流体与结构砰击的相似解与时域分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流体与结构砰击问题有十分广泛的应用,包括船舶水动力砰击、波浪砰击海洋平台、翻卷波砰击海岸结构、飞机的海上紧急迫降、航空条件下的超冷大液滴或冰块的砰击及体育运动方面的应用。本文首先综述流体与结构砰击的预报技术,回顾预报方法的技术状况,讨论其难点与关键技术问题。
     砰击过程持续的时间短,流体的运动近似无旋,故忽略流体的重力效应、粘性效应。忽略流体的压缩性可以引入速度势理论,流体满足Laplace方程。砰击时自由面的变化是非线性的,且自由面的变形是未知的,其变化是解的一部分,这也是砰击问题求解的一个主要困难。基于以上基本假定,论文建立相应模型、给出数学方程,采用数值方法进行求解。
     对于二维楔形刚体与楔形水柱的匀速砰击,由于参数可以无量纲化,空间时间变量可以分离,文章采用相似解求解。相似解的求解以边界元方法解边界值问题实现,并在射流区引入了浅水近似的解析解。文章引入积分形式的自由面边界条件,通过迭代得到收敛的相似解。文中给出了不同底升角楔形垂向或斜向入水的相似解,给出了自由面剖面的变化及对应的压力分布状况。特别讨论了楔形的非对称性和不同斜向速度对砰击的影响,分析了楔形刚体砰击时尖端的负压现象。
     砰击发生时,结构物遭受巨大砰击载荷,结构物的运动速度是变化的,该类问题需要采用时域步进的方法分析。本文首先研究了单个楔形和双楔形体的入水问题。首先考虑的是单楔形体和双楔形体的垂向入水,讨论了楔形体的质量、砰击速度及底升角对单楔形体砰击的影响,并讨论了双楔形体砰击时的双体干扰现象。接着进一步研究了单楔形体三自由度的自由入水,特别的考虑了常常被忽略的旋转速度的影响。文章详细而深入的考虑了砰击过程中三自由度运动的耦合。在时域分析中采用相似解作为初始解,在拓展坐标系下进行时域步进分析。在求解物体运动与流体流动的耦合运动时,采用辅助函数法对二者的耦合运动进行分析解耦。文章采用的方法与其他较为简单的数值方法和实验数据进行了对比验证,并进一步进行了质量守恒和能量守恒的验证。
     对于三维轴对称的锥形结构与轴对称水柱的砰击问题,本文将其转换到基于轴对称的柱坐标系下,通过边界元来求解该类问题,这给问题的求解带来很大的便利。锥形结构的匀速入水及锥形结构与液柱的匀速砰击也可通过相似解来求解,采用积分形式的自由面边界条件,以迭代的方法进行求解。文中给出了锥形结构入水及锥形结构与液柱砰击的自由面剖面形状及压力分布。特别的文中将三维相似解与二维相似解进行比较,考察三维效应。
     文章进一步研究了锥形液柱或椭球大液滴与锥形结构的砰击。研究了锥形结构的自由入水,给出了不同底升角圆锥的不同时刻的自由面剖面形状和压力分布。再次引入辅助函数对流体流动与锥形结构运动的耦合进行解耦分析。经验证,锥形结构与锥形液柱的匀速砰击时域解与相似解比较十分吻合,文章随后分析了二者的耦合运动。最后文章采用时域步进法分析了球形大液滴与锥形结构的匀速砰击及耦合运动,对比分析了二者的差异。
Fluids/structures impact problems have a wide range of important applications, including ship slamming, wave impact on offshore platforms, plunging wave on coastal structures, emergency landing of airplanes on the sea, as well as impact of super-cooled large droplets and ice lumps in the aeronautical settings, and applications in sports. Review and assessment of estimation techniques on fluids/structures impact are presented. The state of the art of prediction method is presented; Difficulties and key technologies are discussed.
     Impact usually lasts for a very short period of time and the effects of the viscosity of the liquid are usually ignored. As a result, the velocity potential can be introduced, which satisfies the Laplace equation when the compressibility of the liquid is ignored. A major difficulty is however the boundary conditions on the free surface, which are fully nonlinear and are imposed on a surface which is unknown and is part of the solution itself. The gravity effect on the flow is ignored based on the assumption that the ratio of the incoming speed of the liquid to the acceleration due to gravity is much larger than the time scale of interest. Based on the above assumptions we have developed the corresponding mathematic equations together with the numerical methodology.
