用户名: 密码: 验证码:
多轴转向车辆转向性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文展开了多轴转向车辆转向性能的研究。其主要工作如下:
     (1)针对多轴转向车辆转向系统所采用的转向形式,推导了包括转向系统刚度、转向助力系统等因素的二自由度和三自由度多轴转向车辆线性动力学模型。
     (2)探讨了油气悬挂系统参数对其非线性特性的影响。首次提出了连通式油气悬挂系统的刚度转移特性。仿真分析了连通式油气悬挂系统参数对多轴转向车辆转向性能的影响。创新设计了两种新油气悬挂系统连接方式。
     (3)分析了转向系统刚度对多轴转向车辆转向性能的影响。
     (4)提出了一种模块化参数建模方法,二次开发了多轴转向车辆转向系统模块化参数建模和优化程序。
     (5)分析了转向系统在几种典型工况下的受力变化。对现有转向杆系的改进使整个转向杆系的最大受力降低到58%。提出的转向油缸的输出力与车轮转向阻力矩相匹配的设计方法,从实质上解决多轴转向系统受力过大的难题提供了一种切实可行的技术方案。
     (6)探讨了质心零侧偏角控制策略及H 2 /H∞混合最优控制算法对其转向性能的影响。建立了三轴转向车辆机电液一体化虚拟样机模型。针对质心零侧偏角控制策略的不足,提出了一种系数改进法。
This doctoral dissertation has been finished on the foundation of the innovation fund of Jilin university,‘multi-axle steering system research of special truck’. With the increasing of lifting weight, the whole weight and axle number of large cranes have been increased. The demand of advanced technology becomes higher and higher and the maneuverability of multi-axle struck is becoming more and more important. Multi-axle steering technology is an effective method to improve maneuverability and stability of special large all terrain crane and it becomes the key technology that influences the development of all terrain cranes. Compared to the international homologous heavy industry, we have a great gap in multi-axle steering technology. Nowadays, the hydraulic assistant mechanical steering system is still applied on multi-axle steering system in nation. In some foreign countries, the mechanical and dynamic control steering system has been adopted in multi-axle steering system in the large vehicles. Their maneuverability, reliability, stability have been greatly improved. At present, the theory about multi-axle steering vehicle is very limited. In order to improve our technology about this part, the research of multi-axle steering vehicle seems to be very necessary.
     According to the above statements, to improve the multi-axle steering performances of multi-axle steering vehicle, this paper has deeply researched the mainly affected factors of it, such as hydro-pneumatic suspension, the stiffness of steering system, the structural parameters of steering linkage, hydraulic power steering system, steering Control Algorithm and so on. According to the characteristics of multi-axle steering system It has provided some beneficial practical and theoretical guide for multi-axle steering technical in our country.
     The multi-axle steering vehicle dynamic model is the basic of multi-axle steering technology. Based on the existent theories, a linear 2DOF multi-axle steering vehicle model has been presented including the stiffness of steering system, hydraulic power steering system, aerodynamic etc. The consistency of the results demonstrates its correctness and universality. Base on this conclusion, the stability evaluation parameters, including yaw angular velocity gain, sideslip angle gain, side acceleration gain etc. are presented under the steady state cornering test. The formula keeping the sideslip angle zero is obtained. Simulation results give the relationship of yaw angular velocity gain between FWS and MWS. The velocity according to the maximal yaw angular velocity gain is expressed. The affections of structure and performance parameters on the steering characteristics have been analyzed.
     Based on the linear 2DOF model, another kinetic model of 3-DOF multi-axle steering vehicle which has considered the lean movement of vehicle body has been built according to Lagrange equation. And The transfer function among rolling angle, yaw angular velocity and sideslip angle have been presented using Matlab.
