用户名: 密码: 验证码:
磁浮电源与悬浮控制系统的耦合作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁浮列车悬浮控制系统的电源是重要的车载变流设备,其装机容量和瞬态性能对悬浮控制性能有重要影响。试验中发现,磁浮电源在重载时,输出电压和输出电流大幅波动,由此引发过流保护,容易损坏电源,严重影响列车的正常运行。为解决上述问题,本文研究磁浮电源与负载的相互影响、磁浮电源的稳压控制技术及其性能参数的设计方法。
     首先,建立由磁浮电源及悬浮控制系统组成的大系统的模型;然后,以此模型为基础,分析悬浮控制系统在各种工况下对电源输出电流和输出电压、以及电源控制系统的稳定性的影响,指出磁浮电源控制系统失稳的原因是悬浮控制系统具有负阻抗特性,其解决方法是增大变换器的输出电容或减小电容的等效串联电阻;最后,提出抑制磁浮电源和悬浮控制系统相互影响、降低电源输出电压纹波的方法,包括改进电源的控制算法和次级电路的参数、改进悬浮功放的控制方式和输入电容的参数等。实验表明,采用上述方法后,输出电压的波动幅度减小10%以上。
     然后,研究与悬浮控制系统性能关系密切的装机容量、输出电流变化率及输出电压等三项参数的设计和优化方法。第一,分析磁浮电源的静态和动态输出功率与悬浮功耗的关系,并据此提出装机容量的设计准则:其额定值等于额定静态输出功率与最大动态输出功率之和;其最大值等于最大静态输出功率与最大动态输出功率之和。通过限制动态输出功率的变化范围、改善磁浮列车的起浮策略等方法可节省装机容量40%。第二,分析磁浮电源的输出电流变化率与电磁铁电流变化率的关系,据此提出输出电流变化率的设计准则:其额定值等于电磁铁电流的最大变化率。通过提高电源输入电压、改进电磁铁连接方式及降低悬浮控制系统的动态功耗可使输出电流变化率指标下降50%。第三,提出依据电源的瞬时输出功率和最大动态功率指标设计输出电压的方法,并将该方法应用于低速磁浮列车磁浮电源的输出电压指标的设计。
     最后,研究磁浮电源变换器的实现和性能测试问题。先设计磁浮电源变换器的主要性能参数并研制出60kW工程化样机,有针对性地研究了拓扑结构优化、电磁兼容设计及数字控制器实现等方面的内容。然后,通过单磁浮架供电实验测试磁浮电源变换器样机的稳态性能和动态性能,实验数据表明,试制的磁浮电源达到了设计性能要求。最后,所研制的磁浮电源成功实现对整车悬浮控制系统供电。由于实际列车上都配有蓄电池,实验测试镍氢蓄电池或镍镉蓄电池与磁浮电源输出并联时的输出特性,实验表明镍氢蓄电池的输出响应速度更快,适合作为辅助电源。
The power supply for maglev levitaion systems (called as maglev power convertor, MPC) is an important power convertor equipment on the vehicle. Installed capability and transient performance are the key features of MPC, which greatly affect the performance of the maglev control systems (MLS). In the experiments, the output voltage and current of MPC changes greatly and even becomes unstable under the condition of over loading. This phenomenon will lead to the over-current protection of the MPC, the failure of the MPS and then affect the running of maglev trains. To solve these problems, the interaction influence between MLCS and MPCs,the regulation control technology of the output voltage, and the design method of the performance parameters of MPC are researched in this paper.
     Firstly, the whole system consisting of the MPC and MLCS is modeled. On the basis of this model, the influence of the MLCS to the output voltage and current of MPCs and the stability of the maglev power control system (MPCS) are analyzed under various working-conditions, which points out that the main reason why MPCS becomes unstable is that the impedance of the MLCS is negative. It can be solved by increasing the capacitance or decreasing the equivalent series resistance of the output capacitor of MPC. Finally, the methods of suppressing the interaction between MPC and MLCS, and minimizing the ripple of the output voltage are proposed, which include optimizing the control law and improving the output stage circuit of the MLPS, optimizing the switching mode and increasing the input capacitance of the maglev chopper, and so on. The experimental results show that the fluctuation of the output voltage and the current can be decreased by 10% using these methods.