     For a two dimensional rigid wedge colliding with water wedge at constant speed, similarity solution method is used, because there is no length scale. In other words, the spatial variables and the time variable could be combined. The problem of this similarity flow is solved by the boundary element method together with an analytical solution in the jet zone based on the shallow water approximation. Especially the convergent results are achieved through iteration for the integral form of the free surface boundary conditions. Various results are provided for the wave elevation, pressure distribution and force at different deadrise angles and at different direction of oblique entry. The effects of asymmetry and horizontal speed on these results are investigated. In particular, negative pressure near the tip of the solid wedge is observed and discussed.
     The water entry problem of single wedge or twin-wedges through free fall is then studied. Firstly the vertical entry of single or twin-wedges are considered, where the effects of mass, entry speed and deadrise angle of a single wedge have been discussed, and the interaction between twin-wedges has been observed. Furthermore the water entry problem of a wedge through free fall in three degrees of freedom is studied; In particular, the effect of the rotational velocity is taken into account, which seems to have been neglected so far. Extensive investigation has been made on the coupling of motions in three degrees of freedom. Similarity solution has been adopted as the initial flow pattern, and these problems are solved in a stretched coordinate system and the impact process is simulated based on the time stepping method. Auxiliary function method has been used to decouple the mutual dependence between the body motion and the fluid flow. The developed method is verified through results from other simulation and experimental data for some simplified cases and further validation are made through mass conservation and energy conservation.
     For the three dimensional axisymmetric hydrodynamic impact of cone structures and axisymmetric liquid columns, the problem is converted to quasi two-dimensional one and is solved by axisymmetric boundary element method in the axisymmetric coordinate system. This has simplified the solution procedure significantly. The constant water entry of a cone has been studied through similarity solution similar to the two-dimensional wedge, the integral free surface conditions have been adopted and the results are achieved through iteration. Various results of free surface profile and pressure distribution with different deadrise angle are presented. In particular comparisons with two dimensional wedges are presented to investigate the three dimensional effect.
     Then further researches are made on the coupled motion of the collision between cone structures and a liquid cone column or ellipsoid droplet. The free fall motion of cone structures is also studied, and various results on free surface profile and pressure distribution plus the acceleration and velocity at different entry distance are presented. Again the auxiliary function has been introduced to decouple the motion of the cone structures and the fluid flow. Then numerical simulations are made on the impact of liquid cone columns or sphere droplet. The results of the collision of liquid cone column at constant velocity are compared with those obtained from similarity solution and good agreement is found. The collisions of liquid column or sphere have been investigated at either constant velocity or through coupling analysis through time stepping method.
引文
[1]Rosenblatt; Son,Inc. Hydrodynamic impact on displacement ship hulls. Report of ship structure committee,1995
