用户名: 密码: 验证码:
基质金属蛋白酶抑制剂的效能和选择性以及查尔酮合酶的催化反应机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用分子力学、分子动力学和量子力学方法,对基质金属蛋白酶(MMPs)的一类新型抑制剂的效能和选择性,以及查尔酮合酶(CHS)的催化反应机理进行了理论研究。主要结果如下:
     1.通过分子力学和分子动力学方法,对基质金属蛋白酶家族的两个成员(MMP-1和MMP-3)与一类新型抑制剂(Pyrogallic acid和Myricetin)进行了分子对接研究,分别考察了两个抑制剂与MMPs的结合方式,从而阐明了Pyrogallic acid和Myricetin在效能和选择性上产生差异的原因。此外,量子化学计算结果显示此类抑制剂的锌结合基团以单配位形式与MMPs中有催化活性的Zn2+相结合。
     2.通过分子力学和分子动力学方法,对基质金属蛋白酶家族的另外两个成员(MMP-2和MMP-9)与新型抑制剂(Myricetin和Kaempferol)进行了分子对接研究,分别考察了两个抑制剂与MMPs的结合方式,并在此基础上阐明了Myricetin和Kaempferol在效能和选择性上产生差异的原因。量子化学计算结果再次显示此类抑制剂的锌结合基团以单配位形式与MMPs中有催化活性的Zn2+相结合。
     3.通过分子力学、分子动力学和量子力学方法,研究了经查尔酮合酶(CHS)催化,由P-coumaroyl-CoA和Malonyl-CoA合成查尔酮(Chalcone)的反应机理。结果显示:在加载步骤(Loading step)的反应路径中不存在过渡态,反应仅经过一个中间体到达产物;在脱羧步骤中(Decarboxylation step),反应要经过一个过渡态到达产物,并且该步反应对环境很敏感;在链延长步骤中(Elongation step),反应仍然要经过一个过渡态到达产物。理论计算的结果很好的支持并完善了实验上提出的反应机理。
In recent years, along with the development of molecule mechanics, dynamics, and quantum mechanics theories, and the progress of calculator technique, molecule simulations have already become a main research method in the fields of biology and medical science to analyze the interactions between receptor and ligand, and describe protein biochemistry mechanism.
     In our thesis, molecule mechanics, dynamics, and quantum mechanics methods were used to theoretically study the potency and selectivity of matrix metalloproteinases (MMPs) inhibitors and the reaction mechanism catalyzed by chalcone synthase (CHS). The main results are summarized as follows:
     1. Theoretical studies on potency and selectivity of novel non-peptide inhibitors of MMP-1 and MMP-3
     To investigate the binding modes between the novel non-peptide inhibitors (Pyrogallic acid and Myricetin) and MMPs (MMP-1 and MMP-3), molecular docking studies were performed. The results indicate that Myricetin is more potent than Pyrogallic acid due to the P1’group at C13 atom of Myricetin, which interacts with S1’pocket of MMPs and thus contributes a lot to the binding affinity. The reasons for that Myricetin is more selective towards MMP-1 than MMP-3 may include the positions of zinc binding group (ZBG), the number of hydrogen bonds, and the interactions between P1’and S1’. Furthermore, the hydroxyl acts as a relatively weak ZBG and the meta-double-hydroxyl mode may be conserved when inhibitors of this kind bind to MMPs. Quantum chemistry calculation results show that inhibitors can bind to the catalytic zinc ion of MMPs with ZBG in a monodentate way.
     2. Theoretical studies on potency and selectivity of novel non-peptide inhibitors of MMP-2 and MMP-9
     Molecular docking studies were performed to investigate the binding modes between the novel non-peptide inhibitors (Myricetin and Kaempferol) and MMPs (MMP-2 and MMP-9). The results indicate that the completely different binding modes, resulting from that Myricetin owns two more side hydroxyls on benzene ring, lead to that Myricetin is more potent than Kaempferol; in aspect of selectivity, the similar binding modes in each complex pair (m-MMP2 and m-MMP9, k-MMP2 and k-MMP9) make the non-obvious selectivities of inhibitors. Moreover, the hydroxyl acts as a relatively weak ZBG and the meta-double-hydroxyl mode may be conserved. Quantum chemistry calculation results show again that inhibitors can bind to the catalytic zinc ion of MMPs with ZBG in a monodentate way.
     3. Theoretical studies on the reaction mechanism catalyzed by CHS
     The chalcone formation catalyzed by CHS from P-coumaroyl-CoA and Malonyl-CoA were theoretically studied. The calculation results indicate that in loading step, the reaction proceeds via a tetrahedral intermediate without transition state (TS); in decarboxylation step, the reaction proceeds via a TS and is sensitive to the environment; in elongation step, the reaction proceeds via a tetrahedral TS. The calculation results greatly support and complement the reaction mechanism proposed on experiment.
引文
1.张春霆,《生物信息学的现状与展望》,The Current Status and The Prospect of Bioinformatics, 2000.
    2. Benton, D. Bioinformatics principles and potential of a new multidisciplinary tool, Tibtech. 1996, 14, 261-272.
    3. NIH and DOE, The U. S. Human Genome Project: The First Five Years FY 1991-1995.
    4.赵国屏,《生物信息学》,北京,科学出版社,2002.
    5. W. W. Wood. Early history of computer simulation in statistical mechanics, In G. Ciecoti and W. G. Hoover. editors, Molecular Dynamics Simulation of Statistical Mechanics Systems, pages2-14. Proceedings of the 97thInt, "Enrico Fermi" School of Physics, North Holl and, Amsterdam, 1986.
    6. G. R. Kneller, K. Hinsen, Fractional Brownian dynamics in proteins, J. Chem. Phys., 2004, 121, 10278-83.
    7. E. S. Manas, R. J. Unwalla, Z. B. Xu, M. S. Malamas, C. P. Miller, H. A. Harris, C. Hsiao, T. Akopian, W. T. Hum, K. Malakian, S. Wolfrom, A. Bapat, R. A. Bhat, M. L. Stahl, W. S. Somers, J. C. Alvarez, Structure-based design of estrogen receptor-beta selective ligands, J. Am. Chem. Soc., 2004, 126, 15106-15119.
    8. R. Kazlauskas, Modeling-A tool for experimentalists, Science, 2001, 293, 2277-2278.
    9. S. Bjelic, J. Aqvist, Computational prediction of structure, substratebinding mode, mechanism, and rate for a malaria protease with a novel type of active site, Biochemistry, 2004, 43, 14521-14528.
