用户名: 密码: 验证码:
聚丙烯酸酯水性涂料性质预测及耐水性多尺度建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐水性是水性涂膜研发及大规模生产环节中重要的性能指标。本论文主要研究了聚丙烯酸酯水性涂膜及涂料体系的耐水性建模问题。利用人工神经网络、分子动力学、数理统计多元回归等手段,对材料的耐水性进行了预测与分析,为提高水性涂膜材料的耐水性提供有利的支持。
     主要内容如下:
     (一)利用人工神经网络多目标同时预测的方法,从涂料体系配方中的三种单体(丙烯酸丁酯、甲基丙烯酸甲酯和苯乙烯)及两种颜料(二氧化钛和碳酸钙)的用量出发,建立对涂料的硬度、附着力、耐冲击性和反射率四种性质的预测模型。经过数据的预处理及对网络参数的优化,得到了98%的总体预测准确率。
     (二)从分子动力学模拟出发,通过计算涂膜聚合物分子与水分子间及界面间的相互作用,建立了能量与饱和吸水率之间的拟和关系;考察了聚合物内部氢键作用对水分子在内部的扩散系数的影响;以扩散系数、水性官能度及其相互作用三个因素建立起预测聚丙烯酸酯水性膜材料饱和吸水率的模型,其预测误差约5%,为后续的多尺度建模研究提供了参数。
     (三)研究了乳液与颜料粒子之间的相互作用。通过实验测定接触角与分子模拟得到的相互作用能量比较,找到了它们之间的对应关系,为涂膜多尺度建模中含有颜料的部分提供相应的数值基础。
     (四)建立了涂膜耐水性的多尺度关联模型,提出平衡时间tB和渗透平均速率SV两个参数用于表征膜材料耐水性。考察了各种宏观因素及微观变量对材料耐水性的影响,与实验的结果一致,证明了模型的可行性及可靠性,为在特定环境下使用的膜材料的生产工艺及选用提供指导依据。
     (五)将之前考虑的各部分内容综合总结,建立可视化界面系统,为本研究在更大范围内使用提供有力支持。
Paper mainly discussed the properties of polyacrylate waterborne coating and the water resistance of it. The property of water resistance is a key index of the application of waterborne coating. Materials which had poor water resistances, the water molecules in the environment were easily eroded them, and then changed the internal structures, and change some other properties in further. In order to improve coatings water resistances, it was needed to modify the materials in many aspects. However, the method which was most used was still single factor rotation. Because there were so many factors would affect the water resistance, it was a very complicated work for choosing a better formula. Developing a method for predicting the water-resistant of coating quickly and accurately It became an important task for developing a quickly and accurately method to predict water-resistant of waterborne coatings. In the paper, artificial neural networks, molecular dynamics, multi-scale modeling and other methods were used for studying the water resistance of coating.
     In the second chapter, by the method of artificial neural network simultaneous prediction, the properties of coatings were predicted by the formula. The network model established which includes five input nodes and four output nodes. The five input nodes corresponding to the amounts of three kinds of coating monomers (butyl acrylate, methyl methacrylate and styrene) and two kinds of pigments (TiO2 and CaCO3). The four output nodes corresponding to the four types of coating properties, which were hardness, adhesion, impact resistance and reflectivity. After data preprocessing, the choice of hidden layer nodes, options of the hidden layers number, learning rate and transfer function and other works, the optimal network structure were confirmed. Base on the structure of network, the weights and thresholds values were trained by the experiments results. Then 9 samples’properties were predicted by the network and compared with the measured values. The final prediction accuracies of four properties were calculated. Adhesion and impact resistance have the perfect results. The errors of reflectivity and hardness were 0.16% and 8.02% respectively. The results showed that, BP neural network prediction was a feasible method for predicting the coatings’properties. It could be used to guide the experiments and productions.