    [2]Greco, M., A two dimensional study of green water loading. Dept. of Marine Hydrodynamics, NTNU, Trondheim,2001
    [3]Ochi, M.K.; Motter, L.E., Prediction of slamming characteristics and hull responses for ship design SNAME Transaction.1973
    [4]Ochi, M.K. Experiments on the effective of bow form on ship slamming. DTMB, report 1400,1962
    [5]Stavovy; A.B, Chang, S.L., Analytical determination of slamming pressure for high speed vehicles in waves. Journal of Ship Research,1976,20(4).190-198P
    [6]Vonkarman The impact of seaplane floats during landing. NACA TN 321,1929
    [7]Chu,W., Abramson, H.N., Hydrodynamic theories of ship slamming-Review and extension SNAME. Journal of Ship Research, VOL.4,No.4, SWRI, san Antonio, Texas 1961, March,9-21P
    [8]Wagner,H. Uber Stoss-und Gleitvorgange an der Oberflache von Flussigkeiten. Z. angew. Mathematics Mechanics,1932; 12(4),193-215 P
    [9]Armand,J.L., Cointe, R., Hydrodynamic impact analysis of a circular cylinder Proc. Fifth International Offshore Mechanics and Arctic Engineering. Symposium. Tokyo, vol.1. 1987,609-634P
    [10]Howison, S.D., Ochenson, J.R., Wilson, S.K. Incompressible water entry problems at small deadrise angles. Journal of Fluid Mechanics,1991,222:215-230 P
    [11]Fraenkel, L. E., McLeod, J. B.1991 Some results for the entry of a blunt wedge into water. Phil. Trans. R. Soc. Lond. A355,523-535 P
    [12]Zhao, R., Faltinsen, O.M., Water entry of two-dimensional bodies. Journal of Fluid Mech. 1993,246,593-612 P
    [13]Wanatabe, T., Analytical Expression of hydrodynamic impact pressure by matched Asymptotic expansion technique Trans. West-Japan Society of Naval Architect. No.71, 1986 P
    [14]Korobkin, A.A, Iafrati, A., Hydrodynamic loads during initial stage of floating body impact. Journal of Fluids and Structures,2005,21:413-427 P
    [15]Korobkin, A.A., Gueretb, R., Malenica, S. Hydroelastic coupling of beam finite element model with Wagner theory of water impact. Journal of Fluids and Structures,2006,22: 493-504 P
    [16]Mei, X., Liu Y, Yue, D.K.P., On the water impact of general two-dimensional sections. Applied Ocean Research.1999,21,1-15 P
    [17]Yettou,EI-M., Desrochers, A., Champoux, Y., A new analytical model for pressure estimation of symmetrical water impact of a rigid wedge at variable velocities. Journal of Fluids and Structures,2007,23:501-522 P
    [18]Korobkin, A.A. Second-order Wagner theory of wave impact. Journal of Engineering. Mathematics,2007,58:121-139 P
    [19]Oliver, J.M. Second-order Wagner theory for two-dimensional water-entry problems at small deadrise angles. Journal of fluid mechanics,2007,572:59-85 P
    [20]Troesh, A.W., Kang, C.G. Hydrodynamic impact loads on three dimensional bodies[C]. In Proceedings of the 16th Symposium on Naval Hydrodynamics. Berkeley, CA, USA. 1987 P
    [21]Pesuex, B., Gornet, L.. Donguy, B. Hydrodynamic impact:Numerical and experimental investigations. Journal of Fluids and Structures,2005,21(3):277-303 P
    [22]Faltinsen, O.M., Chen, Z.A. A generalized Wagner theory method for three dimensional slamming. Journal of Ship Research,2005,49(4):279-287 P
    [23]Scolan, Y.M., Korobkin, A. A. Three dimensional theory of water impact. Part 1. Inverse Wagner problem. Journal of Fluid Mechanics 2001,440,293-326 P
    [24]Scolan, Y.M., Korobkin, A.A., Energy distribution from vertical impact of a three-dimensional solid body onto the flat free surface of an ideal fluid. Journal of Fluids and Structures,2003,17:275-286 P
    [25]Cumberbatch, E., The impact of a water wedge on the wall. Journal of Fluid Mechanics, 1960,353-374P
    [26]Dobrovols' kaya, Z.N., On some problems of similarity flow of fluids with a free surface. Journal of Fluid Mechanics.1969,36:805-829 P