    10. H. Tsuchiya, K. Kuwata, S. Nagayama, K. Yamashita, H. Kamiya, H. Harashima, Pharmacokinetic modeling of species-dependent enhanced bioavailability of trifluorothymidine by thymidine phosphorylase inhibitor, Drug. Metab. Pharmacokinet., 2004, 19, 206-215.
    11. S. S. Patnaik, S. Trohalaki, R. Pachter, Molecular modeling of green fluorescent protein: structural effects of chromophore deprotonation, Biopolymers, 2004, 75, 441-452.
    12. S. Majumder, A. Roy, C. Mandal, Prediction of 3-D structures of fucose-binding proteins and structural analysis of their interaction with ligands, Glycoconj. J., 2004, 20, 545-50.
    13. T. E. Cheatham 3rd. Simulation and modeling of nucleic acid structure, dynamics and interactions, Curr. Opin. Struct. Biol., 2004, 14, 360-7.
    14. J. M. Goodfellow, D. S. Moss, Computer Modeling of Biomolecular Process, New York: Ellis Horwood, 1992.
    15. A, Warshel, Computer Modeling of Chemical Reactions in Enzymes and Solutions, New York: Jonh Wiley & Sons, 1991.
    16. W. L. Jorgensen, The many roles of computation in drug discovery, Science, 2004, 303(5665), 1813-1818.
    17. B. R. Brooks, et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem., 1983, 4, 187–217.
    18. P. W. Weiner, P. A. Kollman, AMBER: assisted model building with energy refinement, A general program for modelling molecules andtheir interactions, J. Comput. Chem., 1981, 2, 287–303.
    19. W. R. P. Scott, et al. The GROMOS biomolecular simulation program package, J. Phys. Chem. A, 1999, 103, 3596–3607.
    20. W. F. Van Gunsteren, P. K. Weiner, A. J. Wilkinson, Computational Simulation of Biomolecular Systems: Theoretical and Experimental Applications, Vol. 2 (ESCOM, Leiden; 1993).
    21. O. M. Becker, A. D. Jr. MacKerell, B. Roux, M. Watanabe, Computational Biochemistry and Biophysics (Marcel Dekker, New York; 2001).
    22. M. E. Tuckerman, G. J. Martyna, Understanding modern molecular dynamics: techniques and applications, J. Phys. Chem., 2000, 104, 159–178.
    23. S. Hayward, A. Kitao, N. Go-, Harmonicity and anharmonicity in protein dynamics, Proteins: Struct. Funct. Genet., 1995, 23, 177–186.
    24. V. Zaloj, R. Elber, Parallel computations of molecular dynamics trajectories usingthe stochastic path approach, Comput. Phys. Commun., 2000, 128, 118–127.
    25. P. Kollman, Free energy calculations: Application to chemical and biological phenomena, Chem. Rev., 1993, 93, 2395–2421.
    26. M. L. Lamb, W. Jorgenson, Computational approaches to molecular recognition, Curr. Opin. Struct. Biol., 1997, 1, 449–457.
    27. W. F. Van Gunsteren, A. E. Mark, Validation of molecular dynamics simulations, J. Chem. Phys., 1998, 108, 6109–6116.
    28. J. Gao, D. G. Truhlar, Quantum mechanical methods for enzyme kinetics, Annu. Rev. Phys. Chem., 2002, 53, 467–505.
    29.郑珩,王非,《药物生物信息学》,北京,化学工业出版社,2004.
    30.孙之荣,《后基因组信息学》,北京,清华大学出版社,2002.
    31. Roos DS, Bioinformatics-Trying to swim in a sea of data, Science, 2001, 291, 1260.
    32. Spengler SJ, Bioinformatics in the information age, Science, 2000, 287, 1221.
    33.陈竺,强伯勤,方福德,《基因组科学与人类疾病》,北京,科学出版社,2001.
    34.欧阳曙光,贺福初,《生物信息学》,生物实验数据和计算技术结合的新领域,科学通报,1999, 44, 1457.
    35.马大龙,《从人类基因组中发掘药物宝藏》,生物学通报,2000, 35, 5.
    36.李违章,恽榴红,《生物信息学与新药研究》,科学,1999, 51, 17.
    37.郭利,王玉霞,《基因组学在寻找新型抗生素中的应用》,国外医学药学分册,2001, 28, 34.
    1.蒋华良,胡增建,陈建忠,顾健德.配体一受体相互作用的计算机模拟及其在药物设计中的应用,化学进展,1998, 10 (4), 427-441
    2. Kenneth M M Jr. Curr. Opin. Struct. Biol. 1993, 3, 234-240
    3.阎隆飞,孙之荣,蛋白质分子结构,清华大学出版社,1999, 266-27
    4.王志中,现代量子化学计算方法,吉林大学出版社,1998
    5.唐敖庆,杨忠志,李前树,量子化学,北京,科学出版社, 1982
    6. P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136, B864
    7. W. Kohn, L. J. Sham, Phys. Rev., 1965, 140, A1133
    8. J.C. Slater, Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill: New York, 1974
    9. D. R. Salahub and M. C. Zerner, eds., The Challenge of d and f Electrons ACS: Washington, D.C. 1989
    10. R. G. Parr and W. Yang, Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989
    11. J. A. Pople, P. M. W. Gill and B. G. Johnson, Chem. Phys. Lett., 1992, 199, 557
    12. B. G. Johnson and M. J. Frisch, J. Chem. Phys., 1994, 100, 7429
    13. J. K. Labanowski, J. W. Andzelm, eds., Density Functional Methods in Chemistry, Springer-Verlag: New York, 1991
    14. M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84, 457
    15.徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法,北京,科学出版社, 1985
    16.赵学庄,罗渝然,臧雅茹,万学适著,《化学反应动力学原理》下册,高等教育出版社,1990
    17. MSI manual, Forcefield-Based Simulations General Theory & Methodology, 1997
    18. R. L. Andrew, Molecular Modeling: Principles and Applications, 1996, Addison Wesley Longman Limited, London
    19.陈凯先,蒋华良,嵇汝运,计算机辅助药物设计─原理、方法及应用,2000,上海科学技术出版社,76页
