用户名: 密码: 验证码:
水润滑复合橡胶尾轴承摩擦学问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水润滑尾轴承是舰船推进系统的重要组成部分,其性能的优劣对舰船航行的快速性、安全性、隐蔽性、经济性等有着重要的影响。尽管水润滑橡胶尾轴承已有100多年的使用史,但其基础研究仍然薄弱,尤其在其摩擦振动的产生机理方面。故而开展以减振降噪为目的的水润滑尾轴承材料研制,摩擦振动产生机理的理论及试验研究,具有重要的理论意义及军事应用价值。
     文中结合国家自然科学基金项目,开展水润滑橡胶尾轴承相关摩擦性能、摩擦振动产生机理等关键问题的研究。主要工作如下:
     (1)建立了水润滑橡胶尾轴承摩擦振动的非线性分析模型;分析了模型的稳定性,求解了其数值解,得到了其振动位移随时间t的变化规律,分析了正压力、温度等因素对分析模型稳定性的影响。
     (2)在丁腈橡胶中加入UHMWPE和石墨粉末进行共混改性,制备了一种低摩擦的新型水润滑尾轴承用复合橡胶材料SPB-N。其物理力学性能达到中国船标CB/T76——92008和美国军标MIL-DTL-17901C (SH)的要求。其摩擦系数达到了美国军标MIL-DTL-17901C (SH)的标准,在低速下更优于标准。局部最大比压可达到0.70MPa。
     (3)通过试验设计,试验台架的改进,以模拟全幅轴承摩擦副的形式,进行了SBR和SPB-N两种新材料的试块试验。测试了不同比压、不同橡胶层厚度、不同橡胶层硬度的试块摩擦系数随速度的变化规律,并分析了其影响机理。针对橡胶层的硬度和厚度及其交互作用对摩擦系数影响的显著程度,进行了双因素有交互作用的正交分析。结果表明,试块的动摩擦系数随橡胶层厚度、硬度的降低而降低,二者对水润滑橡胶轴承摩擦性能均有影响;橡胶材料的厚度、硬度及其交互作用三者对水润滑橡胶尾管轴承摩擦性能的影响中,以橡胶层的厚度最为显著,硬度次之,厚度和硬度的交互作用最弱。设计时应优先保证橡胶层厚度值。与SBR相比,共混改性制备的复合橡胶SPB-N试块因其优良的自润滑性能,而具有更优越的低速性能。
     (4)研究了粘-滑现象的产生机理及影响因素。通过试验设计,借助高速相机拍摄试块橡胶层随试验轴转动时的振动情况,编写相应的图像处理软件来提取追踪点的振动信息,以一种直观直接的方式研究了试块橡胶层粘-滑现象发生的规律。辅以正交试验法,研究了速度、比压、橡胶层的硬度、厚度、润滑条件等因素对水润滑橡胶轴承表面粘-滑现象的影响程度。结果显示,各因素对试验指标的影响按大小排序如下:润滑条件、比压、橡胶层硬度、橡胶层厚度,即在润滑充足下,增加橡胶层硬度,降低比压及橡胶层的厚度可以降低橡胶轴承的粘-滑效应。
     (5)在舰船水润滑尾轴承试验台架上进行尾轴承摩擦性能和振动试验,分析了速度、载荷、橡胶层的硬度、材料的变化等对轴承摩擦性能的影响。测试结果与理论计算、试块试验结果比较接近,验证了相应的理论分析。
As one important part of a ship propulsion system, the water-lubricated rubber stern tube bearing has great effects on shipping navigation, security, covert, and economic and so on. Although water-lubricated rubber stern tube bearings have been used for more than one hundred years, its basic research is still staying primary stage, especially in the aspect of the mechanism of friction-induced vibration. Therefore, there is of great significance theory and military application value on studying water-lubricated stern tube bearing material development, theoretical and experimental research on friction-induced noise generation mechanism which were based on the reduction of vibration and noise.