    [27]Zhang, S., Yue, D.K.P. Tanizawa, K., Simulation of plunging wave impact on a vertical wall, Journal of Fluid Mechanics.,1996,327,221-254 P
    [28]Wu, G.X., Sun H, He,Y.S. Numerical simulation and experimental study of water entry of a wedge in free fall motion. Journal of Fluids and Structures,2004,19:277-289 P
    [29]Semenov, Y., Iafrati, A., On the nonlinear water entry problem of asymmetric wedges. Journal of Fluid Mechanics.2006,547:231-256 P
    [30]Longuet-Higgins. S., Cokelet, E.D., The deformation of steep surface waves on water. Ⅰ. A numerical method. Proceedings of the Royal Society, London A 350,1976,1-26 P
    [31]Lu C.H., He, Y.S., Wu, G.X., Coupled analysis of nonlinear interaction between fluid and structure during impact. Journal of Fluids and Structures,2000,14:127-146 P
    [32]Iafrati, A., Carcaterra, A., Ciappi, E., Hydroelastic analysis of a simple oscillator impacting the free surface. Journal of Ship Research,2000,44:278-289 P
    [33]Battistin, D., Iafrati, A., Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies. Journal of Fluids and Structures,2003,17:643-664 P
    [34]Zhao R., Faltinsen O.M., Aarsnes J., Water entry of arbitrary two-dimensional sections with and without flow separation. Proceedings of the 21st Symposium on Naval Hydrodynamics, Trondheim, Norway, National Academy Press, Washington, DC,1996, 408-423 P
    [35]Wu, G.X., Numerical simulation of water entry of twin wedges. Journal of Fluids and Structures 2006,22:99-108 P
    [36]Wu, G.X., Fluid impact on a solid boundary. Journal of Fluids and Structures 23, 755-765 P
    [37]Wu, G.X., Liquid column and liquid droplet impact. Quarterly Journal of Mechanics and Applied Mathematics, Vol.60,497-511 P
    [38]Zhu X.Y., Faltinsen, O.M., Hu, C.H., Water Entry and Exit of a Horizontal Circular Cylinder. Journal of Offshore Mechanics and Arctic Engineering,2007, Vol.129, 253-264 P
    [39]Hu, C.H., Kashiwagi, M., A CIP-based method for numerical simulation of violent free surface flows. Journal of Marine Science.,2004,9,143-157 P
    [40]Kleefsman, K.M.T., Fekken, G., Veldman, A.E.P., Iwanowski, B., Buchner, B., A VOF based simulation method for wave impact problems. Journal of Computational Physics, 2005,206:363-393 P
    [41]Sames, P.C., Schellin, T., Muzaferija, E.S., Application of a two-fluid Finite volume method to ship slamming. Journal of Offshore Mechanics and Arctic Engineering,1999, 121:47-52 P
    [42]Oger, G., Doring, M., Ferrant, P.. Two-dimensional SPH simulations of wedge water entries. Journal of Computational Physics,2006,213:803-822 P
    [43]Oger, G., Alessandrini, B., Ferrant, P.,3-D impact flows using an enhanced parallelized SPH model. Proceedings of International Conference on Violent Flows (VF-2007), Fukuoka,2007:103-111 P
    [44]Greco, M., Bazzi, T., Colicchio, G.,3-D ship-seakeeping problem:weak-scatterer theory plus shallow-water on deck[C]. Proceedings of the 23rd International Workshop on Water Waves and Floating Bodies. Jeju, Korea,2008,69-72 P
    [45]Aquelet, N., Souli, M., Olosson, L., Euler-lagrange coupling with damping effects: application to slamming problems. Computer Methods in Applied Mechanics and Engineering,2006,195:110-132 P
    [46]王永虎,石秀华入水冲击问题研究的现状与进展爆炸与冲击,2008第28卷第3期,276-282页
    [47]张效慈九零年以来砰击与撞水研究的进展,中外船舶科技,1995(4)7-11页
    [48]陈学农,何友声平头物体三维带空泡入水的数值模拟,力学学报1990,22(2)129-137页
    [49]顾懋祥,程贯一,张效慈平头旋转壳撞水水弹性效应的研究,水动力学研究与发展,1991,6(1)42-51页
    [50]李森虎,何友声,鲁传敬超声速平头物体垂直撞水的数值模拟,水动力学研究与发展,1992,7(1)72-78页
    [51]郑际嘉,岳亚丁刚性圆板自由落体在水面上的冲击压力,水动力学研究与发展,1992,7(2)219-226页
    [52]钱勤,黄玉盈,王石刚任意的拉格朗日欧拉边界元一有限元混合法分析物体撞水响应,固体力学学报,1991,15(1)12-18页
    [53]钱勤,黄玉盈,乐东义时域边界元法分析撞水响应,固体力学学报,1996,17(1)49-57页