    20. D. H. Andrews, Phys.Rew., 1930, 36, 544
    21. F. H. Westheimer, J. E. Meyer, J. Chem. Phys., 1946, 14, 733
    22. D. H. R. Barton, J. Chem. Soc., 1948, 70, 340
    23. F. H. Westheimer, Steric Effect in Organic Chemistry, 1956, John Wiley and Sons, New York, 523
    24. J. B. Hendrickson, J. Am. Chem. Soc., 1961, 83, 4537
    25. N. L. Allinger, M. A. Miller, F. A. Catledge, et al. J. Am. Chem. Soc., 1967, 89, 4345
    26. S. Lifson, A. Warshel, J. Chem. Phys., 1968, 49, 5116
    27. U. Burkert, N. L. Allinger, Molecular Mechanics, 1982, ACS Monograph 177. American Chemical Society, Washington D. C
    28. C.J.Casewit, K.S.Colwell, & A.K.Rappe, J. Am. Chem. Soc., 1992, 114, 10035
    29. A.B.Rosenthal & S.H.Garofalini, J. Non-Crys. Solids, 1988, 107, 65
    30. S.J.Weiner, P.A.Kollman, D.A.Case, U.C.Singh, C.Ghio, G.Alagona, S.Jr.Profeta, & P.Weiner, J. Am. Chem. Soc., 1984, 106, 765-784
    31. A.E.Kohler & S.H.Garofalini, Langmuir, 1994, 10, 4664
    32. Press WH, Flannery BF, Teukolsky SA, et al, Nemerical Recipes. Cambridge: Cambridge University Press, 1986,289
    33. M. Levitt, S. Lifson, J. Molec. Biol., 1969, 46, 269
    34. R. Flecher, C. M. Reeves, Comput. J., 1964, 7, 149
    35. R. Flecher, Practical Methods of Optimization, Vol. 1, Unconstrained Optimization, 1980, John Wiley & Sons, New York
    36. M. J. D. Powell, Mathematical Programming, 1977, 12, 241
    37. W. F. Gunsteren, M. Karplus, J. Comp. Chem., 1980, 1, 266
    38. C. G. Broyden, J. Int. Mathem. Appl., 1970, 6, 222
    39. R. Flecher, J. Comput., 1970, 13, 317
    40. D. A. Goldfarb, Mathem. Comput., 1970, 24, 23
    41. D. F. Shanno, Mathem. Comput., 1970, 24, 647
    42. B. J. Alder, T. E. Wainwright, J. Chem. Phys., 1957, 27, 1208
    43. E. Fermi, Collected Papers, 1965, II, 978
    44. B. J. Alder, T. E. Wainwright, J. Chem, Phys., 1959, 31, 459
    45. A. Rahman, Phys. Rev., 1964, 136 A, 405
    46. L. Verlet, Phys. Rev., 1967, 159, 98
    47. Y. Duan, P. A. Kollman, Science, 1998, 282, 740
    48. Q. Zhong, Q. Jiang, P. B. Moore, D. M. Newns, M. L. Klein, Biophys. J., 1998, 74, 3
    49. Q. Zhong, P. B. Moore, D. M. Newns, M. L. Klein, FEBS Lett., 1998, 427, 267
    50. H. Mi, M. E. Tuckerman, D. I. Schuster, S. R. Wilson, Electrochem. Soc. Proc., 1999, 99, 256
    51. M. E. Tucherman, G. J. Martyna, J. Phys. Chem. B, 2000, 104, 159
    52. L.Verlet, Physical Review, 1963, 159, 98-103
    53. D.Beeman, J. Comput. Chem., 1976, 20, 130-139
    54. S.Nose, Molecular Physics, 1984, 53, 255-268
    55. S.Nose & M.L.Klein, Molecular Physics, 1983, 50, 380
    56. W.G.Hoover, Phys. Rev. A., 1985, 31, 1695
    57. S.Nose & F.Yonezawa, J. Phys. Chem., 1986, 84, 1803
    58. J. M. Haile, H. W. Graben, J. Chem. Phys., 1980, 73, 2412
    59.徐筱杰,候廷军,乔学斌,章威,计算机辅助药物分子设计,北京,化学工业出版社,2004年
    60.徐筱杰,陈丽蓉,化学及生物体系中的分子识别,化学进展,1996,8,189
    61. D. J. oshland, Proc. Nat. Acad. Sci., USA, 1958, 44, 98
    62. F. Jiang, S. H. Kim, J Mol Biol, 1991, 219, 79-102
    63. I. D. Kuntz, Science, 1992, 257, 1078-1082
    64. F. Osterberg, G. M. Morris, M. F. Sanner, A. J. Olson, D. S. Goodsell, Proteins, 2002, 46, 34-40
    65. B. A. Luty, Z. R. Wasserman, P. F. W. Stouten, C. N. Hodge, M. Zacharias, J. A. McCammon, J. Comp. Chem., 1995, 16, 454
    1. Whittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J. Design and therapeutic of matrix metalloproteinase inhibitors. Chem Rev 1999, 99, 2735-2776.
    2. Buisson, A. C.; Gilles, C.; Polette, M.; Zahm, J. M.; Birembaut, P.; Tournier, J. M. Wound repair-induced expression of a stromelysins is associated with the acquisition of a mesenchymal phenotype in human respiratory epithelial cells. Lab Invest 1996, 74, 658-669.
    3. La Fleur, M.; Underwood, J. L.; Rappolee, D. A.; Werb, Z. Basement membrane and repair of injury to peripheral nerve: defining a potential role for macrophages, matrix metalloproteinases, and tissue inhibitor of metalloproteinases-1. J Exp Med 1996, 184, 2311-2326.
    4. Sternlicht, M.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Biol 2001, 17, 463-516.
    5. Cawston, T. E. Metalloproteinase inhibitors and the prevention of connective tissue breakdown. Pharmacol Ther 1996, 70, 163-182.
    6. Yong, V. W.; Krekoski, C. A.; Forsyth, P. A.; Bell, R.; Edwards, D. R. Matrix metalloproteinases and diseases of the CNS. Trends Neurosci 1998, 21, 75-80.
    7. Wojtowicz-Praga, S. M.; Dickson, R. B.; Hawkins, M. J. Matrix metalloproteinase inhibitors. Invest New Drugs 1997, 15, 61-75.
    8. Talbot, D. C.; Brown, P. D. Experimental and clinical studies on the use of matrix metalloproteinase inhibitors for the treatment of cancer. Eur J Cancer 1996, A32, 2528-2533.