     Secondly, the methods of designing and optimizing the performance parameters of MPCs, including installed capacity, output voltage and slew rate of output current, are studied. First of all, the relationship between the steady/dynamic output power and the levitation power loss are investigated. On the basis of this, the design criterion of the installed capacity is proposed: the nominal installed capacity can be chosen as the sum of the rated steady power and the maximum dynamic power, and the maximum installed capacity should equale to the sum of the maximum steady power and maximum dynamic power. This requirement can be reduced by 40% with the strategy of restricting the range of the dynamic output power and improving the levitation-up algorithm. Secondly, the relationship betweent the slew rate of output current and the electromagnet current is studied. The results show that the design criterion of slew rate of output current that the nominal slew rate of output current should equal to the slew rate of the electromagnet current, which can descend 50% by modifying the format of the connectin between the electromagnet and the maglev amplifier, and by saving the dynamic powe loss of MLCS. Finally, the practical design criterion of the output voltage according to the instant ouput power and the maximum dynamic power of MPC is proposed, and the application to the low-speed maglev train shows that this method is available.
     Finally, the implementation and experiments of the MPCs are performed. A 60kW engineering demo convertor is designed and developed according to the proposed design criteria. Its steady and transient performance is separately tested in the system of a single maglev bogy and a whole train. The results show that the required performance is fully satisfied. Considering that auxiliary power supplyment is widely equipped on the vehicles, the output performance of the designed MPC parallel with Ni-H or Ni-Cd battery is tested. The experimental results illustrate that the response speed of Ni-H battery is faster, and it can be used as the auxiliary power supplyment for the maglev trains.
引文
[1] Wu Xiangming. Operation Practice of Shanghai Maglev Demonstration Line[C]. Proc. Magnetically Levitated System and Linear Drives Conf. (Maglev 2008), Dec. 2008, San Diego, USA, 3: 113-115.
    [2] Osamu H, Saito K. Summary of automatic operation of Linimo and achievement in opening year[C]. Proc. Magnetically Levitated System and Linear Drives Conf. (Maglev 2006), Sep. 2006, Dresden, Germany, 1: 75-79.
    [3] Gottzein E, Lange B. Magnetic Suspension Control System for the MBB High Speed Train[J]. Automatica, 1975, 11(3): 271-284.
    [4]张昆仑,郭育华,王力.电磁型磁浮列车悬浮斩波器输入电压的确定方法[J],铁道学报, 1999, 21(z).
    [5]陈敏,沈旭,周邓燕等.磁浮列车高频感应送电装置的研究[J].电力电子技术, Aug. 2004, 38(8): 3-5.
    [6]董金文,张昆仑,余小勇.高速磁浮列车440V升压斩波器主电路研究[J].通信电源技术, Aug. 2004, 21(2): 22-24.
    [7]李云,赵清良.上海中低速磁浮列车辅助电源系统[J].电力机车与城轨车辆, 2008, 3l(6): 15-18.
    [8]李健鸣.高速磁悬浮列车车载电源系统[J].机车电传动, 2008. (3): 38-41.
    [9] Masada E. Power electronics in Maglev transport[C]. Proc. 4th International Symposium on Power Semiconductor Devices and ICs (ISPSD '92), 1992, 2-7.
    [10] Hakacuta S. Development of high speed surface transport system(HSST)[J]. IEEE Ttrans. Magnetics, 1979, MAG-15(6): 1428-1433.
    [11] Hikasa Y, Takeuchi Y. Detail and experimental results of ferromagnetic levitation system of Japan air lines HSST-01/-02 vehicles[J]. IEEE Trans. Vehicular Technology, 1980, VT-29(1): 35-41.
    [12]正田英介,藤江恂治,加藤纯郎.磁气浮上铁道の技术[M].日本オ一ム社, 1992..
    [13] Minoru M, Fujino M. State of levitation of Linimo (HSST system) during EXPO2005[C]. Proc. Magnetically Levitated System and Linear Drives Conf. (Maglev 2006), Sep. 2006, Dresden, Germany, 1: 309-312.
    [14]手樢雄一,日比修,田中正夫等.愛知高速交通HSST100型車輛『Linimo』[J].車両技術, 2004, (227): 86-97.
    [15] Yasuda Y, Fujino M, Tanaka M, Ishimoto S. The First HSST maglev commercial train in Japan[C]. Proc. Magnetically Levitated System and Linear Drives Conf. (Maglev 2004), Oct. 2004, Shanghai, China, 1: 76-85.
    [16]富山卓也,草野研作,土嶺好生等.東部丘陵線(リニモ)車両用電気品[J].東洋電機技報, 2004, 110: 28-32.
    [17] Horn K, Delon H. Chubu HSST Maglev System Evaluation and Adaptability for US Urban Maglev[R]. FTA Report, Federal Transit Administration, Washington, D.C., 2004.
    [18] Glatzel K, Khurdok G, Rogg D. The Development of the Magnetically Suspended Transportation System in the Federal Republic of Germany[J]. IEEE Trans. Vehicular Technology, 1980, VT-29(1): 3-17.