     Hydro-pneumatic suspension (HPS) system is one of the main factors of effect on the steering performance of multi-axle steering vehicle. Based on the research of effect of double-gas-gambers parameters on the nonlinear characteristics of HPS, the paper deeply discussed the stiffness characteristics of independent and linked HPS and its effect on rolling characteristic of multi-axle steering vehicle. The effects of the parameters of linked HPS system on the steering and rolling characteristics of multi-axle steering vehicle were analyzed. The stiffness transfer characteristic of linked HPS is firstly put forward. The effects of parameters of linked HPS on the steering of multi-axle steering vehicle were simulated. Two new modes of HPS were designed, which is in favor of ride performance and steering performance of multi-axle steering vehicle.
     The steering linkage of multi-axle steering vehicle is one of mainly affective factors to multi-axle steering characteristics. The steering drag torque of multi-axle steering vehicle is very big and the steering linkage is very long. Therefore, the affection of the stiffness of steering system on the steering characteristics has been simulated. The results of simulation verify the correctness of theory result. Namely, properly reducing the stiffness of steering system properly will help to improve the steering stability of multi-axle steering vehicle.
     The optimization of steering linkage is an effective method to improve steering characteristics. The optimal steering linkage can avoid the abnormal wear of tire and decrease the force of steering linkage. The force of whole steering linkage becomes more balanced. The steering portability and reliability of the vehicle have been improved. To improve the efficiency and precision of steering linkage optimization, a set of blocking parameter model and optimal program have been developed. During the developing process, a blocking parameter model method is put forward. The parameter modeling and optimization become easier for the steering system. The optimization design of steering linkage of a multi-axle steering all terrain cranes gets a very remarkable effect by this program. By doing so, the work efficiency and the design precision not only are improved greatly, but also the reliability of outputs is improved greatly.
     The steering system force is the mainly effective factor of reliability and portability of multi-axle steering vehicle. The section mainly aims at the failures of steering system of real struck. A multi-axle steering vehicle virtual prototype including Electrical-hydraulic Controlling System is built. The opening rate formula of valve has deduced and the function of servo-actuated redirector has been simulated. Simulation and test of multi-axle steering system have been done. The test results demonstrate the virtual prototype model′s correctness. Based on it, the effect of hydraulic power steering system on the force of steering system is discussed. According to the working circumstance of multi-axle steering vehicle, the force change of steering system has been simulated under several working conditions. The effect of centre of mass, the lock angle of wheel, the design of steering linkage system, on the force of steering system is analyzed. Because of the unbalanced force of steering system, the mend and optimization of steering system have been done and an effective measure is put forward. The results indicate that the maximal force is reduced to 58%. The reliability of steering system has greatly improved.
     Because the force of multi-axle steering system is general very big, a deeply research has been done. The method matching the cylinder force with the turning resisting moment is an effective plant for reducing the force of multi-axle steering system.
     Rear axles dynamic steering control strategy is an effective means to improve the characteristics of multi-axle steering vehicle, security and stability, it also are the popular technical in international range. The multi-axle steering technology derives from 4ws and is more complex, universality than 4ws. Based on the 2-DOF and 3-DOF models, electro-hydraulic proportional control system and H 2 /H∞optimization controller are built. A virtual prototype model of multi-axle steering vehicle including electrical-hydraulic controlling system is presented. The co-simulation of ESYS5 and ADAMS has been done. The characteristics of hydraulic steering system and the performance parameters of multi-axle steering vehicle are analyzed during the dynamic turning process. It is discussed the effect of electro-hydraulic proportional control system on the steering characteristics. Because of the lower turning agile capability of the multi-axle steering vehicle adopting the sideslip angle zero control strategy at high speed turning process, a coefficient method is put forward. When the sideslip angle is not very big, the method can improve the agility of vehicle and lay a foundation for the design of the multi-axle steering vehicle controller. A H 2 /H∞optimal controller of 3-DOF multi-axle steering vehicle is designed by Matlab and H 2 /H∞optimiation theory. The effect of the optimal controller on the steering characteristics of multi-axle steering vehicle is analysis. The simulation results show that the H 2 /H∞optimal controller has better system performance and robust performance. The steering characteristics of multi-axle steering vehicle have been greatly improved and guarantee the security, handling and stability.