     Funded by National Natural Science Foundation of China, this paper concentrates on key tribological problems of marine water-lubricated rubber stern tube bearings such as friction properties, and friction-induced vibration. The main contents of this dissertation are listed as follows:
     (1) A nonlinear analysis model of friction-induced vibration for water-lubricated rubber stern tube bearings was established. At the same time, the paper analyzed the stability of the model and got the digital solution. The vibration displacement curve changing with time t was deduced. The impact of factors such as pressure, temperature was analyzed.
     (2) The mixture of powder of UHMWPE and graphite was blended into NBR to develop a new kind of compound rubber with cost-effective, low-friction performance. The physical and mechanical properties, coefficient of friction of the compound which is knowed as SPB-N have satisfied the ship industry standards of the People's Republic of China CB/T769——2008, and requirements of the U.S. military standard MIL-DTL-17901C (SH). The local maximum project pressure of SPB-N could reach0.70MPa.
     (3) For the reasonable experimental design and improvement of the test rig, the block tests for SBR and SPB-N are carried out respectively in a very close manner to simulate the full-size bearing friction. Variations of coefficient of friction with speed were measured under different projected pressure, with different thickness or hardness of rubber layer of test blocks. And a brief analysis is given to the mechanism of action. To distinguish prominent impact factors among the hardness, thickness of the rubber layer and its interaction on the friction performance of blocks, the orthogonal analysis of two-factor interaction was carried out. The results indicate that the coefficient of dynamic friction of the test block decreased with the rubber layer thickness and hardness reduction. Both have an impact on water-lubricated rubber bearing friction performance. Among the three factors which are rubber layer thickness, hardness, and their interactions, the influence of thickness of rubber layers on friction properties is the most significant, followed by hardness factor. Priority should be given to ensuring the rubber layer thickness during water-lubricated stern tube bearing design. The test blocks of the compound rubber SPB-N had superior low-speed performance because of its excellent self-lubricating properties.
     (4) Using a high-speed camera, the generation mechanism and influencing factors of stick-slip induced vibration of test block rubber layer in the process of axial rotation are studied. Orthogonal experiment method is used to distinguish which the main factor among speed, project pressure, the rubber layer hardness, thickness, and lubrication conditions and so on is. The test results show that the influence of the factors is sorted by size as follows:lubrication conditions, project pressure, and the hardness of the rubber layer, the thickness of the rubber layer. In the sufficient lubrication, increasing the hardness of the rubber layer, or decreasing the project pressure ratio and the thickness of the rubber layer could reduce rubber bearings stick-slip effects.
     (5) Friction and vibration tests of ship water-lubricated stern tube bearing are carried out on stern tube bearing test rig. At the same time, speed, load, hardness of bearing material, and variety of materials are analyzed on the effects of bearing friction performance. Test data are close to theoretical calculations and the block test results, which verify the theoretical analysis.
引文
[1]唐育民,杨和庭.船舶水润滑尾管橡胶轴承的设计[J].武汉造船,2000(2):19-22.
    [2]张乐天,李文浩.对新型水润滑尾轴管装置的研制[J].武汉造船,1979(4):43-55.
    [3]张乐天,蒋淦清.对船用橡胶轴承若干问题的探讨[J].武汉水运工程学院学报,1979(2):55-79.
    [4]Peng Engao, Liu Zhenglin, Tian Yuzhong.等. Experimental study on friction-induced vibration of water-lubricated rubber stern bearing at low speed[C].2010 International Conference on Frontiers of Manufacturing and Design Science, ICFMD2010, December 11, 2010-December 12,2010,2011, Vol(44-47):409-413.
    [5]Peng Engao, Liu Zhenglin, Lan Fang,等. Research on noise generation mechanism of rubber material for water-lubricated bearings[C]. International Conference on Green Power, Materials and Manufacturing Technology and Applications, GPMMTA2011, July 15,2011-July 18,2011,2011, Vol(84-85):539-543.
    [6]Jin Yong, Liu Zhenglin. The experimental modal analysis of water-lubricated rubber stern bearing[C].2011 International Conference on Mechanical Materials and Manufacturing Engineering, ICMMME 2011, June 20,2011 - June 22,2011,2011, Vol(66-68): 1663-1667.