    [19] Koerv P A A, Control systems for operating the long stator Maglev vehicle TR05[J]. IEEE Trans. Vehicular Technology, 1980, VT-29(1): 23-34.
    [20] Bohn G, Steinmetz G. The electromagnetic levitation and guidance technology of the 'transrapid' test facility Emsland[J]. IEEE Trans. Magnetics, 1984, MAG-20(5): 1666-1671.
    [21] Meins J, Miller L, Mayer W J. The High Speed Maglev Transportation System TRANSRAPID[J], IEEE Trans. Magnetics, 1988, 24(2): 808-811
    [22] Wengerer K, Becker P, Ellmann S. Requirements, Design and Characteristics of the Maglev Vehicle Transrapid 08[C]. Proc. Magnetically Levitated Systems and Linear Drives Conf. (Maglev 1998), Apr. 1998, Yamanashi, Japan, 202-208.
    [23]吴祥明.磁浮列车[M].上海:上海科学技术出版社, 2003, 56-61.
    [24] Wolters C. Latest Generation Maglev Vehicle TR09[C]. Proc. Magnetically Levitated Systems and Linear Drives Conf. (Maglev 2008), Dec. 2008, San Diego, USA, 3:85-92
    [25] Bauer M., P. Becker, et al. Inductive Power Supply (IPS?) for the Transrapid[C]. Proc. Magnetically Levitated Systems and Linear Drives Conf. (Maglev 2006), Sep. 2006, Dresden, Germany, 2: 471-476.
    [26] Diekmann, A., W. Hahn, et al. The support magnet cladding with integrated IPS? pick-up coil of Transrapid vehicles[C]. Proc. Magnetically Levitated Systems and Linear Drives Conf. (Maglev 2006), Sep. 2006, Dresden, Germany, 2: 477-481.
    [27]中央政府门户网站.北车集团研制国内首列实用型中低速磁悬浮列车[OL]. http://www.gov.cn/gzdt/2009-06/17/content_1342886.htm, 2009-06-17.
    [28]王宁,尹力明.我国首条中低速常导磁悬浮列车试验线的电源系统简介[C].第15届全国电源技术年会论文集. 2003, 419-421.
    [29] Gottzein E, Brock K H, Schneider E, Pfefferl J. Control aspects of a magnetic levitation high speed test vehicle[J]. Automatica, 1977, 13(3): 205-223.
    [30] Suzuki S, Kawashima M, Hosoda Y, Tanida T. HSST-03 system[J]. IEEE Trans. Magnetics, 1984, 20(5): 1675-1677.
    [31] Kusagawa S, Baba J, Masada E. Weight Reduction of EMS-Type MAGLEV Vehicle With a Novel Hybrid Control Scheme for Magnets[J]. IEEE Trans. Magnetics, 2004, 40(4): 3066-3068.
    [32] Xu S H, Xu Z G, Jin N Q; Shi L M. Levitation Control Scheme for the Hybrid Maglev System Based on Neuron-PID Control[C]. Proc. Electrical Machines and Systems Conf. (ICEMS 2005), Sept. 2005, 1865-1868.
    [33] Li Y G, Cheng H, Long Z Q. Stability analysis and controller design of hybrid EMS maglev system[C]. Proc. 8th International Symposium on Magnetic Suspension Technology, 2005, Dresden, Germany, 74-78.
    [34] Tzeng Yeou-kuang, Wang T C. Optimal design of the electromagnetic levitation with permanent and electro magnets[J]. IEEE Trans. Magnetics, 1994, 30(6): 4731-4733.
    [35]李云钢,闫宇壮,程虎.混合EMS型磁浮列车的悬浮磁铁设计与分析[J].国防科技大学学报, 2006, 28(5): 94-98.
    [36]张颖,陈慧星,吴志添.电磁永磁混合磁悬浮列车的磁铁结构优化设计[J].机车电传动, 2008, (5): 30-32.
    [37] Jusoh A B. The instability effect of constant power loads[C]. Proc. Power and Energy Conf. (PECon 2004), 2004: 175-179.
    [38] Khaligh A, Emadi, A. Mixed DCM/CCM pulse adjustment with constant power loads[J]. IEEE Trans. Aerospace and Electronic System, 2008, 44(2): 766-782.
    [39] Belkhayat M, Cooley R, Witulski A. Large signal stability criteria for distributed systems with constant power loads[C]. Proc. Power Electron. Spec. Conf. (PESC 1995), Jun. 1995, 2: 1333-1338.
    [40] Liu X Y, Forsyth A J, Cross A M. Negative Input-Resistance Compensator for a Constant Power Load[J]. IEEE Trans. Industrial Electron., 2007, 54(6): 3188-3196.
