用户名: 密码: 验证码:
基于多时相多源影像的丹江口市土壤侵蚀监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤侵蚀是当前我国发生范围最广,危害最严重的生态环境问题之一,它不仅使土壤侵蚀的局部区域生态环境恶化、而且其危害性往往波及更大的范围。丹江口水库位于鄂、豫、陕3省交界处,目前它承担着南水北调中线工程向包括首都北京在内的我国北方供水任务,引起了社会各界的广泛关注。随着工程的实施,库区的生态环境问题,尤其是土壤侵蚀,成为影响水库水质和调水工程成败的重要因素。所以调查和评价丹江口水库水源区土壤侵蚀现状与动态变化的研究十分必要。与其它调查和评价土壤侵蚀的方法相比,遥感技术具有多种类、多平台、多时段、多波段的特色和信息丰富、信息周期短,现时性和宏观动态性强等优势,无疑是最快速、有效的先进手段之一。
     本文在综述土壤侵蚀研究、土壤侵蚀遥感监测研究进展和遥感监测方法的基础上,选择南水北调水源区的丹江口市为研究对象,运用RS与GIS、GPS技术以及水土保持理论,对不同时相、不同来源的遥感数据的信息提取作了较为详细的研究,使用了小波融合方法和支持向量机的的分类方法。选择Erdas专家分类器的方法,依据土壤侵蚀强度分类分级标准,得到土壤侵蚀强度分级结果图,并对1991年、2000年、2005年三个时期土地利用、植被覆盖和土壤侵蚀状况进行对比分析,分析其变化规律,主要结论如下:
     第一,选用1991年TM、2000年ETM+、2005年IRS-P6三期卫星影像,并对这些不同时相、不同来源的影像进行了几何校正、数字镶嵌以及波段间统计特性分析及组合选择。在对影像融合技术研究的基础上,采用双正交小波变换与IHS变换结合的方法,并与db4小波变换、IHS变换方法进行了对比分析。研究证明,利用本文的融合方法,ETM+融合后的影像既保留了多光谱影像的丰富光谱信息,又不同程度提高了空间分辨率,很大程度上改善了目视解译效果和自动分类效果。
     第二,在对三期影像进行监督分类的基础上,选用优于传统监督分类器的支持向量机(SVM)的分类方法,提高了分类精度。以IRS-P6影像为例,SVM分类的kappa系数、总体分类精度分别为0.797、82.37%,而最常用的最大似然法的kappa系数、总体分类精度分别0.759、78.43%。ETM+融合后影像的分类精度比融合前也有提高。
     第三,针对植被覆盖因子的提取,TM与ETM+采用修正的NDVI模型,而IRS-P6采用的是通用NDVI模型并以分类方式提取植被覆盖度。三期影像均采用的是分类后对比法,在GIS中对土地利用变化进行了对比分析。1991年~2000年和2000年~2005年,有林地、居民地在两个时段都呈正增长趋势,未利用地、灌木林总体呈下降趋势。旱地、草地2005年都比1991年有一定程度减少,水域有增加,水田变化不大。
     第四,研究结果表明,从1991年~2005年,侵蚀面积总体趋减,侵蚀状况逐步改善。1991年侵蚀面积为1736.29 km~2,占土地总面积的55.63%;2000年为1408.96km~2,占土地总面积的45.14%;2005为1258.37 km~2,占土地总面积的40.32%。在侵蚀强度分级中,三个时期产生明显土壤侵蚀的级别中均以中度、轻度侵蚀为主。1991年中度、轻度占土地总面积的21.84%和21.04%:同比,2000年分别为17.98%、17.07%;2005年分别为15.79%、15.56%。
The soil erosion, which happens most widely, is one of the most serious ecological environment problems in China currently. It not only exacerbates the ecological environment of the local region, but also its hazardousness often spread to a greater scope. The Danjiangkou reservoir is located at the juncture of Hubei, Henan, Shaanxi three provinces. It has aroused widespread interest from all walks of life, because at present it undertakes the middle route project of south-to-north water transfer which supplies water to the north China including capital Beijing.