引文
[1] 崔军华,双前轴转向汽车的摇臂机构优化设计[J].专用汽车.1999,(4):4~9
    [2] 陈志军等,重型汽车多轴转向系统摇臂机构的优化设计.重庆大学学报.1994,17(5):80~87
    [3] 杨新明,多轴转向汽车运动分析与仿真.硕士学位论文.武汉理工大学.2003
    [4] 石永林,多轴汽车分组转向系统机构参数的优化设计.硕士学位论文.华中科技大学,2003
    [5] 万垂红,微型汽车转向系统仿真分析与优化.硕士学位论文,重庆交通学院,2005
    [6] 戴旭文,双横臂独立悬架、转向系统运动学和动力学分析及优化设计.硕士学位论文,北京理工大学,2002
    [7] 宋德玉等,重型汽车转向梯形机构的优化设计[J].河北煤炭建筑工程学院学报,1995,(1):56~58
    [8] 邬华芝,转向梯形机构的解析图解设计方法[J].常州工业技术学院学报,1998,11(4):72~76
    [9] 张兰锁等,转向梯形性能的计算机模拟分析[J].河北煤炭建筑工程学院学报,1996,(2):47~50
    [10] 王敏等,汽车转向机构的优化设计[J].汽车工程,1995,17(6):360~366
    [11] 陈集丰等,汽车转向梯形机构最佳参数确定[J].西北工业大学学报,1995,13(4):500~504
    [12] 黄宗益等,多桥转向连杆机构通用优化设计程序[J].建设机械技术与管理,1999,(4):12~15
    [13] 杨占敏等,多轴车辆稳定转向分析[J].重型汽车,1994,(5):7~10
    [14] 王敏等,汽车转向机构的非线性运动学模型[J].汽车工程,1995,17(5):291~295
    [15] 王坚等,汽车起重机四轴转向系统的运动模拟[J].工程机械,1994,(2):12~15
    [16] 鲁和安等,计及车轮侧偏刚度的汽车转向梯形优化[J].工业技术经济,1995,14(4):79~83
    [17] 姜明国等,阿克曼原理与矩形化转向梯形设计[J].汽车技术,1994,(5):16~19
    [18] 廖丹,重型汽车双前桥转向系统的优化设计及仿真研究.硕士学位论文,湖南大学,2003
    [19] 王阳阳,重型汽车双前桥系统运动学和动力学分析.硕士学位论文,合肥工业大学,2005
    [20] 杨黎晖,载重车转向系统计算机仿真分析.硕士学位论文,同济大学,2001
    [21] 屈求真,三轴汽车转向系统结构设计分析[J]. 汽车研究与开发.1997,(6):24~26
    [22] 韦超毅等,基于 ADAMS 软件的转向梯形计算机辅助设计[J].广西大学学报.2003,28(3):246~248
    [23] 陆友林,新型越野车转向摇臂机构的优化设计[J].导弹与航天运载技术.2000,(2):1~6
    [24] 唐应时等,重型汽车双前桥转向系统的运动学和动力学的建模与仿真分析[J].湖南大学学报,2003,30(3):59~61
    [25] 蔡世芳等,汽车转向传动机构的数学模型及其优化设计[J].汽车工程,1986,(1):236~240
    [26] 郭凌汾等,多轴全挂车转向机构优化设计[J].中国公路学报,1995,8(3):66~75
    [27] 陆友林等,5450 特种车转向杆系运动学与动力学分析计算[J].美国 MDI 公司中国用户年会论文集,2001:97~114
    [28] 尤瑞金,ADAMS软件在汽车前悬架—转向系统运动学分析中的应用[J].美国MDI公司中国用户年会论文集,2001:229~238
    [29] Yongping Hou, Synthesis of multi-axle steering system of heavy-duty vehicle based on probability of steering angle [J]. SAE 2000-01-3434
    [30] 赵京等. 矿用汽车转向机构的最优化设计[J].汽车工程.1995.(4):231~237
    [31] 张烨. 转向梯形机构的改进设计[J].汽车技术,1988,(8):17~20
    [32] 董学锋. 转向机构的最优化设计[J].汽车技术,1991,(8):1~10
    [33] 李玉民等,整体式转向梯形的运动分析及优化设计[J]. 拖拉机与农用运输车,2001,(2):18~22
    [34] 刘远平,轿车悬架与转向系运动学分析与仿真.硕士学位论文,沈阳航空工业学院,2002
    [35] Miller Gerald, Optimum Ackerman for Improved steering Axle Tire Wear on Trucks [J]. SAE 912693
    [36] 杨波. 计及车架弹性的多轴重型越野车整车动态性能研究[D]. 武汉: 华中科技大学. 2004.