    [7]董从林,袁成清,刘正林,等.水润滑艉轴承磨损可靠性寿命评估模型研究[J].润滑与密封,2010(12):40-43.
    [8]Qu Liang, Wang Juan, Xin Shuai,等. A system for detecting sea oil leak based on video surveillance[C].2011 3rd Pacific-Asia Conference on Circuits, Communications and System, PACCS 2011, July 17,2011 - July 18,2011,2011, Vol:1-3.
    [9]Fivos Andritsos, Hans Cozijn. An innovative oil pollution containment method for ship wrecks proposed for offshore well blow-outs[C]. ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2011, June 19,2011 - June 24,2011, 2011, Vol(2):73-81.
    [10]Desheng Zhou, Andrew K. Wojtanowicz. Analysis of leak-off tests in shallow marine sediments[J]. Journal of Energy Resources Technology, Transactions of the ASME,2002, 124(4):231-238.
    [11]俞士将.绿色船舶发展现状及方向分析[J].船舶,2010(4):1-5.
    [12]严新平,袁成清,白秀琴,等.绿色船舶的摩擦学研究现状与进展[J].摩擦学学报,2012(4):410-420.
    [13]Harish Hirani, Manish Verma. Tribological study of elastomeric bearings for marine propeller shaft system[J]. Tribology International,2009,42(2):378-390.
    [14]Roy L.Orndorff Jr. Water-lubricated rubber bearings,history and new developments[J]. Naval Engineers Journal,1985,10:39-52.
    [15]Roy L.Orndorff Jr, Darren G Finck. New design,cost-effective,high performance water-lubricated bearings[J]. WARSHIP,1996:367-373.
    [16]彭晋民,王家序.提高水润滑轴承承载能力关键技术研究[J].农业机械学报,2005(6):149-151.
    [17]金志鸿,唐育民,海鹏洲.Mcs-2-1船舶层压胶木与铁梨木尾轴承性能试验[J].武汉水运工程学院学报,1981(4):14-25.
    [18]樊发孝,陈业生,金志鸿,等.船舶水润滑艉管轴承新材料—3133石墨层压板的试验与研究[J].船舶工程,1987(4):17-22,1.
    [19]Roy L.Orndorff Jr, Ohio Kent. Thermoplastic-rubber polymer alloy and method for producing the same. USA:The B. F.Goodrich Company,Akron,Ohio,1988:9.
    [20]王优强,李鸿琦.水润滑赛龙轴承及其润滑性能综述[J].润滑与密封,2003(1):101-104.
    [21]郑伟彭晋民,杨明波.水润滑塑料合金轴承成型工艺对力学性能的影响[J].机床与液压,2005(3):66-67,73.
    [22]王家序彭晋民,杨明波.水润滑塑料合金轴承材料力学性能改性[J].润滑与密封,2004(6):80-82.
    [23]肖科,王家序,张榆,等.纳米级氧化锌晶须对水润滑轴承材料的改性研究[J].润滑与密封,2004(02):38-39.
    [24]王海宝,王家序,彭晋民,等.丙烯酸酯对丁腈橡胶力学性能的影响[J].润滑与密封,2003(02):64-65.
    [25]宋国君,王俊霞,孙晋立.碳纤维/橡胶复合材料的研究与应用[J].青岛大学学报(工程技术版),1997(4):20-23.
    [26]郑颂先,张芳,王保秀.碳纤维对丁腈橡胶力学性能的影响[J].安徽大学学报(自然科学版),1991(3):58-60.
    [27]Bharat Bhushan, Frank Dashnaw. Material Study For Advanced Stern-tube Bearings And Face Seals[J]. ASLE transactions,1981,24:398-409.
    [28]Bharat Bhushan, Stanley Gray, Richard W. Graham Ii. Development of low-friction elastomers for bearings and seals[J]. LUBR ENG,1982, V38:626-634.