     Along with the implementation of the project, the ecological environment question in the reservoir area especially soil erosion has become an important factor which affects the water quality of reservoir as well as the success or failure of the water transfer project. Therefore it is very necessary to do research on the present situation of soil erosion and its dynamic change in the water source area of Danjiangkou reservoir. Comparing with others kind of methods to investigate and appraise soil erosion, remote sensing has superiorities of multi-type, multi-platform, multi-period, multi-band characteristics, and rich information, short information cycle, strong presence and macroscopic dynamic and so on, undoubtedly, it becomes one of the fastest, effective advanced methods:
     Based on summarizing the research advance of soil erosion, remote sensing monitoring for soil erosion and its method, this article took Danjiangkou county which is the water source area of water transportation project from south to north, as the study object, utilized the technology of RS, GIS and GPS, as well as the theory of water and soil conservation, and did more detailed research on information extraction from remote sensing data with difference phases and different data sources, it chose wavelet transform fusion image and SVM(Support vector machine) classification method. According to the standard for classification and gradation of soil erosion, Soil erosion intensity map was obtained by using the method of expert classfier analysis based on the classfier function of Erdas. The article comparatively analyzed the three period of land use and vegetation coverage and soil erosion, it had also been done to find the rule of change in 1991, 2000, 2005. The main results were outlined as following:
     First, three period of satellite images, TM in 1991, ETM+ in 2000, IRS-P6 in 2005 has been selected. Then geometrical rectification, digital mosaic as well as statistical property analysis and combination choice between wave bands have been carried on to these images with different phases and different data sources. Based on the study of image fusion technology, using the combination method of biorthogonal wavelet transform and IHS transform, the result has been comparatively analyzed with db4 wavelet transform, IHS transform method. The study proved that using the fusion method referred in this article, the image after ETM+ fusion not only retained its rich spectrum information of multi-spectrum image, but also improved spatial resolution at varying degree, improved the effect of visual interpretation and automatic classification to a great extent.
     Second, based on supervised classification to three images, the support vector machines (SVM) classification method that surpasses the traditional supervised classifier has been selected. As a result, the classified precision has been improved. Take IRS-P6 image as an example, the classification kappa coefficient, and overall classification precision of SVM is 0.797, 82.37% respectively. But the kappa coefficient and overall classification precision of the most commonly used maximum likelihood method is 0.759, 78.43% respectively. The classification precision of ETM+ image has improved after fusion compared with before.
     Third, to extract the vegetation cover factor, TM and ETM+ images have used the revised NDⅥmodel, while IRS-P6 image has used the general NDⅥmodel. Then vegetation coverage was extracted through classification. All three images employed the correlation method after classification, and comparative analysis has been carried out to the land use change in GIS. From 1991 to 2000 and from 2000 to 2005, both forest land and habitation show positive growth tendency in two time intervals, while unused land and scrub forest show decreasing tendency at all. Dry land and pasture in 2005 both reduced at a certain degree compared to 1991. While water land is growth and the change of paddy field is not significant.
     Fourth, the result of research indicated that, from 1991 to 2005, the erosion area presented a decreasing trend overall, and the erosion condition has improved gradually. The erosion area was 1736.29 km~2 in 1991, which accounted for 55.63% of the total acreage; in 2000 was 1408.96 km~2, accounted for 45.14% of the total acreage; in 2005 was 1258.37 km~2, accounted for 40.32% of the total acreage. For erosion intensity graduation, the obvious soil erosion of all the three images is mainly moderate erosion and mild erosion. In 1991, moderate erosion and mild erosion accounted for 21.84% and 21.04% of the total acreage; In 2000 was 17.98%, 17.07% respectively; In 2005 was 15.79%, 15.56% respectively.