     In Chapter III, saturated water absorption which was a key index in the study of coatings was studied by experiments and simulations together. The discussion was focused on the affect materials ratio on saturated water absorption, and the binding energies between water molecules and materials were calculated. The relationship between saturated water absorption and binding energies was confirmed. At the same time, the hydrogen bonds energies of water molecules in the materials were calculated. And the diffusion coefficients of water molecules which were affected by the hydrogen bonds energies were simulated by the method of molecular dynamics (MD). The results confirmed that the diffusion coefficients were affected by the monomer ratio closely. Increasing the ratio of hydrophilic monomers, the water molecules diffusion coefficient would decrease, and the saturated water absorption would increase. Because of this relationship, a parameter of aqueous functionality of system (φ) was proposed which was stood for the proportion of hydrophilic groups in the total amount of monomer. Then a prediction model of saturated water absorption was built up by diffusion coefficient, aqueous functionality and theirs interaction. The average error of this model was about 5%. It proved that the model could be used to predict the saturated water absorption which would be used in the final multi-scale model of membrane water resistance.
     In Chapter IV, pigments which played an important role in the coatings were discussed. The wetting effects between kinds of pigments and latexes were considered. By the experiments, the contact angles of pigments and latexes were measured. Then the energies of interfaces between pigments and latexes were calculated by MD method. By the comparison, the relationship between two energies was founded. So the water resistance indexes of pigments were defined which were stood for the properties of pigments. And the indexes were used in Chapter V and Chapter VI.
     In Chapter V, a multi-scale modeling of water resistance was established base on Fick’s second law for measuring the water resistance of membranes quantitatively. Two indexes, balance time (tB) and seepage velocity (SV) were proposed for the characterization of membrane water resistances. Macro-scale factors such as such as the thickness of membranes (H), the ambient temperature (T) and monomer ratio were picked out for discussion. Micro-scale variables, such as water diffusion coefficient (D), membrane saturation water absorption (CB0) and of water molecules escape concentration (CB1) which were affected by the macro-scale factors and influenced the water resistance indexes such as tB and SV. The agreement between the experimental results and calculated results proved the feasibility and reliability. The two indexes could be used for measuring the membranes water resistances, and could guide the producing in further.
     In Chapter VI, a visual system was programmed combing the discussion in Chapter III, IV and V. By the operations of click and select, the water resistance indexes of coatings which had different monomers ratios, different macro-scales parameters, different kinds and amount of pigments could be calculated quickly. Researchers could use this software design the better coatings with higher water resistance.
引文
[1] Yuri Reyes-Mercado, Flavio Vazquez Francisco J., Rodriguez-Gomez, Yurko Duda. Effect of the acrylic acid content on the permeability and water uptake of poly (styrene-co-butyl acrylate) latex films [J]. Colloid Polym Sci, 2008, 286: 603-609.
    [2]赖春晓.水性涂料不断取得进展[J].全面腐蚀控制, 2004, (02).
    [3]赵金榜.国内外涂料工业现状及发展趋势(一)———世界涂料工业现状及发展趋势[J].电镀与涂饰, 2006, 25(1): 51-54.
    [4]赵金榜.水性涂料——涂料工业发展的主力军[J].中国涂料, 2003, (01).
    [5]孔志元.中国水性涂料的现状及发展[J].涂料技术与文摘, 2008年, (10): 10-13.
    [6]陈正霞.含氟聚丙烯酸酯乳液合成及水性涂层耐水性的多尺度关联建模[D].中国博士学位论文全文数据库, 2007, (03)
    [7] Thometzek P., Ludwig A., Karbach A., et al. Effects of morphology and surface treatment of inorganic pigments on waterborne coating properties [J]. Progress in Organic Coatings, 1999, 36(4): 201-209.
    [8] Karl Thomaa, Karoline Bechtold. Influence of aqueous coatings on the stability of enteric coated pellets and tablets [J]. European Journal of Pharmaceutics and Biopharmaceutics, 1999, 47(1): 39-50.