    [29]M. I. Guseva, P. M. Lysenkov, E. V. Sokov,等. Surface modification of rubber inserts in stern bearings by ion implantation technique[J]. Trenie i Iznos,1993,14(4):742-747.
    [30]Roy L.Orndorff Jr. New UHMWPE/rubber bearing alloy[J]. Journal of Tribology,2000, 122(1):367-373.
    [31]孙文丽,王优强,时高伟.海水润滑赛龙陶瓷轴承的摩擦学性能研究[J].润滑与密封,2010(4):65-67.
    [32]孙文丽,王优强,时高伟.海水润滑赛龙材料磨损机制分析[J].润滑与密封,2011(7):48-51.
    [33]孙文丽,王优强,时高伟.赛龙轴承材料摩擦学性能的试验研究[J].润滑与密封,2011(5):36-39.
    [34]R. L. Daugherty, N. T. Sides. Frictional Characteristics of Water-lubricated Compliant-surface Stave Bearing[J]. ASLE transactions,1981,24:293-301.
    [35]M. Lahmar, D. Nicolas. Effets des deformations elastiques sur le comportement des paliers multi-couches [J]. Mecanique & Industries,2000(1):499-510.
    [36]戴明城,刘正林,樊发孝.Sf-1材料水润滑艉轴承摩擦性能研究[J].武汉理工大学学报,2011(3):58-61.
    [37]梁强,刘正林,周建辉,等.华龙水润滑艉轴承综合性能研究[J].船海工程,2009(04).
    [38]朱汉华,刘焰明,刘正林,等.船舶尾轴承变形对其承载能力影响的理论及试验研究[J].润滑与密封,2007(6):12-14,36.
    [39]吴铸新,刘正林,王隽,等.水润滑轴承推力瓦块材料摩擦磨损试验研究[J].兵工学报,2011(1):118-123.
    [40]Wu Zhuxin, Liu Zhenglin, Wang Jun,等. Research on friction and wear testing of pad materials of water-lubricated thrust bearings[J]. Binggong Xuebao/Acta Armamentarii, 2011,32(Compendex):118-123.
    [41]周建辉,刘正林,朱汉华,等.船舶水润滑橡胶尾轴承摩擦性能试验研究[J].武汉理工大学学报(交通科学与工程版),2008(5):842-844,860.
    [42]Wu Zhuxin, Liu Zhenglin. Analysis of Properties of Thrust Bearing in Ship Propulsion System[J]. Journal of Marine Science and Application,2010(02):220-222.
    [43]金勇.计入螺旋桨流体激振力的船舶尾轴承润滑特性计算[D].武汉:武汉理工大学,2002.
    [44]刘正林,周建辉,刘宇,等.计入艉轴倾角的船舶艉轴承液膜压力分布计算[J].武汉理工大学学报,2009(9):111-113,131.
    [45]彭晋民,王家序,杨明波.水润滑塑料合金轴承材料力学性能改性[J].润滑与密封,2004(06):80-82.
    [46]彭晋民,王家序,余江波,等.水润滑塑料合金轴承摩擦性能实验[J].重庆大学学报(自然科学版),2001(6):9-11,35.
    [47]王家序彭晋民吴光杰王海宝.丙烯酸酯对丁腈橡胶力学性能的影响[J].润滑与密封,2003(2):64-65.
    [48]陈战,王家序,秦大同.超高分子量聚乙烯复合材料的摩擦磨损性能[J].重庆大学学报(自然科学版),2001(5):135-138.
    [49]何剑雄,郭源君,陈友明,等.纳米SiO2颗粒和玻璃微珠共混改性超高分子量聚乙烯复合材料的摩擦磨损性能[J].机械工程材料,2012(6):72-75.
    [50]雷毅,郭建良,张雁翔.纳米氧化锌填充超高分子量聚乙烯复合材料的摩擦磨损性能研究[J].摩擦学学报,2006(3):234-237.
    [51]王家序,陈战,秦大同.聚四氟乙烯复合材料的摩擦磨损性能研究[J].农业机械学报,2002(4):99-101.