引文
1 白占国,万国江.贵州碳酸岩区域的侵蚀速率及环境效应研究.土壤侵蚀与水土保持通报,1998,4(1):1-7
    2 卜兆宏,唐万龙,潘贤章.土壤流失量遥感监测GIS像元地形因子算法的研究..土壤学报,1994,31(3):322-329
    3 卜兆宏,孙金庄,周伏建.水土流失定量遥感方法及其应用的研究.土壤学报,1997,34(3):235-245
    4 卜兆宏,孙金庄,董勤瑞等.应用水土流失定量遥感方法监测山东全省山丘区的研究.土壤学报,1999,36(1):1-8
    5 卜兆宏,唐万龙,杨林章等.水土流失定量遥感方法新进展及其在太湖流域的应用.土壤学报,2003,40(1):2-9
    6 布和敖斯尔,刘纪远,王长耀.遥感技术在我国资源和环境变化研究中的作用.科学导报,1997,(8):14-17
    7 蔡崇法,丁树文,史志华等.应用USLE模型与地理信息系统IDRISJ预测小流域土壤侵蚀量的研究.水土保持学报,2000,14(2):19-24
    8 蔡继清,任志勇,李迎春.土壤侵蚀遥感快速调查中有关技术问题的商榷.水土保持通报,2002,22(6):45-47
    9 蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟.北京:科学出版社,1998
    10 陈德明,李德成,周斌等.陕西省安寨县土壤侵蚀和土地利用动态的遥感监测.见:龚子同,徐彬彬.黄土丘陵资源与遥感应用.南京出版社,1991
    11 陈雷.中国的水土保持.第十二届国际水土保持大会专题报告.北京,2002
    12 成礼智,郭汉伟.小波与离散变换理论及工程实践.北京:清华大学出版社,2005
    13 陈述彭,赵英时.遥感地学分析.北京:测绘出版社,1990
    14 陈述彭.遥感应用.地学探索(第三卷).北京:科学出版社,1990
    15 陈述彭.遥感地学分析的时空维.遥感学报,1997,1(3):161-171
    16 陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理.北京:科学出版社,1988
    17 党安荣,王晓栋等.遥感图像处理方法.北京:清华大学出版社,2002
    18 范建容,柴宗新,刘淑珍等.基于RS和GIS的四川省李子溪流域土壤侵蚀动态变化.水土保持学报,2001,15(2):25-28
    19 顾祝军.植被覆盖度的照相法测算及其与植被指数关系研究.[硕士学位论文].武汉:华中农业大学图书馆,2005
    20 何春阳,陈晋,陈云浩等.土地利用/覆盖变化混合动态监测方法研究.自然资源学报,2001,16(3):255-262
    21 何道隆.日趋严重的印度环境问题.南亚研究季刊,2000,(3):24-28
    22 胡广录.遥感技术在水土保持中的应用.甘肃水利水电技术,1997,(4):63-65
    23 胡耀文,陈怀录,徐克斌.数字遥感影像判读法在土壤侵蚀调查中的应用.兰州大学学报(自然科学版),2002,38(2):157-162
    24 贾永红,李德仁,孙家柄.多源遥感影像数据融合.遥感技术与应用,2000,15(1):41-44
    25 江忠善等.应用地理信息系统评价黄土丘陵区小流域土壤侵蚀的研究.水土保持研究,1996,3(2):84-97
    26 金乐琴.“十五”及21世纪初我国发展战略的新取向.山西财经大学学报,2001,23(2):10-12
    27 景可,王万忠,郑粉莉.中国土壤侵蚀与环境.北京:科学出版社,2005
    28 李壁成,焦锋.遥感技术发展新动态及在土壤侵蚀监测中应用的探讨.水土保持通报,1995,15(2):44-48
    29 李壁成.小流域水土流失与综合治理遥感监测.北京:科学出版社,1995
    30 李德成等.应用卫星遥感技术监测兴国县水土流失动态演变.中国水土保持,1998,(2):29-32
    31 李洪星.“3S”技术在水土流失动态监测上的应用.水土保持研究,2004,11(2):16-18
    32 李锐,杨勤科,赵永安.水土流失动态监测与评价研究现状与问题.中国水土保持,1999,(11):31-33
    33 李锐,杨勤科.区域水土流失快速调查与管理信息系统研究.见:韦红波等.区域水土流失评价中植被覆盖信息遥感提取研究综述.郑州:黄河水利出版社,2000
    34 李雅素.GPS功能及其在水土保持中的应用.陕西林业科技,2001,3:59-62
    35 梁伟,杨勤科.遥感在区域水土保持研究中的应用.水土保持研究,2004,11(2):160-163
    36 林开旺,陈永宝.福建省东南沿海水蚀区土壤侵蚀遥感测报.水土保持通报,2002,22(4):24-28
    37 刘宝元,谢云,张科利.土壤侵蚀预报模型.北京:中国科学技术出版社,2001
    38 刘惠平,朱启疆.应用高分辨率遥感数据进行土地利用与覆盖变化监测的方法及其研究进展.资源科学,1999,21(3):23-27
    39 刘纪远.中国资源环境遥感宏观调查与动态研究.北京:中国科学技术出版社,1996
    40 刘廉海.3S技术在厦门市土壤侵蚀监测和评价上的应用.水土保持通报,2006,26(5):79-81
    41 刘永能,穆如发,高之栋.“3S”技术在土壤侵蚀动态监测中应用初探.水土保持研究,2004,11(3):48-49
    42 马霭乃.遥感目视解译的基本理论与方法.遥感信息,1987,(3):26-29
    43 马超飞,马建文,布和敖斯尔.USLE模型中植被覆盖因子的遥感数据定量估算.水土保持通报,2001,21(4):6-9
    44 马建文,顾行发,冯春.CBERS-02卫星图像薄云的去除方法研究.中国科学E辑信息科学,2005,35(增刊):89-96
    45 梅安新等.遥感导论.北京:高等教育出版社,2001
    46 莫源富,周立新.TM数据在土地利用动态监测中的应用.国土资源遥感,2000,6(2):13-17
    47 南秋菊,华珞.国内外土壤侵蚀研究进展.首都师范大学学报(自然科学版),2003,24(2):86-95
    48 濮静娟.遥感图像目视解译原理与方法.北京:科学技术出版社,1992
    49 乔玉良.土壤侵蚀遥感调查技术应用的若干问题.地球信息科学,2003,(4):97-100
    50 秦其明.遥感图像自动解译面临的问题与解决的途径.测绘科学,2000,25(2):21-25
    51 全斌.GPS在矿区滑坡治理工程中的应用.测绘通报,2000,(9):35-38.