    [9] Suzana Cakic, Caslav Lacnjevac, Jakov Stamenkovic, et al. Effects of the Acrylic Polyol Structure and the Selectivity of the Employed Catalyst on the Performance of Two-Component Aqueous Polyurethane Coatings [J]. Sensors, 2007, 7: 308-318.
    [10] Jorg Schmitz, Harald Frommelius, Ulrich Pegelow, et al. A new concept for dispersing agents in aqueous coatings [J]. Progress in Organic Coatings, 1999, 35(1-4): 191-196.
    [11] Martha Sanmiguel, Noemi Soto, Yuri Reyes, et al. Pressure-Sensitive Adhesives Based on Nanostructured Latex Particles [J]. International Journal of Polymeric Materials, 2006, 55(8): 595-604.
    [12] Shinya Maenosono, Tatsuya Okubo, Yukio Yamaguchi. Overview of Nanoparticle Array Formation by Wet Coating [J]. Journal of Nanoparticle Research, 2003, 5: 5-15.
    [13]袁才登,缪爱花,王艳君等.乳液聚合成核阶段的模拟与分析[J].高校化学工程学报, 2003, 17(5): 486-491.
    [14]罗英武. RAFT种子乳液聚合反应初期的Monte Carlo模拟[J].高等学校化学学报, 2003, 24(10): 1926-1928.
    [15]王鹏,田文德,姚飞.低温乳液聚合丁苯橡胶的动态模拟[J].北京化工大学学报, 2002, 29(2): 29-31,35.
    [16] T. C. Clancy, S. J. V. Frankland, J. A. Hinkley, et al. Molecular modeling for calculation of mechanical properties of epoxies with moisture ingress [J]. Polymer, 2009, 50(12): 2736-2742.
    [17] Chaofu Wu, Weijian Xu. Atomistic molecular modelling of crosslinked epoxy resin [J]. Polymer, 2006, 47: 6004-6009.
    [18] Shahriar Sajjadi. Nanoemulsion Formation by Phase Inversion Emulsification: On the Nature of Inversion [J]. Langmuir, 2006, 22(13): 5597-5603.
    [19] W Dzwinel, DA Yuen. Dissipative particle dynamics of the thin-film evolution in mesoscaleumn [J]. Molecular Simulation, 1999, 22(6): 369-395.
    [20] M. Yoshiya, K. Wada, B. K. Jang, H. Matsubara. Computer simulation of nano-pore formation in EB-PVD thermal barrier coatings [J]. Surface and Coatings Technology, 2004, 187(2-3): 399-407.
    [21] A. Philip Plumb, Raymond C. Rowe, Peter York, et al. The effect of experimental design on the modeling of a tablet coating formulation using artificial neural networks [J]. European Journal of Pharmaceutical Sciences. 2002, 16(4-5): 281-288.
    [22]程平,张海涛,高岩,李俊锋,王洪艳. ANN在聚丙烯酸酯乳液性质预测中的应用[J].吉林大学学报-工学版, 2007, 37(2): 362-366.
    [23] P. L. Evans, L. W. Schwartz1, R. V. Roy. A Mathematical Model for Crater Defect Formation in a Drying Paint Layer [J]. Journal of Colloid and Interface Science. 2000, 227(1): 191-205.
    [24] Y. Sun, T. Bell, S. Zheng. Finite element analysis of the critical ratio of coating thickness to indentation depth for coating property measurements by nanoindentation [J]. Thin Solid Films, 1995, 258(1-2): 198-204.
    [25]崔学军,程平,张海涛,金为群,王洪艳.涂层与基体界面结合强度测定模型的有限元模拟[J].吉林大学学报-工学版, 2007, 37(2): 357-361.
    [26] Zeidenberg, Matthew. Neural Networks in Artificial Intelligence [M]. 1990: Ellis Horwood Limited.
    [27]阳范文,赵耀明.人工神经网络用于高分子材料的性能预测与优化设计的研究进展[J].计算机与应用化学, 2001, 18(2): 131-134.