    [41] Ranon P M, Pelletier P R, O'Loughlin J P, et al. Constant voltage pulse power driver for variable impedance loads[C]. Proc. 7th Pulsed Power Conf., Jun. 1989: 778-781.
    [42] Leuzzi G, Micheli C. Variable-Load Constant-Efficiency Power Amplifier for Mobile Communications Applications[C]. Conf. 33rd European Microwave Conf., Oct. 4-6, 2003: 375-377.
    [43]王小方,贺文,李小平等.电力机车DC600V供电系统的改进[J].机车电传动, 2004, (4): 41-44.
    [44]王鑫,赵清良,曾明高等.北京地铁国产列车辅助电源系统及其改进[J].机车车辆工艺, 2007, (2): 26-29.
    [45] Deblecker O, Moretti A, Vallee F. Comparative Study of Soft-Switched Isolated DC-DC Converters for Auxiliary Railway Supply[J], IEEE Trans. on Power Electron., 2008, 23(5): 2218-2229.
    [46] Wang J B, Howe D. A Power Shaping Stabilizing Control Strategy for DC Power Systems With Constant Power Loads[J], IEEE Trans. Power Electron., 2008, 23(6): 2982-2989.
    [47] Gao D W, Jin Z H, Lu Q C. Performance Comparison of Different Fuel Cell Vehicle Power Trains[C]. Proc. 4th IEEE Vehicle Power and Propulsion Conf. (VPPC 2008),Sep. 3-5, 2008, Harbin, China, 123.
    [48] He H W, Zhang Y Q, Wan F. Control Strategies Design for a Fuel Cell Hybrid Electric Vehicle[C]. Proc. 4th IEEE Vehicle Power and Propulsion Conf. (VPPC 2008), Sep. 2008, Harbin, China, 127.
    [49] Bouquain D, Blunier B, Miraoui A. A Hybrid Fuel Cell/Battery Wheelchair Moleling, Simulation and Experimentation[C]. Proc. 4th IEEE Vehicle Power and Propulsion Conf. (VPPC 2008), Sep. 2008, Harbin, China, 128.
    [50] Sewell H I, Stone D A, Howe D. Dynamic load impedance correction for induction heaters[C]. Proc. IEEE Power Electron. and Drive Systems (PEDS 1999), Jul. 27-29, 1999, 1: 110– 115.
    [51]唐杰,罗安,范瑞祥等.无功补偿和混合滤波综合补偿系统及其应用[J].中国电机工程学报, 2007, 27(1): 88-92.
    [52]任凌,王志强,李思扬.有源功率因数校正技术综述[J].电源世界. 2005, 22(4): 23-25.
    [53] Prasad A R, Ziogas P D, Manias S. An Active Power Factor Correction Technique For Three Phase Diode Rectifiers[C]. Proc. Power Electron. Spec. Conf. (PESC 1989), 1989: 58-66.
    [54] Mao H C, Lee F C, Boroyevich D. Review of High-Performance Three-Phase Power-Factor Correction Circuits[J]. IEEE Trans. Industrial Electron., Aug. 1997, 44(4): 437-446.
    [55]深圳市华为电气技术有限公司.基于负载辨识的比例积分微分控制方法及其不间断电源[P],中国专利: 00117185.2. 2000-06-15.
    [56] Liu C R, Lai J S. Low Frequency Current Ripple Reduction Technique With Active Control in a Fuel Cell Power System With Inverter Load[J]. IEEE Trans. Power Electron., 2007, 22(4): 1429-1436.
    [57] Cortes P, Rodriguez J, Quevedo D E, et al. Predictive Current Control Strategy With Imposed Load Current Spectrum[J]. IEEE Trans. Power Electron., March 2008, 23(2): 612-618.
    [58] Middlebrook R D. Input Filter Considerations in Design and Application of Swiching Regulators[J]. Proc. IEEE Industry Application Society (IAS) Annual Meeting, Chicago Oct. 1976.
    [59] Wang X P, Yao R P, Rao F Q. Subsystem-interaction restraint in the two-stage DC distributed power systems with decoupling-controlled-integration structure [J]. IEEE Trans. Industrial Electron., Dec. 2005: 1555-1563.
    [60] Massioni P, Verhaegen M. Distributed Control for Identical Dynamically Coupled Systems: A Decomposition Approach[J]. IEEE Trans. Automatic Control, Jan. 2009, 54(2): 124-135.
    [61] Wang X P, Yao R P, Rao F Q. Considerations on the Impedance Character andImpedance Criterion in two-stage DC Distributed Power System[C]. Proc. Industrial Electron. Society Annual Conf. (IECON 2003), Nov. 2003, 2: 1667-1672.
    [62] Liu Shuqin, Chen Darong, Study of switching Power Amplifier for Active Magnetic Bearing[C]. Proc. 4th International Power Electron. and Motion Control Conf. (IPEMC 2004), Aug. 2004, 3: 1539-1543.