    [52]陈战王家序,秦大同.纳米Al2O3对聚四氟乙烯工程材料性能的影响[J].机械工程材料,2002(9):31-33.
    [53]余江波,王家序,彭晋民.长径比对水润滑塑料合金轴承摩擦系数的影响[J].润滑与密封,2002(3):23,27.
    [54]余江波,王家序,肖科,等.弹性模量对水润滑轴承的性能影响[J].润滑与密封,2006(11):69-70.
    [55]王家序余江波,田凡,肖科.周向安装位置对水润滑塑料合金轴承摩擦因数的影响[J].润滑与密封,2005(4):22-23.
    [56]邹丞,王家序,余江波,等.橡胶层厚度和硬度对水润滑整体式轴承摩擦因数的影响[J].润滑与密封,2006(2):40-41,45.
    [57]王优强,林秀娟,李志文.水润滑橡胶/镀镍钢配副摩擦磨损机理研究[J].机械工程材料,2006(1):63-65.
    [58]林秀娟,王优强.水润滑橡胶轴瓦/钢摩擦磨损机理的研究进展[J].青岛建筑工程学院学报,2004(2):86-89,96.
    [59]孙文丽,王优强,时高伟.海水润滑赛龙径向轴承流体润滑分析[J].润滑与密封,2010(11):65-68.
    [60]林彬程学艳陆卫娟.水润滑陶瓷滑动轴承的研究与发展[J].轴承,2005(3):37-38.
    [61]Bharat Bhushan. Stick-slip Induced Noise Generation In Water-lubricated Compliant Rubber Bearings [J]. Journal of lubrication technology,1980,102(Compendex):201-212.
    [62]王家序,刘静,肖科,等.水润滑橡胶轴承不同结构的摩擦噪声分析[J].机械传动,2011(9):12-14,29.
    [63]田宇忠,刘正林,金勇,等.水润滑橡胶尾轴承鸣音试验研究[J].武汉理工大学学报,2011(1):130-133.
    [64]张殿昌,蓝军,张俊红,等.船舶艉轴部尖叫声诊断[J].天津大学学报(自然科学与工程技术版),2001(2):277-280.
    [65]姚世卫,胡宗成,马斌,等.橡胶轴承研究进展及在舰艇上的应用分析[J].舰船科学技术,2005(S1):28-30.
    [66]姚世卫,杨俊,张雪冰,等.水润滑橡胶轴承振动噪声机理分析与试验研究[J].振动与冲击,2011.2,30:215-218.
    [67]吕红明,张立军,余卓平.汽车盘式制动器尖叫研究进展[J].振动与冲击,2011,30(4):1-7.
    [68]黄学文,张金换,董光能,等.摩擦制动噪声防治研究进展[J].润滑与密封,2006(11):194-197+202.
    [69]陈光雄,周仲荣,谢友柏.摩擦噪声研究的现状和进展[J].摩擦学学报,2000(6):478-481.
    [70]徐风信张嗣伟杨兆春.橡胶摩擦磨损过程中振动现象的研究[J].润滑与密封,2000(6):17-18.
    [71]A.I.Krauter. Generation of Squeal/chatter in water-lubricated Elastomeric Bearings [J]. Journal of lubrication technology,1981,103:406-413.
    [72]Raouf A. Ibrahim. Friction-induced vibration, chatter, squeal, and chaos:Part Ⅱ-Dynamics and modeling[C]. Winter Annual Meeting of the American Society of Mechanical Engineering, Nov 8 - 13 1992,1992, Vol(49):123-138.
    [73]T. A. Simpson, R. A. Ibrahim. Nonlinear friction-induced vibration in water-lubricated bearings[J]. JVC/Journal of Vibration and Control,1996,2:87-113.
    [74]USA:Department Of Defense. MIL-B-17901A(SH),Bearing Components,Bonded Synthetic Rubber, Water Lubricated. USA,1963.4.