    9. Zhang, W.; Hou, T. J.; Qiao, X. B.; Sun, H.; Xu, X. J. Binding affinity ofhydroxamate inhibitors of matrix metalloproteinase-2. J Mol Model 2004, 10, 112-120.
    10. Bode, W.; Reinemer, P.; Huber, R.; Kleine, T.; Schinierer, S.; Tschesche, H. The x-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J 1994, 13, 1263-1269.
    11. Cheng, M.; De, B.; Almstead, N. G.; Pikul, S.; Dowty, M. E.; Dietsch, C. R.; Dunaway, C. M.; Gu, F.; Hsieh, L. C.; Janusz, M. J.; Taiwo, Y. O.; Natchus, M. G.; Hudlicky, T.; Mandel, M. Design, synthesis, and biological evaluation of matrix metalloproteinase inhibitors derived from a modified proline scaffold. J Med Chem 1999, 42, 5426-5436.
    12. Natchus, M. G.; Bookland, R. G.; De, B.; Almstead, N. G.; Pikul, S.; Janusz, M. J.; Heitmeyer, S. A.; Hookfin, E. B.; Hsieh, L. C.; Dowty, M. E.; Dietsch, C. R.; Patel, V. S.; Garver, S. M.; Gu, F.; Pokross, M. E.; Mieling, G. E.; Baker, T. R.; Foltz, D. J.; Peng, S. X.; Borners, D. M.; Strojnowski, M. J.; Taiwo, Y. O. Development of new hydroxamate matrix metalloproteinase inhibitors derived from functionalized 4-aminoprolines. J Med Chem 2000, 43, 4948-4963.
    13. Browner, M. F.; Smith, W. W.; Castelhano, A. L. Matrilysin-inhibitor complexes: Common themes among metalloproteases. Biochemistry 1995, 34, 6602-6610.
    14. Natchus, M. G.; Bookland, R. G.; Laufersweiler, M. J.; Pikul, S.; Almstead, N. G.; De, B.; Janusz, M. J.; Hsieh, L. C.; Gu, F.; Pokross, M. E.; Patel, V. S.; Garver, S. M.; Peng, S. X.; Branch, T. M.; King, S. L.; Baker, T. R.; Foltz, D. J.; Mieling, G. E. Development of new carboxylicacid-based mmp inhibitors derived from functionalized propargylglycines. J Med Chem 2001, 44, 1060-1071.
    15. Esser, C. K.; Bugianesi, R. L.; Caldwell, C. G.; Chapman, K. T.; Durette, P. L.; Girotra, N. N.; Kopka, I. E.; Lanza, T. J.; Levorse, D. A.; MacCoss, M.; Owens, K. A.; Ponpipom, M. M.; Simeone, J. P.; Harrison, R. K.; Niedzwiecki, L.; Becker, J. W.; Marcy, A. I.; Axel, M. G.; Christen, A. J.; McDonnell, J.; Moore, V. L.; Olszewski, J. M.; Saphos, C.; Visco, D. M.; Shen, F.; Colletti, A.; Krieter, P. A.; Hagmann, W. K. Inhibition of stromelysin-1 (MMP-3) by P1’-biphenylylethyl carboxyalkyl dipeptides. J Med Chem 1997, 40, 1026-1040.
    16. Pavlovsky, A. G.; Williams, M. G.; Ye, Q. Z.; Ortwine, D. F.; Purchase II, C. F.; White, A. D.; Dhanaraj, V.; Roth, B. D.; Johnson, L. L.; Hupe, D.; Humblet, C.; Blundell, T. L. X-ray structure of human stromelysin catalytic domain complexed with nonpeptide inhibitors: Implications for inhibitor selectivity. Protein Sci 1999, 8, 1455-1462.
    17. Matter, H.; Schwab, W.; Barbier, D.; Billen, G.; Haase, B.; Neises, B.; Schudok, M.; Thorwart, W.; Schreuder, H.; Brachvogel, V.; Lonze, P.; Weithmann, K. U. Quantitative structure-activity relationship of human neutrophil collagenase (MMP-8) inhibitors using comparative molecular field analysis and x-ray structure analysis. J Med Chem 1999, 42, 1908-1920.
    18. Becker, J. W.; Marcy, A. I.; Rokosz, L. L.; Axel, M. G.; Burbaum, J. J.; Fitzgerald, P. M.; Cameron, P. M.; Esser, C. K.; Hagmann, W. K.; Hermes, J. D.; Springer, J. P. Stromelysin-1: Three dimensional structure of the inhibited catalytic domain and of the c-truncated proenzyme.Protein Sci 1995, 4, 1966-1976.
    19. Campbell, D. A.; Xiao, X. Y.; Harris, D.; Ida, S.; Mortezaei, R.; Ngu, K.; Shi, L.; Tien, D.; Wang, Y.; Navre, M.; Patel, D. V.; Sharr, M. A.; DiJoseph, J. F.; Killar, L. M.; Leone, C. L.; Levin, J. I.; Skotnicki, J. S. Malonylα-mercaptoketones andα-mercaptoalcohols, A new class of matrix metalloproteinase inhibitors. Bioorg Med Chem Lett 1998, 8, 1157-1162.
    20. Freskos, J. N.; McDonald, J. J.; Mischke, B. V.; Mullins, P. B.; Shieh, H. S.; Stegeman, R. A.; Stevens, A. M. Synthesis and identification of conformationally constrained selective MMP inhibitors. Bioorg Med Chem Lett 1999, 9, 1757-1760.
    21. Levin, J. I.; DiJoseph, J. F.; Killar, L. M.; Sharr, M. A.; Skotnichi, J. S.; Patel, D. V.; Xiao, X. Y.; Shi, L.; Navre, M.; Campbell, D. A. The asymmetric synthesis and in vitro characterization of succinyl mercaptoalcohol and mercaptoketone inhibitors of matrix metalloproteinases. Bioorg Med Chem Lett 1998, 8, 1163-1168.
    22. Baxter, A. D.; Bird, J.; Bhogal, R.; Massil, T.; Minton, K. J.; Montana, J.; Owen, D. A. A novel series of matrix metalloproteinase inhibitors for the treatment of inflammatory disorders. Bioorg Med Chem Lett 1997, 7, 897-902.