    [28]陈锦言,姚芳莲,孙经武等.人工神经网络及其在化学领域中的应用[J].计算机与应用化学, 1999, 16(2): 111-114, 120.
    [29]李孝安,张晓缋.神经网络与神经计算导论[M].西安:西北工业大学出版社, 1994 : 34-36.
    [30]陈善广,鲍勇. BP神经网络学习算法研究[J].应用基础与工程科学学报. 1995, 3(4): 437-442.
    [31]陈以新. MATLAB的几则程序设计经验[J].计算机应用, 1999 ,19(9): 54-56.
    [32]罗成汉.基于MATLAB神经网络工具箱的BP网络实现[J].计算机仿真, 2004, 21(5): 109-111, 115.
    [33]柳松青. MATLAB神经网络BP网络研究与应用[J].计算机工程与设计. 2003, 24(11): 81-83, 88.
    [34]白立新,张一云,徐家云等.基于MATLAB的γ谱人工神经网络分析方法[J].核电子学与探测技术. 2003, 23(5): 404-406.
    [35]雷惊雷,李凌杰,胡艳丽等.应用分析模拟化学振荡的过程[J].计算机与应用化学. 2008, 25(2): 159-163.
    [36]宋浩威,王洪艳,宋孟晓等.流动注射在线预富集人工神经网络-光度法同时测定地质样品中金、钯、银[J].分析化学, 1998, 26(1): 7-11.
    [37]管棣,姚鹏,张媛媛等.人工神经网络用于光度法测定工业废水中的铬和铁[J].化学研究与应用, 2006, 18(11): 1283-1287.
    [38]林生岭,吴家建,印厚飞等.人工神经网络光度法同时测定四组份染料混合物[J].装备环境工程, 2008, 5(4): 19-22.
    [39]朱伟平.分子模拟技术在高分子领域的应用[J].塑料科技, 2002, 5: 23-26.
    [40]王艺峰,程时远,王世敏等.高分子材料模拟中的分子力学法和力场[J].高分子材料科学与工程, 2003, 19(1): 10-14.
    [41] Michael Kotelyanskii, Doros N.Theodorou. Simulation Methods for Polymers [M]. Marcel Dekker, Inc. 2004, 1st: 1.
    [42] Paul K.Weiner, Peter A.Kollman. AMBER: Assisted Model Building with Energy Refinement. A General Program for Modeling Molecules and Their Interactions [J]. Journal of Computational Chemistry, 1981, 2(3): 287-303.
    [43] Alberto Perez, F.Javier Luque, Modesto Orozco. Dynamics of B-DNA on the Microsecond Time Scale [J]. Journal of the American Chemical Society. 2007, 129, 14739-14745.
    [44] Bernard R.Brooks, Robert E.Bruccoleri, Barry D.Olafson, et al. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations [J]. Journal of Computational Chemistry, 1983, 4(2): 187-217
    [45] Katrin Gaedt, Hans-Dieter Holtje. Consistent Valence Force-Field Parameterization of Bond Lengths and Angles with Quantum Chemical Ab Initio Methods Applied to Some Heterocyclic Dopamine D3-Receptor Agonists [J]. Journal of Computational Chemistry, 1998, 19(8): 935-946.
    [46] Huai Sun, David Rigby. Polysiloxanes: ab initio force field and structural, conformational and thermophysical properties [J]. Spectrochimica Acta Part A, 1997, 53: 1301-1323.
    [47] Huai Sun. COMPASS: An ab Initio Force-Field Optimized for Condensed - Phase Applicationss - Overview with Details on Alkane and Benzene Compounds [J]. The Journal of Physical Chemistry Part B, 1998, 102: 7338.
    [48] A.T.Hagler, C.S.Ewig. On the use of quantum energy surfaces in the derivation of molecular force fields [J]. Computer Physics Communications, 1994, 84(1-3): 131-155.
    [49] Stephen L.Mayo, Barry D.Olafson, William A.Goddard. DREIDING: A Generic Force Field for Molecula [J]. The Journal of Physical Chemistry, 1990, 94: 8897-8909.