    [63]李冰,邓智泉,严仰光,磁轴承三态开关功率放大器的电流模式控制[J].电力电子技术, 2003, 37(4): 52-55.
    [64]张亮,房建成,永磁偏置磁轴承三电平PWM开关功放的研究[J].电力电子技术, 2006, 40(1): 1-2.
    [65] Kislovski A S. Optimizing the reliability of DC power plants with backup batteries and constant-power loads[C]. Proc. Applied Power Electron. Conf. and Exp. (APEC 1995), March 5-9, 1995, 2: 957-964.
    [66]吉莱特公司.燃料电池混合电源[P].国际专利: PCT/US2004/006228. 2004-03-01.
    [67] NEC东金株式会社.混合电源系统[P].日本专利: JP156757/2002, 2002-05-30.
    [68]蒋启龙,胡基士.磁浮列车斩波器研究[J].电力电子技术, 1997, (2).
    [69]王宁,姚煊道.软开关悬浮斩波器研究[J].电力电子技术, 2006, 40(3): 86-87,101.
    [70]刘战涛,张昆仑.基于PSpice的H型悬浮斩波器软开关分析[J].电气开关, 2008, 46(1): 39-41.
    [71]张鼎,王艳丽,王宁等. EMS型磁浮列车悬浮斩波器输入电流波动分析[J].电力电子技术, 2008, 42(5): 37-38.
    [72]闫晓金,潘艳,陈永真.开关电源对电解电容器性能的基本要求[C].第17届中国电源学会全国电源技术年会, 2007, 491-493.
    [73]松下电器产业株式会社.固体电解电容及其制造方法[P].日本专利: JP 84785, 2001-03-23.
    [74]李忠学,陈杰.超级电容器的阻抗特性及其复空间建模[J].电子元件与材料, 2007, 26(2): 7-10.
    [75]姚雨迎,张东来,秦海亮等.超级电容器ESR的测试方法研究[J].测控技术, 2005, 24(5): 15-17.
    [76]戴玲,林福昌,朱志芳等.高储能密度陶瓷电容器电气性能研究[J].高电压技术, 2004, 30(10): 49-51.
    [77]陈永真.用薄膜电容器替代铝电解电容器的分析与实践[J].电源世界, 2009, (2).
    [78]邓嘉.国产地铁辅助供电系统及蓄电池的选择[J].铁道车辆, 2000, 38(z1): 89-90.
    [79]朱毅,吴政清.上海别克轿车蓄电池的结构特点与正确使用[J].汽车技术, 2002 (9): 35-36.
    [80]裴晓泽,姜久春,冯韬.电动汽车蓄电池充放电系统的实现[J].电力电子技术, 2008, 42(3): 17-18,24.
    [81] Toshio G, Takeshi K, Hiroyuki Y, Masayoshi. G. Development of the lithium ion battery system for space - Report on the result of development of the Lithium ion battery system for Space[C]. Proc. 25th International Telecommunications Energy Conf. (INTELEC 2003), Oct. 19-23, 2003, Yokohama, Japan, 234-240.
    [82]李国欣. 20世纪上海航天器电源技术的进展[J].上海航天, 2002, 19(3): 42-48.
    [83]徐正喜,姜波,魏华等.大容量铅酸蓄电池组短路特性分析研究[J].船电技术, 2007, 27(4): 221-226.
    [84]陈冬群,曹胜光,李达等.蓄电池供电的级联型爆磁压缩发生器实验研究[J].强激光与粒子束, 2005, 17(3): 457-459.
    [85]李宁.集中蓄电池供电与自带蓄电池供电在应急照明系统中应用的比较[J].南北桥, 2009, (1): 457-459.
    [86]陈伯笺,陈剑峰. UPS蓄电池的测试和使用维护[J].电源技术, 2003, 27(2): 143-144.
    [87]唐西胜,武鑫,齐智平.超级电容器蓄电池混合储能独立光伏系统研究[J].太阳能学报, 2007, 28(2): 178-183.
    [88]杨宏,王鹤,王雪冬.可再生能源发电系统中VRLA蓄电池的过充电保护与温度补偿特性的研究[J].太阳能学报, 2001, 22(2): 223-225.
    [89]梁中华,索迹,祁春清.蓄电池蓄能电站中一种逆变结构的研究[J].沈阳工业大学学报, 2006, 28(6): 658-662.
    [90]黎廷广.变电站阀控蓄电池运行维护[J].电工技术, 2008 (2): 59-60.
    [91]王爱玲.碱性蓄电池标准现状分析[J].电源技术, 2008, 32(11): 808-810.