    52 宋志瑞,马逸麟,唐春花.江西长江河道演变遥感解译.遥感技术与应用,2005,20(4):415-419
    53 沙志刚.数字遥感技术在土地利用动态监测中应用概述.国土资源遥感,1999(2):7-11
    54 邵明安.黄土高原土壤侵蚀与旱地农业.西安:陕西科学技术出版社,1999
    55 沈耀良.我国环境问题与可持续发展的几点对策.苏州城市建设环境保护学院学报,2000,2(3):27-31
    56 盛永伟,肖乾广.应用气象卫星识别薄云覆盖下的水体.环境遥感,1994,9(4):247-255
    57 史德明,石晓日,李德成等.应用遥感技术监测土壤侵蚀动态的研究.土壤学报,1996,33(1):48-58
    58 史培军,江源,王静爱等.土地利用/覆盖变化与生态安全响应机制.北京:科学出版社,2004
    59 史志华,张斌,蔡崇法等.汉江中下游农业面源污染动态监测信息系统的建立与初步应用.遥感学报,2002,6(5):382-386
    60 史志华,蔡崇法,丁树文等.基于GIS和RUSLE的小流域农地水土保持规划研究.农业工程学报,2002,18(4):172-175
    61 孙丹峰.IKONOS全色与多光谱数据数据融合方法的比较研究.遥感技术与应用,2002,17(1):41-45
    62 水利部水土保持司.SL190-96.土壤侵蚀分类分级标准.北京:水利电力出版社, 1997
    63 汤国安.遥感数字图像处理.北京:科学出版社,2004
    64 唐克丽.中国土壤侵蚀与水土保持学的特点及展望.水土保持研究,1999,6(2):1-7
    65 汪东川,卢玉东等.山地丘陵区土壤侵蚀动态监测技术.国土与自然资源,2004,(2):40-41
    66 王长耀,布和敖斯尔,狄小春.遥感技术在全球环境变化研究中的作用.地球科学进展,1998,13f3):278-284
    67 王大凯,彭进业.小波分析及其在信号处理中的应用.北京:电子工业出版社,2006
    68 王礼先,朱金兆.水土保持学(第2版).北京:中国林业出版社,2005
    69 王香鸽,孙虎,吴成基等.基于“3S”技术的黄土高原地区水蚀荒漠化研究.干旱区资源与环境,2004,18(2):125-128
    70 韦红波.区域植被水土保持功能遥感评价研究.[博士学位位论文].武汉:华中农业大学图书馆,2001
    71 韦中亚.石家庄市土壤侵蚀定量评价研究.水土保持研究,1999,6(4):62-68
    72 韦中亚,徐素宁,吴景双等.土壤侵蚀调查中的航空137Cs测量方法初探.水土保持研究,2001,8(2):45-49
    73 徐冠华.三北防护林地区再生资源遥感的理论及其技术应用.北京:中国林业出版社,1994
    74 杨斌,路游.基于统计学习理论的支持向量机的分类方法.计算机技术与发展,2006,16(11):56-58
    75 杨桄,刘湘南.遥感影像解译的研究现状和发展趋势.国土资源遥感,2004,(2):7-10
    76 张登荣,赵元洪,张福祥等.基于植被信息的水土流失遥感方法.第八届全国遥感技术交流会论文集,1993,327-33
    77 张华海,李景芝.GPS定位技术在矿区地面形变测量中的应用.测绘通报,2000,(4):10-12
    78 张健挺,邱友良.人工智能和专家系统在地学中的应用综述.地理科学进展,1998,17(1):44-51
    79 张利华,薛重生.“3S”技术在土壤侵蚀研究中的应用.长江流域资源与环境,2004,13(5):503-507
    80 张学工.关于统计学习理论与支持向量机.自动化学报,2000,26(1):32-42
    81 张永生,戴晨光,张云彬等.天基多源遥感信息融合---理论、算法与应用系统.北京:科学出版社,2005
    82 张振龙.基于遥感和GIS的汉江上游植被与土壤侵蚀动态监测研究.[硕士学位 位论文].武汉:华中农业大学图书馆,2006
    83 詹小国,王平.基于RS和GIS的三峡库区水土流失动态监测研究.长江科学院院报,2001,18 (2):41-44
    84 赵其国.中国东部红壤地区土壤退化的时空变化、机理及调控.北京:科学出版社,2002
    85 赵晓丽,张增祥,王长有等.基于RS和GIS的西藏中部地区土壤侵蚀动态监测.水土保持学报,1999,5(2):44-50
    86 赵晓丽,张增祥,周全斌等.中国土壤侵蚀现状及综合防治对策研究.水土保持学报,2002,16(1):40-44
    87 赵英时等.遥感应用分析原理与方法.北京:科学出版社,2003
    88 郑粉莉.浅谈我国土壤侵蚀学科亟待加强的研究领域.水土保持研究,1999,6(2):26-31
    89 郑粉莉.中美水土保持成就对比.水土保持通报,2003,23(2):67-72