    [37] 吕红明,陈男. 基于 Matlab/Simulink 的四轮转向车辆操纵稳定性的仿真[J]. 系统仿真学报, 2004,16(2): 957-959.
    [38] 殷国栋,陈男,李普. 基于μ 综合鲁棒控制的四轮转向车辆操纵稳定性研究[J]. 中国工程科学, 2005 7(4):54~58.
    [39] 祁永宁,陈男,李普. 四轮转向车辆的直接横摆力矩控制[J]. 东南大学学报(自然科学版).2004 34(4):451~454.
    [40] 吕红明,陈男,李普. 横摆率跟踪控制的 4WS 汽车闭环操纵稳定性[J]. 汽车工程 2005 27(3):337~339.
    [41] 陈男,殷国栋,李普,吕红明. 四轮转向车辆控制及其硬件在环仿真开发平台[J]. 江苏大学学报(自然科学版)2005 26(5):384~388.
    [42] 李铂,吕振华. 后轮主动转向的2自由度鲁棒控制[J]. 汽车工程 2005 27(1):83~85.
    [43] 李铂,陈善华. 基于回路成形和 μ 综合的后轮主动转向鲁棒控制[J]. 汽车工程 2006 28(4):370~375.
    [44] 王洪礼,张锋,乔宇,张伯俊. 汽车四轮转向系统的 H 2 /H∞混合控制[J]. 汽车工程 2003 25(6):578~580.
    [45] 张伯俊,陈广彦. 三自由度汽车四轮转向系统的 H ∞控制设计[J]. 天津工程师范学院学报 2006 16(2):8~11.
    [46] 肖永利, 张 琛. 定量反馈理论及其设计应用[J]. 信息与控制,1999,28 (6):437~445.
    [47] 刘 奋, 张建武, 屈求真. 基于 Q FT 的四轮转向控制系统设计[J]. 汽车工程, 2002,24 (1):68~72.
    [48] Abe M, Ohkubo N, Kano Y. a direct yaw moment control for improving the limit performance of vehicle handling:comparison and cooperation with 4WS [J]. Vehicle Syst Dyn Suppl 1996, 25:3~23.
    [49] Furukawa Y, Abe M. Direct yaw moment control with sideslip angle by using on-board-tire-model [J]. AVEC’98,1998.
    [50] E. Esmailzadeh, A. Goodarzi, G.R. Vossoughi. Optimal yaw moment control law for improved vehicle handling [J]. Mechatronics 2003 13:659~675.
    [51] Van Zanten AT, Erhardt R, Landesfeind K, Pfeff G. VDC system development and perspective [J].. SAE Technical Paper, 980235,1998.
    [52] Leffler H, Auffhanmmer R, Roth H. New driving stability control system with reduced technical effort for compact and medium class passenger cars [J]. SAE Technical Paper, 980234,1998.
    [53] Bauer H. ESP: Electronic stability program [J]. Germany: Robert Bosch GmbH;1999.
    [54] S.-S. You, Y.-H. Chai. Multi-objective control synthesis: an application to 4WS passenger vehicles [J]. Mechatronics 1999 :363~390.
    [55] Horiuch i S, Yuhara N, Takei A. Two degree of freedom/H∞ synthesis fo r act ivefour w heel steering vehicles [J]. Vehicle System Dynam ics, 1996, 25(sup.): 275~292.
