion in Plant 2001, 4:401-406.
    Zhu JK. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 2002,53:247-273.
    Zhu JK. Regulation of ion homeostasis under salt stress. Current Opinion in Plant 2003, 6:441-445.
    Zhang H, Yin W, Xia X. Shaker-like potassium channels in Populus, regulated by the CBL-CIPK signal transduction pathway, increase tolerance to low K+stress. Plant Cell Report 2010, 29:1007-1012.
    Zhang JL, Flowers TJ, Wang SM. Mechanisms of sodium uptake by roots of higher plants. Plant and Soil 2010,326:45-60.
    Zimmermann S, Talke I, Ehrhardt T, Nast G, Miiller-Rober B. Characterization of SKT1, an inwardly rectifying potassium channel from potato, by heterologous expression in insect cells. Plant Physiology 1998,116:879-890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700