    23. Hughes, I.; Harper, G. P.; Karran, E. H.; Markwell, R. E.; MilesWilliams, A. J. Synthesis of thiophenol derivatives as inhibitors of human collagenase. Bioorg Med Chem Lett 1995, 5, 3039-3042.
    24. Gavuzzo, E.; Pochetti, G.; Mazza, F.; Gallina, C.; Gorini, B.; D’Alessio, S.; Pieper, M.; Tschesche, H.; Tucker, P. A. Two crystal structures ofhuman neutrophil collagenase, one complexed with a primed- and the other with an unprimed-side inhibitor: Implications for drug design. J Med Chem 2000, 43, 3377-3385.
    25. Gall, A. L.; Ruff, M.; Kannan, R.; Cuniasse, P.; Yiotakis, A.; Dive, V.; Rio, M. C.; Basset, P.; Moras, D. Crystal structure of the stromelysin-3 (MMP-11) catalytic domain complexed with a phosphinic inhibitor mimicking the transition-state. J Mol Biol 2001, 307, 577-586.
    26. Muri, E. M. F.; Nieto, M. J.; Sindelar, R. D.; Williamson, J. S. Hydroxamic acids as pharmacological agents. Curr. Med. Chem. 2002, 9, 1631-1653.
    27. Tamura, Y.; Watanabe, F.; Nakatani, T.; Yasui, K.; Fuji, M.; Komurasaki, T.; Tsuzuki, H.; Maekawa, R.; Yoshioka, T.; Kawada, K.; Sugita, K.; Ohtani, M. Highly selective and orally active inhibitors of type IV collagenase (MMP-9 and MMP-2): N-sulfonylamino acid derivatives. J. Med. Chem. 1998, 41, 640-649.
    28. Hodgson, J. Remodeling MMPIs. Biotechnology 1995, 13, 554-557.
    29. Puerta, D. T.; Cohen, S. M. A bioinorganic perspective on Matrix Metalloproteinase inhibition. Curr. Topics in Medicinal Chemistry 2004, 4, 1551-1573.
    30. O’Brien, P. M.; Ortwine, D. F.; Pavlovsky, A. G.; Picard, J. A.; Sliskovic, D. R.; Roth, B. D.; Dyer, R. D.; Johnson, L. L.; Man, C. F.; Hallak, H. Structure-activity relationships and pharmacokinetic analysis for a series of potent, systemically available biphenylsulfonamide matrix metalloproteinase inhibitors. J. Med. Chem. 2000, 43, 156-166.
    31. Grams, F.; Reinemer, P.; Powers, J. C.; Kleine, T.; Pieper, M.; Tschesche,H.; Huber, R.; Bode, W. X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design. Eur. J. Biochem. 1995, 228, 830-841.
    32. Migdalof, B. H.; Antonaccio, M. J.; Mckinstry, D. N.; Singhvi, S. M.; Lan, S. J.; Egli, P.; Kripalani, K. J. Captopril: pharmacology, metabolism and disposition. Drug Metab. Rev. 1984, 15, 841-869.
    33. Puerta, D. T.; Lewis, J. A.; Cohen, S. M. New beginnings for matrix metalloproteinase inhibitors: Identification of high-affinity zinc-binding groups. J Am Chem Soc 2004, 126, 8388-8389.
    34. Puerta, D. T.; Mongan, J.; Tran, B. L.; McCammon, J. A.; Cohen, S. M. Potent, selective pyrone-based inhibitors of stromelysin-1. J Am Chem Soc 2005, 127, 14148-14149.
    35. Puerta, D. T.; Griffin, M. O.; Lewis, J. A.; Romero-Perez, D.; Garcia, R.; Villarreal, F. J.; Cohen, S. M. Heterocylic zinc-binding groups for use in next-generation matrix metalloproteinase inhibitors: potency, toxicity, and reactivity. J Biol Inorg Chem 2006, 11, 131-138.
    36. InsightII, version 98.0. San Diego: Accelrys Inc. 1998.
    37. Gaussian 03 User Guide, Inc. Pittsburgh, USA, 2003.
    38. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983;79: 926-935.
    39. Affinity User Guide, Accelrys Inc., San Diego, USA, 1999.
    40. Forcefield-Based Simulations, Accelrys Inc., San Diego, USA 1998.
    41. Ryde, U. Carboxylate binding modes in zinc proteins: A theoreticalstudy. Biophys J 1999, 77, 2777-2787.
    42. Matter, H.; Schudok, M. Recent advances in the design of matrix metalloprotease inhibitors. Current Opinion in Drug Discovery & Development. Current Opinion in Drug Discovery & Development 2004, 7(4), 513-535.
    43. Cheng, F.; Zhang, R. H.; Luo, X. M.; Shen, J. H.; Li, X.; Gu, J. D.; Zhu, W. L.; Shen, J. K.; Sagi, I.; Ji, R. Y.; Chen, K. X.; Jiang, H. L. Quantum chemistry study on the interaction of the exogenous ligands and the catalytic zinc ion in matrix metalloproteinases. J Phys Chem B 2002, 106, 4552-4559.
    1. Whittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J. Design and therapeutic of matrix metalloproteinase inhibitors. Chem Rev 1999, 99, 2735-2776.
    2. Buisson, A. C.; Gilles, C.; Polette, M.; Zahm, J. M.; Birembaut, P.; Tournier, J. M. Wound repair-induced expression of a stromelysins is associated with the acquisition of a mesenchymal phenotype in human respiratory epithelial cells. Lab Invest 1996, 74, 658-669.
    3. La Fleur, M.; Underwood, J. L.; Rappolee, D. A.; Werb, Z. Basement membrane and repair of injury to peripheral nerve: defining a potential role for macrophages, matrix metalloproteinases, and tissue inhibitor of metalloproteinases-1. J Exp Med 1996, 184, 2311-2326.
    4. Massova, I.; Kotra, L. P.; Fridman, R.; Mobashery, S. Matrix metalloproteinases: structures, evolution, and diversification. FASEB J 1998, 12, 1075-1095.
    5. Nagase, H.; Woessner, J. F. Jr. Matrix metalloproteinases. J Biol Chem 1999, 274, 21491-21494.
    6. Skiles, J. W.; Gonnella, N. C.; Jeng, A. Y. The design, structure, and clinical update of small molecular weight matrix metalloproteinase inhibitors. Curr Med Chem 2004, 11, 2911-2977.
    7. Cawston, T. E. Metalloproteinase inhibitors and the prevention of connective tissue breakdown. Pharmacol Ther 1996, 70, 163-182.
