复合材料圆柱壳结构动响应及屈曲
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究工作围绕着复合材料加筋圆柱壳自由振动、非线性冲击响应、屈曲及后屈曲、以及脱层屈曲这些研究内容展开。通过理论分析、数值计算和试验研究对上述内容进行了系统的研究,并分析了各种参数如壳体参数、加筋结构参数、脱层参数对复合材料结构的影响,为复合材料加筋圆柱壳的设计提供了合适的分析方法和理论依据。本文的主要工作有如下几个方面:
     首先,论文对复合材料加筋圆柱壳的自由振动,在轴向载荷作用下的非线性动力响应,以及在轴向压缩作用下的屈曲和后屈曲问题作了全面回顾和评述,特别对含有脱层损伤的复合材料圆柱壳在轴向载荷下的屈曲问题的研究进展以及这类结构的试验研究进行了综述和评论。
     第二章对两端简支纵横加筋层合圆柱壳的自由振动进行了理论研究。根据Love’s壳体理论以及Rayleigh-Ritz能量法,导出结构的动力控制方程,求解了复合材料加筋圆柱壳的自由振动频率。讨论了壳体和加筋结构参数以及静水压力的变化对圆柱壳自由振动频率的影响。
     第三章采用半解析方法,建立了简化离散的复合材料环向加筋-圆柱壳模型,求解了环向加筋圆柱壳在轴向冲击载荷作用下的动力响应问题。分析中考虑了加筋壳的大变形、剪切变形、转动惯量、以及加筋肋骨的拉伸,弯曲,剪切变形的影响,运用Hamilton变分原理导出了层合加筋圆柱壳的非线性的运动控制方程,运用伽辽金法对控制方程进行离散,采用数值方法求解,通过算例分析讨论了环向加筋数目及几何参数,壳体铺层角度、材料参数、铺层方式、铺层层数以及冲击载荷形式等对动力响应的影响。
     第四章基于一阶剪切理论推导了复合材料加筋圆柱壳在轴向压力作用下的广义Donnell型方程。采用摄动技术,给出了全局渐近摄动解,运用奇异摄动技术详细分析了该圆柱壳端部边界层方程和奇异摄动解。求解了角铺层及对称正交铺层圆柱壳在轴压下的屈曲载荷和后屈曲路径。揭示了复合加筋圆柱壳结构的后屈曲过程中模态跳跃、屈曲多次分支等现象。
     第五章研究对象是含有环向贯穿脱层复合材料圆柱壳。建立了屈曲分析模型,基于一阶剪切理论得到了脱层壳屈曲微分方程以及相应的边界条件、位移连续条件和力平衡条件.然后采用分离变量法及状态空间法对方程求解,讨论了壳体参数、脱层长度、深度、位置以及纤维铺层方向对脱层圆柱壳屈曲载荷的影响。
     文章的最后对复合材料圆柱壳的自由振动模态,轴压屈曲及后屈曲两个方面进行了系列化的试验研究。试验研究结果表明:复合材料圆柱壳在自由悬挂下测得的振动模态和理论计算相比很接近;而静压破坏试验结果和理论计算结果有较大的出入。最后分析了产生这些误差的原因。
Free vibration, nonlinear dynamic response, buckling and postbuckling, delaminarion buckling of composite circular cylindrical shells with stringer and ring stiffeners have been investigated theoretically, numerically, experimentally in this paper. The effects of the shells and stiffener parameters, delaminarion parameters on the stiffened composite shells are discussed. The aim is to provide appropriate analytical methods and theoretical basis for design of stiffened composite shells. The major work in this paper is as follows:
     At the beginning, the advances in the research of free vibration, nonlinear dynamic response under axial impact load, buckling and postbuckling under axial compression of the stiffened composite shells are reviewed comprehensively. The main comments are systematically remark on the delaminarion buckling. Research background and involved elementary theory of this thesis are emphatically expatiated.
     The second part of paper is about the analytical solution for the free vibration of simply supported composite circular cylindrical shells with stringer and ring stiffeners. Using the Love’s theory and the Rayleigh-Ritz energy method, the frequency equations can be deduced, which can be solved. The effects of shells and orthogonal stiffeners parameters such as the shell thickness-to-radius radio, the shell length-to-radius radio, the stiffener’s height, lamination angle and forms on the frequencies are studied. In addition, the effect of hydrostatic pressure is also discussed.