    [54]王冰,叶天麒边界元的耦合界面步进法分析物体撞水响应航空学报,1997,18(5)551-554页
    [55]卢炽华,何友声二维弹性结构入水冲击过程中的流固耦合效应,力学学报,2000,32(2)129-140页
    [56]卢炽华,何友声,王刚船体砰击问题的非线性边界元分析,水动力学研究与发展,1999,14(2)169-175页
    [57]刘理,刘土光,李天匀大型船舶机舱结构冲击响应的数值模拟船舶工程,1999(2)8-10页
    [58]朱克强船体结构的线性水弹性分析,华东船舶工业学院学报,2000,14(4)13-19页
    [59]朱克强,郑道昌,周江华典型高速船的非线性水弹性响应,宁波大学学报(理工版),2005,18(4)458-462页
    [60]陶智祥,戴仰山外张砰击载荷,中国造船,1991,04,43-51页
    [61]胡嘉骏,蔡新钢船舶表面点砰击压力的预报方法,船舶力学,2005第9卷第1期,63-70页
    [62]俞永清,余建星,赵尚辉,殷铁成,田佳宽幅平底船型砰击载荷研究船舶力学2008第12卷第5期,740-747页
    [63]闰发锁,董丽娜,顾学康,戴仰山计及流固耦合时楔形结构的冲击压力计算,哈尔滨工程大学学报,2007第28卷第11期,1202-1205页
    [64]陈震,肖熙二维楔形体入水砰击仿真研究,上海交通大学学报2007第41卷第9期,1425-1428页
    [65]宣建明,缪弋,程军返回舱水上冲击特性的试验研究与理论计算水动力学研究与发展,2000,15(3)276-286页
    [66]张军,张志荣,洪方文楔形体入水初期流场的数值模拟,船舶力学,2003,7(4)28-35页
    [67]顾王明,唐文勇,陈铁云结构流一固冲击屈曲研究进展,力学进展,1996,26(1)56—67页
    [68]卢炽华,郑际嘉刚性细长柱体倾斜姿态落水冲击的附加质量法华中理工大学学报,1996,24(8)89-93页
    [69]卢炽华,郑际嘉空投鱼雷倾斜姿态落水冲击研究,应用力学学报,1996(4),17-23页
    [70]江松青,李永池,陈正翔侧向不均匀冲击下环向加筋圆柱壳的动力响应,计算力学学报,2001,18(4),443-448页
    [71]孙辉,卢炽华,何友声.二维楔形体冲击入水时的流固耦合响应的实验研究[J].水动力学研究与发展,2003,18(1):104-109页
    [72]Wu, G.X., Eatock Taylor, R. The coupled finite element and boundary element analysis of nonlinear interactions between waves and bodies. Ocean Engineering 2003,30, 387-400 P
    [73]Wang, C.Z. Wu, G.X., An unstructured-mesh-based finite element simulation of wave interactions with non-wall-sided bodies. Journal of Fluids and Structures 2006,22, 441-461P
    [74]Maruo, H., Song, W. Nonlinear analysis of bow wave breaking and deck wetness of a high speed ship by the parabolic approximation. In:proceeding of 20th symposium on naval hydrodynamics, University of California, Santa Barbara, California,1994
    [75]Sun, H. A boundary element method applied to strong nonlinear wave-body interaction problems, Doctoral Thesis at NTNU, Trondheim, Norway,2007
    [76]许国冬,流体/刚体砰击问题及相似解研究.哈尔滨工程大学硕士学位论文.2008
    [77]Batchelor, G.K. An Introduction to Fluid Dynamics, Cambridge University Press,1967
    [78]Korobkin, A.A., Wu, G.X. Impact on a floating circular cylinder. Proceedings of the Royal Society of London, A.2000,456,2489-2514.
    [79]Judge, C., Troesch, A. W., Perlin, M. Initial water impact of a wedge at vertical and oblique angles. J. Engng Maths 2004,48,279-303 P
    [80]Wu, G.X. Hydrodynamic force on a rigid body during impact with liquid. Journal of fluid structures 1998,12,549-559 P
    [81]Wu, G. X., Eatock Taylor, R. Transient motion of a floating body in steep waves.11th Workshop on Water Waves and Floating Bodies, Hamburg, German,1996
    [82]戴遗山,段文洋船舶在波浪中运动的势流理论,国防工业出版社,2008
    [83]Shiftman, M., Spencer, D.C. The force of impact on a cone striking a water surface: vertical entry. Communications on Pure and Applied Mathematics 1951,4(4) 379-417 P
    [84]贺五洲,高奇华轴对称线元上的分布奇点的诱导速度势和诱导速度,哈尔滨船舶工程学院学报,1993,14卷1期,1-9页
    [85]Abramowitz M. Stegun A. Handbook of Mathematical Functions. New York: Dover Publications Inc,1972
    [86]张阿漫,水下爆炸气泡三维动态特性研究,哈尔滨工程大学博士学位论文,2008
    [87]Eatock Taylor, R.,Wu,G.X., Wei,B., Hu,Z.Z, Numerical wave tanks based on finite element and boundary element modelling. Journal of Offshore Mechanics and Arctic Engineering,2008, Vol.130 P
    [88]段文洋 船舶大幅运动非线性水动力研究,哈尔滨工程大学博士论文1995
    [89]Dommermuth, D., Yue, D.K.P., Numerical simulations of nonlinear axisymmetric flows with a free surface, Journal of Fluid Mechanics 1987,178,195-219 P
    [90]Wu, G.X., and Hu, Z.Z., Simulation of non-linear interactions between waves and floating bodies through a finite-element-based numerical tank," Proceeding of royal society A,2004,460,2797-2817 P
    [91]Baldwin, J.L., Vertical water entry of cones, Naval Ordance Laboratory, White OAK, Silver Spring, Maryland,1971

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700