    8. Yong, V. W.; Krekoski, C. A.; Forsyth, P. A.; Bell, R.; Edwards, D. R. Matrix metalloproteinases and diseases of the CNS. Trends Neurosci 1998, 21, 75-80.
    9. Nagase, H. Matrix metalloproteinases. In: Zinc Metalloproteinases in health and Disease. Hooper NM (Ed); Tayor and Francis, London UK, 1996; pp 153-204.
    10. Pendas, A. M.; Knauper, V.; Puente, X. S.; Llano, E.; Mattei, M. G.; Apte, S.; Murphy, G.; Lopez-Otin, C. Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution. J Biol Chem 1997, 272, 4281-4286.
    11. Stetler-Stevenson, W. G.; Aznavoorian, S.; Lotta, L. A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 1993, 9, 541-573.
    12. Liotta, L. A.; Steeg, P. S.; Stetler-Stevenson, W. G. Cancer metastalis and Angiogenesis: An imbalance of positive and negative regulation. Cell 1991, 64, 327-336.
    13. Beckett, R. P.; Davidson, A. H.; Drummond, A. H.; Huxley, P.; Whittaker, M. Recent advances in matrix metalloproteinase inhibitor research. Drug Discov Today 1996, 1, 16-26.
    14. Davidson, A. H.; Drummond, A. H.; Galloway, W. A.; Whittaker, M. The inhibitor of metalloproteinase enzymes. Chem Ind 1997, 258-261.
    15. Beckett, R. P. Recent advances in the field of matrix metalloproteinase inhibitors. Exp Opin Ther Patents 1996, 6, 1305-1315.
    16. Beckett, R. P.; Whittaker, M. Matrix metalloproteinase inhibitors 1998. Exp Opin Ther Patents 1998, 8, 259-282.
    17. Zhang, W; Hou, T. J.; Qiao, X. B.; Sun, H.; Xu, X. J. Binding affinity of hydroxamate inhibitors of matrix metalloproteinase-2. J Mol Model2004, 10, 112-120.
    18. Bode, W.; Reinemer, P.; Huber, R.; Kleine, T.; Schinierer, S.; Tschesche, H. The x-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J 1994, 13, 1263-1269.
    19. Cheng, M.; De, B.; Almstead, N. G.; Pikul, S.; Dowty, M. E.; Dietsch, C. R.; Dunaway, C. M.; Gu, F.; Hsieh, L. C.; Janusz, M. J.; Taiwo, Y. O.; Natchus, M. G.; Hudlicky, T.; Mandel, M. Design, synthesis, and biological evaluation of matrix metalloproteinase inhibitors derived from a modified proline scaffold. J Med Chem 1999, 42, 5426-5436.
    20. Natchus, M. G.; Bookland, R. G.; De, B.; Almstead, N. G.; Pikul, S.; Janusz, M. J.; Heitmeyer, S. A.; Hookfin, E. B.; Hsieh, L. C.; Dowty, M. E.; Dietsch, C. R.; Patel, V. S.; Garver, S. M.; Gu, F.; Pokross, M. E.; Mieling, G. E.; Baker, T. R.; Foltz, D. J.; Peng, S. X.; Borners, D. M.; Strojnowski, M. J.; Taiwo, Y. O. Development of new hydroxamate matrix metalloproteinase inhibitors derived from functionalized 4-aminoprolines. J Med Chem 2000, 43, 4948-4963.
    21. Muri, E. M. F.; Nieto, M. J.; Sindelar, R. D.; Williamson, J. S. Hydroxamic acids as pharmacological agents. Curr Med Chem 2002, 9, 1631-1653.
    22. Tamura, Y.; Watanabe, F.; Nakatani, T.; Yasui, K.; Fuji, M.; Komurasaki, T.; Tsuzuki, H.; Maekawa, R.; Yoshioka, T.; Kawada, K.; Sugita, K.; Ohtani, M. Highly selective and orally active inhibitors of type IV collagenase (MMP-9 and MMP-2): N-sulfonylamino acid derivatives. J Med Chem 1998, 41, 640-649.
    23. Hodgson, J. Remodeling MMPIs. Biotechnology 1995, 13, 554-557.
    24. Browner, M. F.; Smith, W. W.; Castelhano, A. L. Matrilysin-inhibitor complexes: Common themes among metalloproteases. Biochemistry 1995, 34, 6602-6610.
    25. Natchus, M. G.; Bookland, R. G.; Laufersweiler, M. J.; Pikul, S.; Almstead, N. G.; De, B.; Janusz, M. J.; Hsieh, L. C.; Gu, F.; Pokross, M. E.; Patel, V. S.; Garver, S. M.; Peng, S. X.; Branch, T. M.; King, S. L.; Baker, T. R.; Foltz, D. J.; Mieling, G. E. Development of new carboxylic acid-based mmp inhibitors derived from functionalized propargylglycines. J Med Chem 2001, 44, 1060-1071.
    26. Esser, C. K.; Bugianesi, R. L.; Caldwell, C. G.; Chapman, K. T.; Durette, P. L.; Girotra, N. N.; Kopka, I. E.; Lanza, T. J.; Levorse, D. A.; MacCoss, M.; Owens, K. A.; Ponpipom, M. M.; Simeone, J. P.; Harrison, R. K.; Niedzwiecki, L.; Becker, J. W.; Marcy, A. I.; Axel, M. G.; Christen, A. J.; McDonnell, J.; Moore, V. L.; Olszewski, J. M.; Saphos, C.; Visco, D. M.; Shen, F.; Colletti, A.; Krieter, P. A.; Hagmann, W. K. Inhibition of stromelysin-1 (MMP-3) by P1’-biphenylylethyl carboxyalkyl dipeptides. J Med Chem 1997, 40, 1026-1040.
    27. Pavlovsky, A. G.; Williams, M. G.; Ye, Q. Z.; Ortwine, D. F.; Purchase II, C. F.; White, A. D.; Dhanaraj, V.; Roth, B. D.; Johnson, L. L.; Hupe, D.; Humblet, C.; Blundell, T. L. X-ray structure of human stromelysin catalytic domain complexed with nonpeptide inhibitors: Implications for inhibitor selectivity. Protein Sci 1999, 8, 1455-1462.