    [92]李顶根,李竟成,李建林.电动汽车锂离子电池能量管理系统研究[J].仪器仪表学报, 2007, 28(8): 1522-1527.
    [93]曹秉刚.中国电动汽车技术新进展[J].西安交通大学学报, 2007, 41(1): 114-118.
    [94]谷靖,卢兰光,欧阳明高.燃料电池系统热管理子系统建模与温度控制[J].清华大学学报(自然科学版), 2007, 47(11): 2036-2039.
    [95]唐西胜,齐智平.超级电容器蓄电池混合电源[J].电源技术, 2006, 30(11): 933-936.
    [96]石英乔,何彬,曹桂军等.燃料电池混合动力瞬时优化能量管理策略研究[J].汽车工程, 2008, 30(1): 30-35.
    [97]石庆升,张承慧,崔纳新.新型双能量源纯电动汽车能量管理问题的优化控制[J].电工技术学报, 2008, 23(8): 137-142.
    [98] Dewan S B, Dang G S, Nicholson N M. Fast Response DC Chopper[C]. Proc. IEEE Industry Application Society (IAS) Annual Meeting, Atlanta, GA, Sep.28-Oct.2, 1975: 922-926.
    [99]张杰,胡军.两电平和三电平逆变器的新模块化似零电压软换流电路的分析和设计[J].电工技术学报, 2005, 20(10): 13-24.
    [100] Boris L, Corral Martinez,马柯,李睿,徐德鸿.三电平和两电平逆变器效率分析与比较[J].电力电子技术, 2009, 43(7): 1-2, 22.
    [101] Chase F H, Current and Voltage Regulation[P].美国专利: 2693568, 1952.
    [102] Chase F H, Current Supply Apparatus[P].美国专利: 2751549, 1956.
    [103] Waldron W K. Voltage Regulation Employing A Time Base Modulated Amplifier[P].美国专利: 3193696, 1962.
    [104] Chute R D. Switching Mode Voltage Regulator[P].美国专利: 3510756, 1970.
    [105] Hsu S P, Brown A, Rensink L, Middlebrook R D. Modelling and Analysis of Switching DC to DC Converters in Constant-Frequency Current-Programmed Mode[C], Proc. Power Electron. Spec. Conf. (PESC 1979), San Diego, CA, USA, Jan.18-22, 1979: 284-301.
    [106] Bryant B, Kazimierczuk M K. Modeling the closed-current loop of PWM boost DC-DC converters operating in CCM with peak current-mode control[J]. IEEE Trans. Circuits and Sys. I: Regular Papers, Nov. 2005, 52(11): 2404-2412.
    [107] Supatti U, Boonto S, Prapanavarat C. Design of an H∞robust controller for multi-module parallel DC-DC buck converters with average current mode Control[C]. Proc. IEEE International Conf. on Industrial Technology (ICIT 2002), 2002, Bangkok, Thailand, 992-997.
    [108] T. Szepesi. Stabilizing the Frequency of Hysteretic Current-Mode DC-DC Converters[J]. IEEE Trans. on Power Electron., Oct. 1987, PE-2(4): 302-312.
    [109] Ridley R B, Cho B H, Lee F C Y. Analysis and interpretation of loop gains of multiloop-controlled switching regulators[J]. IEEE Trans. Power Electronics, Oct 1988, 3(4): 489-498.
    [110] Mitchell D M, Schoneman G K. On the selection of control-law coefficients for multi-loop PWM switching regulators[C]. Proc. Power Electron. Spec. Conf. (PESC 1988), 1988, Kyoto, Japan, 555-560.
    [111] Jegandren J, Gobbi R, Athab H S. Voltage injection switching inductor (VISI) method for fast transient response in switch mode power supplies[C]. Proc. Power and Energy Conf. (PECon 2008), Johor Bahru, 1-3 Dec. 2008: 186-191.
    [112] Jegandren J, Gobbi R, Athab H S. Positive voltage injection switching inductor (P-VISI) method for fast transient response in SMPS under loading condition[C]. InnovativeTechnologies in Intelligent Systems and Industrial Applications (CITISIA 2009), Monash, July 25-26, 2009: 352 - 357.
    [113] Guo W N, Jain P K. A Predictive Non-Linear Voltage Mode Control Method to Improve the Transient Performance of Voltage Regulator[C]. Proc. Applied Power Electron. Conf. and Exp. (APEC 2009), Feb. 15-19, 2009, Washington, D.C., 1197-1201.
    [114] Kapat S, BanerjeeS, Patra A. Voltage controlled pulse skipping modulation: Extension towards the ultra light load[C]. IEEE International Symposium on Circuits and Systems (ISCAS 2009), May 24-27, 2009, Taipei, 2649-2652.