    [56] W. A. H. Oraby, S. M. EI-Demerdash ect. Improvement of vehicle lateral dynamics by active front steering control [J]. SAE Technical Paper, 2004-01-2081, 2004.
    [57] Yoshiyuki Yasui and Wataru Tanaka ect. Estimation of lateral grip margin based on self-aligning torque for vehicle dynamics enhancement [J]. SAE Technical Paper, 2004-01-1070, 2004.
    [58] Zbigniew Lozia, Wieslaw Pieniazek. Real time 7 DOF vehicle dynamics model and its experimental verification [J]. SAE Technical Paper, 2002-01-1184,2002.
    [59] 封士彩. 油气悬挂非线性数学模型及性能特性的研究[J] 中国公路学报, 2002, 15(3):122~126
    [60] 马国清 檀润华. 油气悬挂系统非线性数学模型的建立及其计算机仿真[J]. 机械工程学报. 2002,38(5)
    [61] 王汉平 张聘义. 混合连通式油气悬挂重型车辆的振动性能研究[J]. 导弹与航天运载技术 2003,(264):7~11
    [62] 封 士 彩 吴 仁 智 工 程 车 辆 油 气 悬 挂 性 能 的 试 验 研 究 [J]. 试 验 · 研 究 2000,(12):9~11
    [63] 马国清 王树新. 油气悬挂系统特性研究[J]. 液压与气动 2002,(3):1-2.
    [64] 周德成 王国强. 油气悬挂缸参数对车辆平顺性影响的理论研究[J]. 农业机械学报. 2004,35(5):25-28
    [65] 郭建华. 全路面起重机油气悬挂系统建模与动力学仿真研究. 吉林大学硕士学位论文. 2005
    [66] 卢毅非. 全路面起重机关键技术探析[J]. 工程机械与维修. 2004,10:69~71
    [67] 吴仁智. 油气悬挂系统动力学建模仿真和试验研究[D]. 浙江:浙江大学,2000: 91~93.
    [68] Furukaw a Y, Yuhara N , Sano S, etal. A review of four 2wheel steering studies from the viewpo int of vehicle dynamics and cont rol [J]. Vehicle System Dynamics, 1989, 18: 151~186.
    [69] 屈求真, 刘延柱. 四轮转向汽车的动力学控制现状及展望[J]. 中国机械工程, 1999, 10 (8): 946~949.
    [70] 杨耀东. 矿用自卸汽车液压举升和转向系统仿真与优化[D]. 北京科技大学博士论文 20050425
    [71] 张光裕, 许纯新. 工程机械底盘设计[M]. 机械工业出版社 1994,10
    [72] 雷天觉. 新编液压工程手册 [M]. 北京理工大学出版社 1998,12
    [73] 刘顺安. 液压传动与气压传动[M]. 吉林科学技术出版社. 1999,12
    [74] 官忠范. 液压传动系统(第三版)[M]. 机械工业出版社. 1997,7
    [75] MSC 公司. ADAMS/Hydraulics Component Reference.
    [76] 张越今 著. 汽车多体动力学及计算机仿真[M]. 吉林科学技术出版社. 1998,12
    [77] Dave Crolla,喻凡 著. 车辆动力学及其控制[M]. 人民交通出版社. 2004,1
    [78] 时培成. 基于虚拟样机技术的汽车整车操纵稳定性研究. 硕士学位论文 合肥:合肥工业大学,2005
    [79] 蒋伟 编著. 机械动力学分析[M]. 北京:中国传媒大学出版社. 2005,6
    [80] 高秀华 姜国庆等. 工程机械结构与维护检修技术[M]. 北京:化学工业出版社 2004.9
    [81] 张洪欣 汽车设计 北京:机械工业出版社 1998,5
    [82] M.米奇克 著 汽车动力学 C 卷(第二版)北京:人民交通出版社 1997.9
    [83] 安部正人 著. 汽车的运动和操纵. 北京:机械工业出版社 1998.10.