    90 郑永春,王世杰,欧阳自远.地球化学示踪在现代土壤侵蚀研究中的应用.地理科学进展,2002,21(5):507-516
    91 周成虎,骆剑承,杨晓梅等.遥感影像地学理解与分析.北京:科学出版社,1999
    92 周佩华,川均良,刘普灵等.黄土高原土壤侵蚀与稀土元素示踪研究.水土保持研究,1997,4(2):2-9
    93 周为峰.基于遥感和GIS的区域土壤侵蚀调查研究.[博土学位论文].武汉:华中农业大学图书馆,2005
    94 Andrwe,R.W,王萍,杨培龙,罗颖昕译,统计模式识别.北京:电子工业出版社,2004
    95 Beasley, D B and Huggins L E 1981. ANSWERS Users Manual. EPA-905/9-82-001: USEPA. Chicago, Ⅱ
    96 Bocco, G., Palacio, J., etc, 1988, Gully erosion modeling using GIS and geomorphologic knowledge. ITC Jour, 1990(3): 253-362
    97 Boser B, Guyon I, Vapnik V. A training algorithm for optimal margin classifiers, Fifth Annual Workshop on Computational Learning Theory. Pittsburgh: ACM Press, 1992
    98 Burgers, C. A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge discovery,1998,2(2):213-245
    99 Campbell, J. B. Introduction to Remote Sensing. New York, London: The Guilford Press, 1987, 507-533
    100 CERL GRASS Reference Manual, Version 3.0, Champaign, IL:US Army, Corps of Engineers, Construction Engineering Research Laboratory 1988
    101 Cohen A, Daubechies I and Feauveau J. Biorthogonal Bases of Compactly Supported Wavelets. Comm. Pure & Applied Math,1992, 45:485-560
    102 Cortes, C., Vapnik,V. Support-vector networks. Machine Learning, 1995, 20:273-297
    103 Daubechies I. Ten lectures on wavelets. Montoelier: Capital CitvPress, 1992
    104 De Ploey, J. A Soil Erosion Map for Western Europe. Catena Verlag, 1989
    105 Drake N A, Zhang X Y. Modelling soil erosion at global and regional scales using remote and GIS techniques. In: Advances in Remote Sensing 4nd GIS Analysis. John Wiley&Sons. 1999, 241-261
    106 Dwivedi, R. S., T. Ravi Sankar, L. Venkataratnam, et al. The inventory and monitoring of eroded lands using remote sensing data. Remote Sensing, 1997, 18(1):107-119
    107 Gonzalez C and Woods E,阮秋琦等译.数字图像处理第二版.北京:电子工业出版社,2005
    108 Knisel, W. G. (ed.). 1980. CREAMS: A field scale model for Chemicals, Runoff, and Erosion from Agricultural Management Systems. USDA Science and Education Administration, Conservation Report No. 26. Washington D.C.