    [50] A.K.Rappe, C.J.Casewit, K.S.Colwell, et al. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations [J]. Journal of the American Chemical Society, 1992, 114: 10024-10035.
    [51] Tae Bum Lee, Dong Hyun Jung, Daejin Kim, et al. Molecular dynamics simulation study on the hydrogen adsorption and diffusion in non-interpenetrating and interpenetrating IRMOFs [J]. Catalysis Today, 2009, 146: 216-222.
    [52] Zhong-Zhi Yang, Yang Wu, Dong-Xia Zhao. Atom-bond electronegativity equalization method fused into molecular mechanics. I. A seven-site fluctuating charge and flexible body water potential function for water clusters [J]. Journal of Chemical Physics, 2004, 120: 2541.
    [53] Zhong-Zhi Yang, Xin Li. Ion Solvation in Water from Molecular Dynamics Simulation with the ABEEM/MM Force Field [J]. The Journal of Physical Chemistry Part A. 2005, 109: 3517.
    [54]张强,杨忠志.原子-键电负性均衡方法融合进分子力场(ABEEM/MM)应用于蛋白质分子(Crambin)模拟[J].高等学校化学学报. 2005, 26(12): 2345-2347.
    [55]管清梅,崔宝秋,杨忠志等人.原子-键电负性均衡方法融合进分子力场(ABEEM/MM)应用于蛋白质BPTI水溶液的分子动力学模拟[J].科学通报. 2007, 52(15): 1739-1742.
    [56]杨小震.分子模拟与高分子材料[M].北京:科学出版社, 2002.
    [57] Nicholas Metropolis, Arianna W.Rosenbluth, Marshall N.Rosenbluth, et al. Equation of State Calculations by Fast Computing Machines [J]. Journal of Chemical Physics. 1953, 21: 1087-1092.
    [58]柴立和.多尺度科学的研究进展[J].化学进展. 2005, 17(2): 186-191.
    [59] S.A.Baeurle. Multiscale modeling of polymer materials using field-theoretic methodologies: a survey about recent developments [J]. J Math Chem. 2009, 46:363-426.
    [60] James Wei. Design andintegration of multi-scale structures [J]. Chemical Engineering Science. 2004, 59: 1641-1651.
    [61] Jinghai Li, Jiayuan Zhang, Wei Ge, Xinhua Liu. Multi-scale methodology for complex systems [J]. Chemical Engineering Science 2004; 59: 1687-1700.
    [62]胡英,刘洪来,叶汝强.化学化工中结构的多层次和多尺度研究方法[J].大学化学. 2002, 17(1): 12-20.
    [63] G.B.Olson. Computational Design of Hierarchically Structured Materials [J]. Science. 1997, 277: 1237-1242.
    [64] Wesseling P. An introduction to multigrid methods [M]. Chichester: John Wiley and Sons, 1992.
    [65] Gravemeier V, Wall W A, Ramm E. A Three - level Finite Element Method for the Instationary Incompress- ible Navier - Stokes Equations [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 1323-1366.
    [66] Brases D. Finite elements: theory, fast solvers, and applications in solid mechanics [M]. Second Edition. Cambridge: Cambridge University Press, 2001.
    [67] Barth T.J., et al. Multiscale and multiresolution methods: theory and applications [M]. Berlin, Heidelberg, New York: Springer Verlag, 2002.
    [68]王崇愚.多尺度模型及相关分析方法[J].复杂系统与复杂性科学. 2004, 1: 9-19.
    [69]张洪武,王鳃鹏.材料非线性微—宏观分析的多尺度方法研究[J].力学学报. 2004, 36(3): 359-363.
    [70]张洪武,王鲲鹏.弹塑性复合材料多尺度计算的模型与算法研究[J].复合材料学报. 2003, 20(1): 60-66.
    [71]张洪武.弹性接触颗粒状周期性结构材料力学分析的均匀化方法(Ⅰ)——局部RVE分析[J].复合材料学报. 2001, 18(4): 93-97.