    [115]帅定新,谢运祥,王晓刚.基于状态反馈精确线性化Buck变换器的最优控制[J].中国电机工程学报, 2008, 28(33): 1-5.
    [116]欧阳长莲,章国宝,严仰光.模糊控制DC-DC变换器的仿真研究[J].厦门大学学报(自然科学版), 2001, (z1): 181-191.
    [117]赵葵银. PWM整流器的模糊滑模变结构控制[J].电工技术学报, 2006, 21(7): 49-53.
    [118] Sira R H, Tarantino A R, Llanes S O. Adaptive feedback stabilization in PWM-controlled DC-to-DC power supplies[J]. International Journal of Control, 1993, 57(3): 599-625.
    [119]吴爱国,李际涛,黄瑞祥,袁浩. DC-DC变换器的大信号建模及鲁棒控制方法[J].电子学报, 2001: 29(5): 1-4.
    [120] Garcera G, Figueres E, et al. Novel three-controller average current mode control of DC-DC PWM. Power Electronics[J]. IEEE Trans. Power Electronics, 2000, 15(3): 516-528.
    [121] Kaiwei Y, R. Yuancheng, et al. Critical bandwidth for the load transient response of voltage regulator modules[J]. IEEE Trans. Power Electronics, 2004, 19(6): 1454-1461.
    [122] Meyer E, Zhang Z, Liu Y F. An Optimal Control Method for Buck Converters Using a Practical Capacitor Charge Balance Technique[J], IEEE Trans. Power Electron., July 2008, 23(4): 1802-1812.
    [123] Wuerflein D E. Switching Mode Series Voltage Regulator[P].美国专利: 3368139, 1968.
    [124] Barrado A, Vazquez R, Olias E, et al. Theoretical study and implementation of a fast transient response hybrid power supply[J], IEEE Trans. Power Electron., 19(4): 1003-1009.
    [125]陈静,王登峰,刘彬娜.燃料电池-蓄电池-超级电容混合动力汽车控制策略[J].农业机械学报, 2008, 39(10): 36-39, 19.
    [126] Sinha P K. ElectroMagnetic suspension dynamics & control [M]. Peter Peregrinus Ltd., London, United Kingdom, 1987, 53.
    [127]倪鸿雁,刘少克.磁悬浮列车悬浮电磁铁电磁场三维有限元分析[J].铁道机车车辆, 2005, 25(5): 40-42.
    [128] Ke Z X, Zhang D, Li Y G, et al. On Output Power Index of Magnetic Levitation Power Supply for EMS-Type Maglev Train[C], Proc. 4th IEEE Vehicle Power and Propulsion Conf. (VPPC 2008), Sep. 2008, Harbin, China, 215.
    [129]李云钢,柯朝雄,程虎.磁浮列车悬浮控制器的电流环分析与优化设计[J].国防科技大学学报, 2006, 28(1): 94-97.
    [130] Wester G W, Middlebrook R D. :Low frequency characterization of switched DC-to-DC converters[J]. IEEE Trans. Aerospace and Electronic Systems, 1973, 9(5): 376-385.
    [131] Middlebrook R D. Cuk S. A genral unified approach to modeling switching converter power stages[C]. Proc. Power Electron. Spec. Conf. (PESC 1976), 1976, 18-34.
    [132] Vorperian V. Equivalent circuit models for resonant and PWM switches. IEEE Trans. on Power Electron., 1989, 4(2): 205-214.
    [133] Vorperian V. Simplified analysis of PWM converter using the PWM switch, Part I: Continuous conduction mode[J]. IEEE Trans. Aerospace and Electronic Systems, 1990, 26(3): 490-496.
    [134] Vorperian V. Simplified analysis of PWM converter using the PWM switch, Part II: Discontinuous conduction mode[J]. IEEE Trans. Aerospace and Electronic Systems, 1990, 26(3): 497-505.
    [135] Short D J, Lee F C. Improved Switching Converter Model Using Disctete and Averaging Techniques[C]. Proc. Power Electron Spec. Conf. (PESC 1983), 1983, 23-27.
    [136] Czarkowski D, Kazimierczuk M K. A new and systematic method of modeling PWM DC-DC converters[C]. Proc. IEEE International Conf. on Systems Engineering, 1992, K?be-shi, Japan, 628-631.
    [137] Hasan K N, Haque M E, Negnevitsky M, Muttaqi K M. Performance analysis of VMC and CMCs of switch-mode converters for photovoltaic applications[C]. Proc. IEEE Industrial Electronics Annual Conf. (IECON 2008), Nov. 2008, Orlando, USA, 315-320.
    [138]陈慧星,李云钢,常文森.电磁-永磁混合磁悬浮系统的悬浮刚度研究[J].中国电机工程学报, 2008, 28(27): 148-152.