    [84] 余志生 主编 汽车理论(第 2 版)北京:机械工业出版社 1998.5
    [85] 周良生,秦明华,彭莫. 多轴汽车车身稳定性的研究[J]. 汽车工程,2000,22(3):214~217.
    [86] Furukaw a Y, A beM. A dvanced chassis control system for vehicle handling and act ive safety [J]. Vehicle System Dynamics, 1997, 28: 59~86.
    [87] Y. Shibahata, K. Shimada and T. Tomari, Improvement of Vehicle Maneuverability by Direct Yaw Moment Control [J]. Vehicle System Dynamics, 1993 ,22:465~481
    [88] 胡立生, 邵惠鹤, 孙优贤. 汽车转向控制[J]. 汽车工程, 2000, 22 (6) : 381~383.
    [89] Horow itzM. Survey of quant itat ive feedback theory [J ]. In ternational Journal of con trol, 1991, 53 (2):255~291.
    [90] 王德平,郭孔辉,宗长富. 车辆动力学稳定性控制的仿真研究[J].汽车技术, 1999,2:8~10.
    [91] 林程. 四轮转向车辆计算机仿真与试验研究[D].北京理工大学博士学位论文,2003.
    [92] 屈求真. 汽车侧向动力学及其控制研究[D]. 上海交通大学博士学位论文. 2000
    [93] 张春秋. 三轴车辆电控多轮转向控制策略研究与仿真. 吉林大学硕士学位论文. 2005.
    [94] 李炎亮. 全路面起重机多桥动态转向控制系统研究[D]. 吉林大学博士论文. 2006.
    [95] Masaki Yamamoto, Active Control Strategy for Improved Handling and Stability[J]. SAE paper No.911902
    [96] Kiyoshi Wakamatsu, Yoshimitsu Akuta, Manabu Ikegaya, Nobuyoshi Asanuma, Adaptive Yaw Rate Feedback 4WS with Friction Coefficient Estimator between Tire and Road Surface [J]. International Symposium on Advanced Vehicle Control - AVEC’96
    [97] Kwon-Hee Suh,Yoon-Ki Lee.A Study on the Handing Performance of a Large-Sized Bus with the Change of Rear Suspension Geometry [J]. SAE Paper 2002-01-3071
    [98] Aleksander Hac and Melinda D. Simpson, Estimation of Vehicle Side Slip Angle and Yaw Rate [J]. SAE paper 2000-01-0696
    [99] Leffer, H., Consideration of Lateral and Longitudinal Vehicle Stability by FunctionEnhanced Brake and Stability Control System [J]. SAE paper No.940832
    [100] Yoshiki Fukada, Slip-Angle Estimation for Vehicle Stability Control [J]. Vehicle System Dynamics, 1999, Vol.32: 375~388
    [101] Anton van Zanten, Rainer Erhardt, and Georg Pfaff, VDC, The Vehicle Dynamics Control System of Bosch [J]. SAE paper No.950759
    [102] Whitehead John C. Four Wheel Steering Maneuverability and High Speed Stabilization [J]. SAE Technical Paper No.980642,1998.
    [103] Matthew R, Stone Michael A, Demetrios. Modeling and Simulation of Vehicle Ride and Handling Performance [J]. Proceedings of the 15th IEEE International Symposim on Intelligent Control (ISIC 2000), 2002(7):85~90.