    [72]张洪武.弹性接触颗粒状周期性结构材料力学分析的均匀化方法(Ⅱ)——宏观均匀化分析[J].复合材料学报. 2001, 18(4): 98-102.
    [73]梁军,杜善义.弹塑性复合材料力学性能的细观研究[J].固体力学学报, 2000, 21(4): 361-365.
    [74]张洪武,余志兵,王鲲鹏.复合材料弹塑性多尺度分析模型与算法[J]固体力学学报, 2007, 28(1): 7-12.
    [75]刘涛,邓子辰.材料弹塑性性能数值模拟的多尺度方法[J]固体力学学报, 2007, 28(1): 97-101.
    [76] J Leon, M Manna. Multiscale analysis of discrete nonlinear evolution equations [J]. J PHYS A-MATH GEN. 1999, 32: 2845-2869.
    [77] Ge Wei, Ma Jingsen, Zhang Jiayuan, et al. Particle Methods for Multiscale Simulation of Complex Flows [J]. Chinese Science Bulletin. 2005, 50(11): 1057-1069.
    [78]葛蔚,麻景森,张家元等.复杂流动多尺度模拟中的粒子方法[J].科学通报. 2005, 50(9): 841-853.
    [79] Meir Glick, Daniel D.Robinson, Guy H.Grant, et al. Identification of Ligand Binding Sites on Proteins Using a Multi-Scale Approach [J]. J AM CHEM SOC. 2002, 124(10): 2337-2344.
    [80] C.Godin, Y.Carglio. Academic Press Limited A Multiscale Model of Plant Topological Structures [J]. J THEOR BIOL. 1998, 191: 1-46.
    [81] Mizuseki H., Hongo K., Kawazoe Y., Wille L.T. Multiscale simulation of cluster growth and deposition processes by hybrid model based on direct simulation Monte Carlo method [J]. Computational Materials Science, 2002, 24(1): 88-92.
    [82] Karuna Tunvisut, Noel P.O'Dowd, Esteban P.Busso. Use of scaling functions to determine mechanical properties of thin coatings from microindentation tests [J]. Journal of Solids and Structures. 2001, 38: 335-351.
    [83] Tahir Cagin, Guofeng Wang, Ryan Martin, et al. Multiscale modeling and simulation methods with applications to dendritic polymers [J]. Computational and Theoretical Polymer Science, 2001, 11, 345-356.
    [84] Ronnie Anderssona, Bengt Anderssona, Fabrice Chopardb, et al. Development of a multi-scale simulation method for design of novel multiphase reactors [J]. Chemical Engineering Science. 2004. 59: 4911-4917.
    [85]程平. ANN法预测聚丙烯酸酯乳液和水性涂料性能的研究[D].长春:吉林大学化学学院, 2007.
    [86]中化化工标准化研究所. GB/T 1730-93.漆膜硬度测定法摆杆阻尼试验[S].北京:中国标准出版社. 2003: 38-44.
    [87]中化化工标准化研究所. GB/T 1720-79.漆膜附着力测定法[S].北京:中国标准出版社. 2003: 11-13.
    [88]王平,严冬.漆膜附着力的检测及其影响因素[J].上海涂料. 2000, (1): 9-11.
    [89]中化化工标准化研究所. GB/T 1732-93.漆膜耐冲击测定法[S].北京:中国标准出版社. 2003: 48-50.
    [90]张瀚伦.漆膜耐冲击试验标准及其实施[J].上海涂料. 2005, 43(7/8): 51-52.
    [91]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社, 1998.
    [92]刘平,梁逸曾,张林,俞沃勤.人工神经网络用于化学数据解析的研究(I)—逼近规律与过拟合[J].高等学校化学学报. 1996, 17(6): 861-865.
    [93]董志国,李郁峰,李元宗.基于BP神经网络的轨道基桩识别[J].科技情报开发与经. 2006, 16(5): 163-164.