    109 Hill,J.,Megier,J.and Mehl,W.毛耀保,万余庆译.地中海生态系统中土地退化、土壤侵蚀和沙漠化遥感监测.遥感信息,1998(4):34-37
    110 Laflen, J.M., Elliot, W.J., & Simanton, J.R., 1991. WEPP soil erodibility experiments for rangeland and cropland soils. Journal of Soil and Water Conservation, 46(1):39-44
    111 Lillesand, T. M., Kiefer, R.W. Remote Sensing and Image Interpretation (the third edition). New YorK, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons, Inc. 1994.35-44
    112 Lucas, I. E J., Frans, J. M., Wel, V. D. Accuracy assessment of satellite derived land-cover data: a review. Photogrammetric Engineering & Remote Sensing, 1994, 60(4):410-432
    113 Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans PAMI, 1989, 11:674-693
    114 Matthew Dunn, Robert Hickey. The effect of slope algorithms on slope estimates within a GIS. Cartography, 1998,27:9-15
    115 Mausel, P. W., Kramber, J. W. Optimum band selection for supervised classification of multispectral data. Photogrammetric Engineering & Remote Sensing, 1990, 56: 55-60
    116 Meyer, L.D., S.M. Dabney, and W.C. Harmon, 1995. Sediment-Trapping Effectiveness of Stiff-grass Hedges. Trans. ASAE 38(3): 809-815
    117 Morgan, R.P.C. The European Soil Erosion Model: an update on its structure and research base. In: Rickson, R. (ed), Conservating Soil Resources: European perspectives. CAB International, Cambridge, 1994, 286-299
    118 Perone, J., Madramootoo, C.A. Sediment yield prediction using AGNPS. Journal of Soil and Water Conservation,1999,54(1):415-419
    119 Pohl C, Van Genderen J. L. Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications. INT J Remote Sensing, 1998, 19(5):823-854
    120 Purevdorj, T., Tateishi, R., Ishiyama, T. et al. Relationships between percent vegetation cover and vegetation indices. International Journal of Remote Sensing, 1998, 19(8):3519-3535
    121 Raina, P., D. C. Joshi. Mapping of soil degradation by using remote sensing on alluvial plain, Rajasthan, India. Arid soil Res. Rehab, 1993(7):145-161
    122 Renard, K.G., Foster, G. R., Weesies, G. A., McCool, D. K., Yoder, D. C., 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agric. Handb. No.703. US Department of Agriculture, Washington, DC
    123 Scholkopf, B., Burges, C. and Vapnik V. Extracting support data for a given task. In:Fayyad U M, Uthurusamy R(eds.). Proc. of First Intl. Conf. on Knowledge Discovery & Data Mining, AAAI Press, 1995, 262-267
    124 Soberg S, Jain A K, Taxt T. Multisource Classification of remotely sensed data: Fusion of Landsat TM and SAR Images. IEEE Transaction on Geoscience and Remote Sensing, 1994, 32(4):768-778
    125 Steven, M.D., Clark, J.A. Application of Remote Sensing in Agriculture. London, Boston. Singapore. Svdnev. Toronto. Welling, ton: Butterworths. 1990. 75-96
    126 Thomas,M.L,Ralph,W K.,彭望碌等译.遥感与图像解译.北京:电子工业出版社,2003
    127 Yapnik, V. N. Estimation of Dependencies Based on Empirical Data. Berlin: Springer-Verlag, 1982
    128 Vapnik,V N.,张学工译.统计学习理论的本质.北京:清华大学出版社,2000
    129 Wang Guo-sheng, Zhong Yi-xing. The theoretical basis of support vector machine-statistical learning theory. Computer Engineering and Applications, 2001,. 19:19-20
    130 Wischmeier, W.H., Johnson, C. B. & Cross B.V., 1971. A soil erodibility homograph for farmland and construction cites. Journal of Soil and Water Conservation, 26(5):189-193
    131 Wischmeier, W. H., Smith, D. D., 1978, Predicting rainfall erosion losses, a guide to conservation planning. Agricultural Hand book No.537, US Department of Agriculture, Washington, DC. 58pp
    132 Young, R.A., Onstad, C. A and Bosch D D, et al. AGNPS: A nonpoint-source pollution modelfor evaluating agriculture watersheds. Soil Water. Conserv, 1989, 44(2): 168-173
    133 Zeng, Z. Y., 2001. Fully Automatic Mapping for Vegetation and Soil Erosion Monitoring Using Remote Sensing. Mathematic Modeling and GIS Techniques. Proceedings of the 20th International Cartographic Conference. Beijing, China. August 5-10.R702-709

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700