    [104] Anton T. van Zanten, Evolution of Electronic Control Systems for Improving the Vehicle Dynamic Behavior [J]. International Symposium on Advanced Vehicle Control – AVEC 2002
    [105] Sergey V. Drakunov, Behrouz Ashrafi, Alessandro Rosiglioni, Yaw Control Algorithm via Sliding Mode Control [J]. Proceedings of the American Control Conference, Chicago, Illinois, June, 2000
    [106] Konghui Guo, Dang Lu, Lei Ren, A unified non-steady non-linear tyre model under complex wheel motion inputs including extreme operating conditions [J]. JSAE Review 22 (4) (2001):395~402
    [107] Pacejka H B and Besselink I J M, Magic formula tyre model with transient properties [J]. Vehicle System Dynamics, 1997, 27 (supplement):234~249
    [108] K.H.Guo and Lei Ren, A Unified Semi-Empirical Tire Model with Higher Accuracy and Less Parameters [J]. SAE Technical Paper Series 1999-01-0785, 1999
    [109] 郭孔辉. 各向摩擦系数不同条件下轮胎力学特性的统一理论模型[J]. 中国机械工程.1996.7(4):90~93
    [110] 张宗明,吴光强等.应用 ADAMS 进行整车的动力学分析.1998 年 ADAMS 软件中国地区用户年会论文集.229~230
    [111] 雄 坚 , 曾 纪 国 , 宋 健 . 汽 车 操 纵 稳 定 性 虚 拟 仿 真 的 研 究 [J]. 汽 车 工 程 . 2002,Vol.24,No.5:430~433
    [112] 任卫群,张云清等. ADAMS 在汽车操纵稳定性分析与设计中的应用[J]. 1998 年ADAMS 软件中国地区用户年会论文集: 63~68
    [113] 谢晋中等. 汽车起重机的转向特性测试及影响因素分析[J].起重运输机械.2000.2:17~19.
    [114] 李军,孟红. 汽车悬架参数对操纵稳定性影响的仿真分析[J].车辆与动力技术.2001.No.4:24~27
    [115] 许先锋. 随机路面输入的汽车平顺性仿真分析[J]. 美国 MDI 公司 2001 年中国用户年会论文集:133~145
    [116] 金睿臣 宋健.路面不平度的模拟与汽车非线性随机振动的研究[J]. 北京:清华大学学报(自然科学版).1999.No.8:76~79
    [117] 王国权,许先锋. 汽车平顺性的虚拟样机试验[J]. 北京:农业机械学报.2003. Vol.34.No.3.:26-28
    [118] 赵 亦 希 , 黄 宏 成 , 刘 奋 . 悬 架 侧 倾 特 性 参 数 及 动 力 学 仿 真 [J]. 传 动 技术.2001,1:40~43.
    [119] 金睿臣,宋健. 应用机械系统分析软件 ADAMS 研究汽车对路面随机输入的响应[M]. 1998 年 ADAMS 软件中国地区用户年会论文集:23~34
    [120] 秦民,朱启昕等. 应用 ADAMS 软件研究整车平顺性中几个问题的探讨[J]. 北京:中国机械工程.2003.Vol.14.No.5:430~433
    [121] 吴振昕. 独立悬架对汽车操纵稳定性的影响. 吉林大学硕士研究生毕业论文,2001
    [122] 凌雯,余卓平,江浩. ADAMS 在悬架运动学和弹性运动学仿真中的应用[J]. 上海铁道大学学报.2000.Vol.21.No.6:80~83
    [123] 张智谦,倪建华,张陵. 不同路况下车辆悬架系统的动态特性研究[J]. 机械科学与技术.2000,Vol.19.No.9: 33~35
    [124] 李 军 , 谷 中 丽 . 汽 车 独 立 悬 架 簧 载 质 量 的 分 析 计 算 [J]. 兵 工 学 报 . 2000.No.2:42~45
    [125] 张春润,詹文章等. 虚拟仿真软件 ADAMS 在车辆系统动力学计算中的应用[J]. 美国 MDI 公司 2001 年中国用户年会论文集:181~187
    [126] J.Z.Feng, F.YU, Y.X.Zhao. Design of a Bandwidth-limited Active Suspension Controller for Off-Road Vehicle Based on the Co-simulation technology [J]. SAEPaper 2004-01-1067
    [127] Guoquan Wang,Wentong Yang. Airtual Test Approach for Vehicle Ride Comfort Evaluation [J]. SAE Paper 2004-01-0376.
    [128] 范成建,熊光明,周明飞 编著. 虚拟样机软件 MSC.ADAMS 应用与提高[M]. 北京:机械工业出版社.2006.