    [94]吕砚山,赵正琦. BP神经网络的优化及应用研究[J].北京化工大学学报. 2001, 28(1): 67-69.
    [95]侯祥林,胡英,李永强等.隐层结构如何选择是多层人工神经网络应用中一个关键问题[J].东北大学学报(自然科学版), 2003, 24(1): 35-38.
    [96] Xuejun Cui, Shuangling Zhong, Hongyan Wang. Organic-inorganic hybrid proton exchange membranes based on silicon-containing polyacrylate nanoparticles with phosphotungstic acid [J]. Journal of Power Sources, 2007, 173: 28-35.
    [97] Y.C.Lin, Xu Chen. Investigation of moisture diffusion in epoxy system: Experiments and molecular dynamics simulations [J]. Chemical Physics Letters, 2005, 412: 322-326.
    [98]张朝阳,舒远杰,赵小东等人.两种氟聚合物在TATB晶体表面吸附的动力学模拟[J].含能材料, 2005, 13(4): 238-241.
    [99] Yuri Reyes-Mercado, Flavio Vazquez Francisco J., Rodriguez-Gomez, Yurko Duda. Effect of the acrylic acid content on the permeability and water uptake of poly (styrene-co-butyl acrylate) latex films [J]. Colloid Polym Sci, 2008, 286: 603-609.
    [100]王树强.涂料工艺第三分册[M].化学工业出版社.增订本. 44.
    [101]吴昱,吴自强.水体系中颜料分散过程的研究[J].涂料工业, 1998, (9): 35-37.
    [102]高翔,陆明兰,周逸平.二氧化钛(TiO2)颜料对PVC异性材耐候性的作用[C]. 2008年全国塑料门窗行业年会论文集, 2008, 144-150.
    [103]徐卡秋,高夏红.二氧化钛颜料的表面有机改性研究[J].化工进展. 2003, 22(11): 1200-1202.
    [104]中化化工标准化研究所. GB 1706-2006.二氧化钛颜料[S].北京:中国标准出版社. 2003: 847-853.
    [105]中化化工标准化研究所. GB 1863-2008.氧化铁红颜料[S].北京:中国标准出版社. 2003: 860-865.
    [106]中化化工标准化研究所. GB/T 20785-2006.氧化锌(间接法)[S].北京:中国标准出版社. 2003: 872-880.
    [107] G.P.Bierwagen, D.C.Rich. The critical pigment volume concentration in latex coatings [J]. Progress in Organic Coatings, 1983, 11(4): 339-352.
    [108] Dan Y. Perera. Effect of pigmentation on organic coating characteristics [J]. Progress in Organic Coatings, 2004, 50: 247-262.
    [109]崔学军.高性能含氟乳液的合成及水性含氟涂料耐沾污性研究[D].长春:吉林大学化学学院, 2008.
    [110] P.A. Steward, J. Hearna, M.C. Wilkinson. An overview of polymer latex film formation and properties [J]. Advances in Colloid and Interface Science, 2000, 86(3): 195-267.
    [111]中化化工标准化研究所. GB/T 1733-93.漆膜耐水性测定法[S].北京:中国标准出版社. 2003: 847-853.
    [112] Xuejun Cui, Shuangling Zhong, Hongyan Wang. Organic–inorganic hybrid proton exchange membranes based on silicon-containing polyacrylate nanoparticles with phosphotungstic acid [J]. Journal of Power Sources. 2007, 173: 28-35.
    [113]张兵,赵浩宇,邓建元.高分子量聚丙烯酸改性聚乙烯醇膜的耐水性能[J].北京化工大学学报, 2008, 35(5): 49-52.
    [114] Zhengxia Chen, Qiang Gu, Haifeng Zou, Tianqi Zhao, Hongyan Wang. Molecular Dynamics Simulation of Water Diffusion inside an Amorphous Polyacrylate Latex Film [J]. Journal of Polymer Science Part B: Polymer Physics, 2007, 45: 884-891.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700