     The third part presents a simple and efficient semi-analytic method to solve the nonlinear dynamic response of composite circular cylindrical shells with circumferential stiffeners under axial impact load. Applying the discrete stiffened shells model, Based on the composite shell's shear deformation theory, the motion equations of stiffened shells is deduced using Hamilton’s variation principle. The deformation of the shells and the load are expanded in double series. The motion equations expressed by deflection are obtained with the Galerkin method, and numerically solved by R-kutta approach. Examples are given for the nonlinear dynamic response of stiffened composite shells under axial impact. The effects of the stiffener geometric parameters, lamination angle, lamination forms, the numbers of lamination layers on the dynamic response of stiffened composite circular cylindrical shells are discussed.
     In the forth part, the generalized Donnell-type equations governing large deflection of laminated cross-ply circular cylindrical shells based on first-order shear deformation theory are presented. An asymptotic series solution is constructed by the perturbation technique for postbuckling behavior of the cylindrical shell under axial compression. The boundary layer solutions are also designed to match with the out-of-plane boundary conditions by singular perturbation approach, and then determined the critical buckling loads and postbuckling equilibrium paths. The effect s of the stiffener and shell geometric parameters, lamination angle, lamination forms, initial imperfection on the buckling and postbuckling behavior of the shells are discussed.
     The fifth chapter analyzed the buckling behavior of composite circular cylindrical shells with throughout circumference delamination by using the first first-order shear deformation theory. And establish the buckling model by spaning the entire circumference is divided into multiple sublaminates shell. The deformations are expanded in double series.
     The variational principle is applied to obtain the governing equations, boundary conditions, the continuous conditions of displacements, the equilibrium conditions of the force and moment. The influences of the shell geometric parameters, lamination angle, lamination forms, length and depth of delamination on buckling load are analyzed.
     The final part offered an experiment of free vibration, buckling and postbuckling under axial compression of composite circular cylindrical shells with or without delamination. The effects of lamination angle, length and range of delamination on buckling load, postbuckling behavior and the final damage form are discussed. The comparison between the experiment outcome and the numerical results indicates that those frequency results of the composite circular cylindrical shells are in good agreement with each other. However, the result of the crush experiment is inconsistent with the theoretical outcome. At last, the reasons for those discriminations are presented.
引文
[1] 王震鸣,复合材料力学与复合材料结构力学[M]。北京:机械工业出版社。1991
    [2] 曾庆敦,复合材料的细观破坏机制与强度[M]。北京:科学出版社。2002
    [3] 洛阳船舶材料研究所,发展先进舰船材料技术势在必行,纪念中国造船工程学会成立 60 周年中国船舶工业发展论坛。中国造船工程学会。北京,2003
    [4] 陈详宝,先进树脂基复合材料研究进展,航空复合材料预研二十年回顾展望研讨会,2001 年
    [5] Mukhopadhyay M, Sinha G.. A review of dynamic behavior of stiffened shells. Shock and vibration digest, 1992, 24(9)
    [6] GuyonY., Cacul des ponts larges a pouters ultiples solidarises par des entretoises. Anns Pont Chaussess Fr, 1964, 10:553-612.
    [7] Massonnet C., Methode de calcul des ponts a poutres multiples tenant compte deleur resistance a la torsion. Pub. Int. Assoc. Bridge Struct. Engng., 1950, 10:680-748.
    [8] Massonnet C., Contribution au calcul des ponts a poutres multiples. Tranv. Publ. Belg., 1950, 103:337-422.
    [9] Bares R and Massonnet C., Analysis of bean grids and orthotropic plate. New York, Frederick Ungar,1966.
    [10] Flügge., Die Orthtrop platte mit hohlsteifen. Ost. Ing. Arch., 1955, 2:199-207.
    [11] Hoppman W H., Some characteristics of the flexural vibration of orthogonally stiffened cylindrical shells.J.Acoust.Soc.Am., 1958, 30:77-83.
    [12] Penzes L E., Effect of boundary condition on fleural vibration of thin orthogonally stiffened cylindrical shell. J.Acoust.Soc.Am, 1967, 42:901-903.
    [13] Koiter W. T. and van der Neut, A. Interaction between local and overall buckling of stiffened ompression panels In Thin walled Structures, 1980, 61~85.Granada, London.
    [14] Koiter W. T. and Pignataro, M. An alternative approach to the interaction between local and overall buckling in stiffened panels. In IUTAM Symposium, Cambridge, MA, Buckling of structures,1974,133~148.springer, Berlin.