    28. Matter, H.; Schwab, W.; Barbier, D.; Billen, G.; Haase, B.; Neises, B.; Schudok, M.; Thorwart, W.; Schreuder, H.; Brachvogel, V.; Lonze, P.;Weithmann, K. U. Quantitative structure-activity relationship of human neutrophil collagenase (MMP-8) inhibitors using comparative molecular field analysis and x-ray structure analysis. J Med Chem 1999, 42, 1908-1920.
    29. Becker, J. W.; Marcy, A. I.; Rokosz, L. L.; Axel, M. G.; Burbaum, J. J.; Fitzgerald, P. M.; Cameron, P. M.; Esser, C. K.; Hagmann, W. K.; Hermes, J. D.; Springer, J. P. Quantitative structure-activity relationship of human neutrophil collagenase (MMP-8) inhibitors using comparative molecular field analysis and x-ray structure analysis. Protein Sci 1995, 4, 1966-1976.
    30. Puerta, D. T.; Cohen, S. M. A bioinorganic perspective on Matrix Metalloproteinase inhibition. Curr. Topics in Medicinal Chemistry 2004, 4, 1551-1573.
    31. O’Brien, P. M.; Ortwine, D. F.; Pavlovsky, A. G.; Picard, J. A.; Sliskovic, D. R.; Roth, B. D.; Dyer, R. D.; Johnson, L. L.; Man, C. F.; Hallak, H. Structure-activity relationships and pharmacokinetic analysis for a series of potent, systemically available biphenylsulfonamide matrix metalloproteinase inhibitors. J Med Chem 2000, 43, 156-166.
    32. Campbell, D. A.; Xiao, X. Y.; Harris, D.; Ida, S.; Mortezaei, R.; Ngu, K.; Shi, L.; Tien, D.; Wang, Y.; Navre, M.; Patel, D. V.; Sharr, M. A.; DiJoseph, J. F.; Killar, L. M.; Leone, C. L.; Levin, J. I.; Skotnicki, J. S. Malonylα-mercaptoketones andα-mercaptoalcohols, A new class of matrix metalloproteinase inhibitors. Bioorg Med Chem Lett 1998, 8, 1157-1162.
    33. Freskos, J. N.; McDonald, J. J.; Mischke, B. V.; Mullins, P. B.; Shieh, H.S.; Stegeman, R. A.; Stevens, A. M. Synthesis and identification of conformationally constrained selective MMP inhibitors. Bioorg Med Chem Lett 1999, 9, 1757-1760.
    34. Levin, J. I.; DiJoseph, J. F.; Killar, L. M.; Sharr, M. A.; Skotnichi, J. S.; Patel, D. V.; Xiao, X. Y.; Shi, L.; Navre, M.; Campbell, D. A. The asymmetric synthesis and in vitro characterization of succinyl mercaptoalcohol and mercaptoketone inhibitors of matrix metalloproteinases. Bioorg Med Chem Lett 1998, 8, 1163-1168.
    35. Baxter, A. D.; Bird, J.; Bhogal, R.; Massil, T.; Minton, K. J.; Montana, J.; Owen, D. A. A novel series of matrix metalloproteinase inhibitors for the treatment of inflammatory disorders. Bioorg Med Chem Lett 1997, 7, 897-902.
    36. Hughes, I.; Harper, G. P.; Karran, E. H.; Markwell, R. E.; MilesWilliams, A. J. Synthesis of thiophenol derivatives as inhibitors of human collagenase. Bioorg Med Chem Lett 1995, 5, 3039-3042.
    37. Grams, F.; Reinemer, P.; Powers, J. C.; Kleine, T.; Pieper, M.; Tschesche, H.; Huber, R.; Bode, W. X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design. Eur J Biochem 1995, 228, 830-841.
    38. Migdalof, B. H.; Antonaccio, M. J.; Mckinstry, D. N.; Singhvi, S. M.; Lan, S. J.; Egli, P.; Kripalani, K. J. Captopril: pharmacology, metabolism and disposition. Drug Metab Rev 1984, 15, 841-869.
    39. Gavuzzo, E.; Pochetti, G.; Mazza, F.; Gallina, C.; Gorini, B.; D’Alessio, S.; Pieper, M.; Tschesche, H.; Tucker, P. A. Two crystal structures ofhuman neutrophil collagenase, one complexed with a primed- and the other with an unprimed-side inhibitor: Implications for drug design. J Med Chem 2000, 43, 3377-3385.
    40. Gall, A. L.; Ruff, M.; Kannan, R.; Cuniasse, P.; Yiotakis, A.; Dive, V.; Rio, M. C.; Basset, P.; Moras, D. Crystal structure of the stromelysin-3 (MMP-11) catalytic domain complexed with a phosphinic inhibitor mimicking the transition-state. J Mol Biol 2001, 307, 577-586.
    41. Puerta, D. T.; Lewis, J. A.; Cohen, S. M. New beginnings for matrix metalloproteinase inhibitors: Identification of high-affinity zinc-binding groups. J Am Chem Soc 2004, 126, 8388-8389.
    42. Puerta, D. T.; Mongan, J.; Tran, B. L.; McCammon, J. A.; Cohen, S. M. Potent, selective pyrone-based inhibitors of stromelysin-1. J Am Chem Soc 2005, 127, 14148-14149.
    43. Puerta, D. T.; Griffin, M. O.; Lewis, J. A.; Romero-Perez, D.; Garcia, R.; Villarreal, F. J.; Cohen, S. M. Heterocylic zinc-binding groups for use in next-generation matrix metalloproteinase inhibitors: potency, toxicity, and reactivity. J Biol Inorg Chem 2006, 11, 131-138.
    44. InsightII, version 98.0; Accelrys Inc.: San Diego, 1998.
    45. Frisch, M. J.;Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo,.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, J.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; AI-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Gaussian, Inc.: Pittsburgh, PA, 2003.
    46. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983, 79, 926-935.
    47. Affinity User Guide; Accelrys Inc.: San Diego, 1999.
    48. Forcefield-Based Simulations; Accelrys Inc.: San Diego, 1998.
    49. Kiyama, R.; Tamura, Y.; Watanabe, F.; Tsuzuki, H.; Ohtani, M.; Yodo, M. Homology modeling of gelatinase catalytic domains and docking simulations of novel sulfonamide inhibitors. J Med Chem 1999, 42, 1723-1738.