    [139]中华人民共和国国家标准: GB17478-1998低压直流电源设备的特性与安全要求[S].中华人民共和国国家质量技术监督局. 1998-8-24发布, 1999-9-1实施.
    [140]中华人民共和国国家标准: GB/T17478-2004低压直流电源设备的特性与安全要求[S].中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 2004-5-14发布, 2005-2-1实施.
    [141]姚雨迎,张东来,秦海亮等.超级电容器ESR的测试方法研究[J].测控技术, 2005, 24(5): 15-17.
    [142]翟楠松,张东来,徐殿国等.超级电容国内外研究及应用现状[J].仪器仪表学报, 2007, 28(z8): 1-4.
    [143]李忠学,陈杰.超级电容器容量特性的试验研究[J].电子元件与材料, 2006, 25(7): 9-11.
    [144]朱磊.吴伯荣,陈晖.超级电容器研究及其应用[J].稀有金属, 2003, 27(3): 385-389.
    [145]张丹丹,罗曼,陈晨.超级电容器-电池复合脉冲电源系统的试验研究[J].中国电机工程学报[J]. 2007, 27(30): 26-31.
    [146]梁琪,郭巍.超级电容器结合蓄电池在航空地面直流电源上应用的可行性分析[J].蓄电池. 2006, (1): 28-31.
    [147]李军求,孙逢春,张承宁.纯电动大客车超级电容器参数匹配与实验[J].电源技术, 2004, 8(8): 483-486.
    [148]强国斌,李忠学,陈杰.混合电动车用超级电容能量源建模[J].能源技术, 2005, 25(2): 58-61.
    [149]赵宏涛,吴峻.利用超级电容供电的电磁弹射器研究[J].微特电机, 2009, (2): 36-38.
    [150]杨柏禄,关晴予,陈永真.电解电容器等效串联电阻的特性及其对应用的影响[C].第十七届全国电源技术年会论文集, 464-465.
    [151] Nelms R M, Cahela D R, Tatarchuk B J. Modeling double-layer capacitor behavior using ladder circuits[J]. IEEE Trans. Aerospace and Electronic System. 2003, 39(2): 430-438.
    [152]林成涛,张宾,陈全世,谢永才.典型动力电池特性与性能的对比研究[J].电源技术, 32(11): 735-738.
    [153]李海晨,田光宇,赵立安等.电动车用MH/Ni电池的充放电特性[J].电池. 2002.10, 32(5): 282-284.
    [154]孙逢春.氢镍电池充放电特性研究[J].汽车技术. 2001, (6): 6-8.
    [155] Antoni Szumanowski著.陈请泉,孙逢春编译.混合电动车辆基础[M].北京理工大学出版社, 2001.
    [156] Maxwell. Ultra-Capacitors Datasheets and technical information for PC2500TM[OL]. www.maxwell.com
    [157]河南新乡太行电源股份有限公司.镉镍袋式碱性蓄电池技术指标[OL]. www.thdy.com
    [158]北京集星联合电子科技有限公司.集星科技超级电容器产品规格[OL]. www.spscap.com
    [159]上海万宏动力能源有限公司.氢镍动力电池组技术指标[OL]. www.shwhpower.com
    [160]中华人民共和国铁道行业标准: TB/T3063-2002旅客列车DC600V供电系统技术条件[S].中华人民共和国铁道部. 2002-9-9发布, 2002-11-1实施.
    [161] Unitrode Corporation. UC3842 Datasheet [OL]. www.ti.com, 2004.
    [162] Chattopadhyay S, Das S. A Digital Current-Mode Control Technique for DC-DC Converters[J]. IEEE Trans. Power Electron., 2006, 21(6): 1718-1726.
    [163]王宁,李云钢.适合感性负载的软开关变换器[P],中国实用新型专利: CN 2742672Y.
    [164]李建泉,冯晓云.中低速磁悬浮列车DC-DC变换器的研制[J],大功率变流技术, 2009, (4):1-4,43.
    [165] Texas Instruments. TMS320LF2407A Datasheet [OL], www.ti.com, 2003.
    [166] Altera. FLEX6000 Programmable Logic Device Family Data Sheet[OL], www.altera.com, 1999.
    [167] Yamamura S, Ito T. Analysis of Speed Characteristics of Attracting Magnet for Magnetic Levitation of Vehicles[J]. IEEE trans. Magnetics, 1975, Mag-11(5): 1504-1507.
    [168] He J L, Rote D M, Coffey H T. Survey of Foreign Maglev Systems[R], report ANL/ESD-17, Center for Transportation Research, Argonne National Laboratory. 1992. 5-14, 39-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700