    [129] MSC.Software 著,邢俊文,陶永忠译. MSC.ADAMS/View 高级培训教程[M]. 北京:清华大学出版社.2004.
    [130] 李增刚 编著. ADAMS 入门祥解与实例[M]. 北京:国防工业出版社.2006.
    [131] 陈立平等. 机械系统动力学分析及 ADAMS 应用教程[M]. 北京:清华大学出版社.2005
    [132] 李军等.ADAMS 实例教程.北京:北京理工大学出版社.2002
    [133] 王国军.BJ2022 型汽车虚拟样机的开发与仿真研究.中国仿真科技论坛电子期刊[J].2004. 3:6~9
    [134] 任京等. 液压转向闭式回路动态仿真建模与分析[J].车辆与动力技术. 2001.2:19~25.
    [135] 王晓伟. 虚拟样机技术在整车性能分析中的应用[J]. 中国汽车报.2003-9-16
    [136] Katsuhiko Ogata 著.现代控制工程(第四版)[M].北京:电子工业出版社,2003
    [137] 胡寿松.自动控制原理(第三版)[M].国防工业出版社.2001.
    [138] 王德进 编著. H 和 H 优化控制理论[M]. 哈尔滨:哈尔滨工业大学出版社.2001.
    [139] 俞立 著. 鲁棒控制——线性矩阵不等式处理方法[M]. 北京:清华大学出版社.2002.
    [140] 刘金琨 著. 先进 PID 控制 MATLAB 仿真(第 2 版)[M]. 北京:电子工业出版社,2005
    [141] D.-W. Gu, .Hr. Petkov, M.M.Konstantinov. Robust Control Design with MATLAB [M]. LE-TEX Jelonek, Schmidt&V?kler GbR, Leipzig, Germany Printed in Germany.2005.
    [142] 田海,王国军.仿真技术及其在汽车性能优化设计中的应用.北京汽车.2004.1:6~13
    [143] 顾瑞龙.控制理论及电液控制系统[M]. 北京:化学工业出版社.1984:252~310
    [144] 刘辉.液压伺服控制系统.国防工业出版社.2001
    [145] 汤涤军 等. 基于 ADAMS 的机电液一体化仿真研究[J]. 计算机仿真 . 2004.10:119~121
    [146] 洪家娣等. 液压动力转向器动态仿真研究[J]. 机械设计.1999.7. P33~35.
    [147] 刘长年. 关于液压施力系统非对称油缸的建模问题[J]. 机床与液压.1985.1: 10~13
    [148] John J.Pippenger. Hydraulic Valves and Controls [J]. Marcel Dekker. INC.1984 First Edition.
    [149] Chen JiaShi. Model Reference Adaptive Controller for Non-Linear Hydraulic Servo System [J]. Proceedings of Beijing International Fluid Power Symposium. 1984
    [150] Vehicle Hydraulic Systems and Digital/ Electro-hydraulic controls [J]. 1991.SAE SP-882. ISBN 1-56091-174-3.
    [151] Nakaya H, Oguchi Y. Characteristics of The Four Wheel Steering Vehicle And Its Future Prospects [J]. International Journal of Vehicle Design, 1987,8(3):314~325.
    [152] Horiuchi S, Yuhara N, Takei A. Two Degree of Freedom/H∞ Controller Synthesis for Active Four Wheel Steering Vehicles [J]. Vehicle System Dynamics. 1996,25:275~292.
    [153] Song J G, Yoon Y S. Feedback Control of Four-Wheel Steering Using Time Delay Control [J]. International Journal of Vehicle Design, 1998,19(3):282~298
    [154] 刘奋.四轮转向汽车侧向动力学特性及其控制研究[D].上海交通大学博士学位论文,2003.1.
    [155] Edward J.Bedner, Jr.and Hsien H.Chen. A Supervisory Control to Manage Brakes and Four-Wheel-Steer Systems [J]. SAE Technical Paper 2004-01-1059.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700