    50. Ryde, U. Carboxylate binding modes in zinc proteins: A theoretical study. Biophys J 1999, 77, 2777-2787.
    51. Matter, H.; Schudok, M. Recent advances in the design of matrix metalloprotease inhibitors. Current Opinion in Drug Discovery & Development 2004, 7, 513-535.
    52. Cheng, F.; Zhang, R. H.; Luo, X. M.; Shen, J. H.; Li, X.; Gu, J. D.; Zhu,W. L.; Shen, J. K.; Sagi, I.; Ji, R. Y.; Chen, K. X.; Jiang, H. L. Quantum chemistry study on the interaction of the exogenous ligands and the catalytic zinc ion in matrix metalloproteinases. J Phys Chem B 2002, 106, 4552-4559.
    1. Hopwood, D. A.; Sherman, D. H. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis.Annu Rev Genet 1990, 23, 37-66.
    2. Schroder, J. A family of plant-specific polyketide synthases: facts and predictions. Trends Plant Sci 1997, 2, 373-378.
    3. Shen, B. Biosynthesis of aromatic polyketides. Top Curr Chem 2000, 209, 1-51.
    4. Hutchinson, C. R. Combinatorial biosynthesis for new drug discovery. Curr Opin Microbiol 1998, 1, 319-329.
    5. Bentley, R.; Bennett, J. W. Constructing polyketides: from collie to combinatorial biosynthesis. Annu Rev Microbiol 1999, 53, 411-446.
    6. Shen, B. Polyketide biosynthesis beyond the type I, II and III polyketid synthase paradigms. Curr Opion Chem Biol 2003, 7, 285-295.
    7. Shen, B.; Hutchinson, C. R. Enzymatic synthesis of a bacterial polyketide from acetyl and malonyl coenzyme A. Science 1993, 262, 1535-1540.
    8. Tropf, S.; Karcher, B.; Schroder, G.; Schroder, J. Reaction mechanisms of homodimeric plant polyketide synthases (stilbene and chalcone synthase): a single active site for the condensing reactions is sufficient for synthesis of stilbenes, chalcones, and 6’-deoxychalcones. J Biol Chem 1995, 270, 7922-7928.
    9. Kreuzaler, F.; Hahlbrock, K. Enzymic synthesis of an aromatic ring from acetate units. Partial purification and some properties of flavanone synthase from cell-suspension cultures of Petroselinum hortense. Eur JBiochem 1975, 56(1), 205-213.
    10. Dixon, R. A.; Paiva, N. L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell 1995, 7, 1085-1097.
    11. Long, S. R. Rhizobium-legume nodulation: life together in the underground. Cell 1989, 56, 203-214.
    12. Edwards, M. L.; Stemerick, D. M.; Sunkara, P. S. Chalcones: a new class of antimitotic agents. J Med Chem 1990, 33, 1948-1954.
    13. Li, R.; Kenyon, G. L.; Cohen, F. E.; Chen, X.; Gong, B.; Dominguez, J. N.; Davidson, E.; Kurzban, G.; Miller, R. E.; Nuzum, E. O.; Rosenthal, P. J.; Mckerrow, J. H. In vitro antimalarial activity of chalcones and their derivatives. J Med Chem 1995, 38, 5031-5037.
    14. Zwaagstra, M. E.; Timmerman, H.; Tamura, M.; Tohma, T.; Wada, Y.; Onogi, K.; Zhang, M. Q. Synthesis and structure-activity relationships of carboxylated chalcones: a novel series of CysLT1 (LTD4) receptor antagonists. J Med Chem 1997, 40, 1075-1089.
    15. Birt, D. F.; Pelling, J. C.; Nair, S.; Lepley, D. Diet intervention for modifying cancer risk. Prog Clin Biol Res 1996, 395, 223-234.
    16. Setchell, K. D.; Cassidy, A. Dietary isoflavones: biological effects and relevance to human health. J Nutr 1999, 129, 758S-767S.
    17. Ferrer, J. L.; Jez, J. M.; Bowman, M. E.; Dixon, R. A.; Noel, J. P. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 1999, 6, 775-784.
    18. Jez, J. M.; Ferrer, J. L.; Bowman, M. E.; Dixon, R. A.; Noel, J. P. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase.Biochemistry 2000, 39, 890-902.
    19. Jez, J. M.; Noel, J. P. Mechanism of chalcone synthase. pKa of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase. J Biol Chem 2000, 275, 39640-39646.
    20. Jez, J. M.; Ferrer, J. L.; Bowman, M. E.; Austin, M. B.; Schroder, J.; Dixon, R. A.; Noel, J. P. Structure and mechanism of chalcone synthase-like polyketide synthases. J Ind Microbiol Biotechnol 2001, 27, 393-398.
    21. Robinet, J. J.; Cho, K. B.; Gauld, J. W. A density functional theory investigation on the mechanism of the second half-reaction of nitric oxide synthase. J Am Chem Soc 2008, 130, 3328-3334.
    22. Robinet, J. J.; Gauld, J. W. Dft investigation on the mechanism of the deacetylation reaction catalyzed by lpxc. J Phys Chem B 2008, 112, 3462-3469.
    23. Chen, S. L.; Marino, T.; Fang, W. H.; Russo, N.; Himo, F. Peptide hydrolysis by the binuclear zinc enzyme aminopeptidase from aeromonas proteolytica: a density functional theory study. J Phys Chem B 2008, 112, 2494-2500.
    24. Chen, S. L.; Fang, W. H.; Himo, F. Theoretical study of the phosphotriesterase reaction mechanism. J Phys Chem B 2007, 111, 1253-1255.
    25. Bojin, M. D.; Schlick, T. A quantum mechanical investigation of possible mechanisms for the nucleotidyl transfer reaction catalyzed by dna polymeraseβ. J Phys Chem B 2007, 111, 11244-11252.
    26. InsightII, version 98.0; Accelrys Inc.: San Diego, 1998.
    27. Frisch, M. J.;Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, J.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; AI-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Gaussian, Inc.: Pittsburgh, PA, 2003.
    28. Becke, A. D. Density-functional thermochemistry. III. the role of exact exchange. J Chem Phys 1993, 98, 5648-5652.
    29. Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev 1988, B37, 785-789.
    30. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett 1989, 157, 200-206.
    31. Affinity User Guide. Accelrys Inc., San Diego, 1999.
    32. O’Leary, M. H. in The Enzymes (Sigman, D. S., and Boyer, P. D., Eds.); Academic Press: New York, 1992; Vol 20, 235-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700