    [75]USA:Department Of Defense. MIL-B-17901B(SH),Bearing Components,Bonded Synthetic Rubber, Water Lubricated.1983.6.
    [76]USA:Department Of Defense. MIL-DTL-17901C(SH),Bearing Components,Bonded Synthetic Rubber, Water Lubricated.2005.8.
    [77]陈明,陈泽智,彭旭,等.橡胶轴承材料硬度对轴系振动影响的试验研究[J].武汉造船,2000(3):8-10.
    [78]Wu Xiaojin, Wang Jiaxu, Xiao Ke,等. Numerical simulation study on water-lubricated rubber bearing[J]. Journal of Advanced Manufacturing Systems,2008,7(1):111-114.
    [79]吴晓金,王家序,肖科,等.水润滑轴承的动态特性研究[J].润滑与密封,2008(2):21-25.
    [80]吴晓金,王家序,肖科,等.水润滑轴承的动态仿真分析[J].系统仿真学报,2009(13):4167-4170.
    [81]Zhou Yi, Li Gongxun, Wang Jiaxu. Analysis of frictional noise for water lubricated rubber bearings system[C].2010 International Conference on Advances in Materials and Manufacturing Processes, ICAMMP 2010, November 6,2010 - November 8,2010,2011, Vol(156-157):607-610.
    [82]金勇,刘正林,田宇忠,等.基于Pulse的船舶尾轴承振动监测[J].武汉理工大学学报,2010(6):84-87.
    [83]金勇,田宇忠,刘正林.橡胶艉轴承的试验模态分析[J].噪声与振动控制,2012,32(1):34-38.
    [84]刘文光.橡胶隔震支座力学性能及隔震结构地震反应分析研究[D].北京:北京工业大学,2003.
    [85]全国船舶标准化技术委员会专业标准.CB*769-86,船用整体式橡胶轴承.北京:全国船舶标准化技术委员会,1986:1-5.
    [86]中华人民共和国船舶行业标准.CB/T 769-2008,船用整体式橡胶轴承.北京:国防科学技术工业委员会,2008:1-10.
    [87]EasyTurn waterlubricated rubber bearings[J]. HSB International,2003,52(3):40-42.
    [88]郭力.水润滑轴承研究的进展[J].精密制造与自动化,2007(1):1:7-9.
    [89]王家序,陈战,秦大同.水润滑塑料轴承的摩擦性能研究[J].机械工程材料,2002(11):36-38.
    [90]E. R. M. Gelinck, D. J. Schipper. Calculation of Stribeck curves for line contacts [J]. Tribology International,2000,33(3-4):175-181.
    [91]Alex De Kraker, Ron A. J. Van Ostayen, Daniel J. Rixen. Calculation of Stribeck curves for (water) lubricated journal bearings[J]. Tribology International,2007,40(3):459-469.
    [92]Irinel C. Faraon, D. J. Schipper. Stribeck curve for starved line contacts[J]. Journal of Tribology,2007,129(1):181-187.
    [93]A. Moshkovich, V. Perfilyev, I. Lapsker,等. The effect of grain size on stribeck curve and microstructure of copper under friction in the steady friction state[J]. Tribology Letters, 2011,42(1):89-98.
    [94]陈魁.实验设计与分析[M].北京:清华大学出版社,1996.
    [95]彭晋民,王家序,余江波,等.水润滑塑料合金轴承的弹性变形及其影响[J].农业机械学报,2002(3):102-105.
    [96]王家序余江波杨成云彭晋民.水润滑塑料合金轴承摩擦性能实验[J].重庆大学学报(自然科学版),2001(06).
    [97]D. L. Cabrera, N. H. Woolley, D. R. Allanson,等. Film pressure distribution in water-lubricated rubber journal bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology,2005,219(2):125-132.
    [98]Wojciech Litwin. Influence of surface roughness topography on properties of water-lubricated polymer bearings:Experimental research[J]. Tribology Transactions,2011, 54:351-361.
    [99]Bharat Bhushan著,葛世荣译.摩擦学导论[M].北京:机械工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700