    [15] Koiter W. T. and Pignataro, A general theory for the interaction between local and overall buckling in stiffened panels. Delft University of Technology, Dept. of Mechanical Engineering, Report WTHD-83,1976.
    [16] Van der Neut, A. Mode interaction in stiffened panel. In IUTAM Syposium, Cambridge, MA, 1974, Buckling of Structures,117~132.Springer,Berlin.
    [17] Tulk J. D. and Walker, A.C., Model studies of the elastic buckling of a stiffened plate. J. Strain Analysis 1976, 11:137~143.
    [18] Sridharan S. and Ali, M., A. Interaction buckling in thin-walled beam columns. J.Engng Mech., ASCE.1988,111:1470-1486.
    [19] Leckie F.A., Application of transfer matrices to plate vibration, Ing.Arch.,1963,32:100-11.
    [20] Omidvaran C. Free vibration of grid stiffened plates, J. Sound Vib.,1971,19:462-472.
    [21] Omidvaran C. and Delagraza W., Vibration of monolithic grid stiffened plates, J. Sound Vib.,1973,26:21-28.
    [22] Balendra T. and Shanmugam N.E., Free vibration of plated structures by grillage method, J. Sound Vib., 1985,99(3):33-350.
    [23] Schubak R.B., Nonlinear rigid-plastic modeling of blast loaded stiffened plates, Ph. D. Thesis, Vancouver B C, Canada: University of British Columbia, 1991.
    [24] Galletly G D. On the in-vacuo vibrations of simply supported ring-stiffened cylindrical shell. Proc of the second U.S.A. national congress of applied mechanics, 1954.
    [25] Sewall J L, Clary R R, Leadbetter S A. An experimental and analytical vibration study of ring-stiffened cylindrical shell structure with various support conditions. NASA TN D-2398, 1964: 52.
    [26] Sewall J L. Naumann E C. An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners. NASA TN D-4705, 1968: 54.
    [27] Hoppmann, W H, II. Flexual vibration of orthogonally stiffened cylindrical shells. Proc. 9th Intl. Cong, Appl. Mech., Brukelles, 1956: 225~237.
    [28] Miller P R. Free vibrations of a stiffened cylindrical shell. J. Acoust. Soc. Am., 1957, 28.
    [29] Martin M Mikulas, Jr, John A McElman. On free vibrations of eccentrically stiffened cylindrical shells and flat plates. NASA TN D-3010,1965.
    [30] William C L Hu, Thein Wah. Vibrations of ring-stiffened cylindrical shells~an “exact” method. National Aeronautics and Space Administration Washington 25, D.C, Technical Report No.7 Contract NASr-94(06) SWRI Project 02-1504, 1966.
    [31] 铁摩辛柯, 板壳理论,北京 : 科学出版社, 1977.
    [32] Alam N, Asnani N T. Vibration and damping analysis of a multi-layered cylindrical shell. part II: Numerical results , AIAA J ,1984 ;22(7) :975-981.
    [33] Huang N N. Exact analysis for three-dimensional free vibrations of cross-ply cylindrical and doubly-curved laminates. Acta Mech,1995,108(1-4):23-34.
    [34] Sheinman I, Wessman S. coupling between symmrtric and antisymmetric modes in shells of revolution. Composite material,1987,21(8):988-1007.
    [35] Xi Z C ,Yam L H. Semi-analytical study of free vibration of composite shells of revolution based on the Reissner-Mindlin assumption. Int J Solids Struct, 1996,33(6):851-863.
    [36] Nosier A, Reddy J N. On vibration and buckling of symmetric dynamic plates according to shear deformation theories ,part I. Acta Mech, 1992, 94(3-4): 123-144.
    [37] Nosier A, Reddy J N. On vibration and buckling of symmetric dynamic plates according to shear deformation theories ,part II. Acta Mech, 1992, 94(3-4): 145-169.
    [38] Levinson M. An accurate simple theory of the statics and dynamics of the elastic plates. Mech Res Commun,1980,7(2):343-350.
    [39] Reddy J N. A review of refined theories of laminated composite plates. Shock and vibration digest, 1990, 22(1):3-17 1992, 24(9).
    [40] Egle DM, Sewall Jk. An analysis of the free vibration of orthogonally stiffened cylindrical shells with stiffeners treated as discrete elements. AIAA 1968,3:518-526.
    [41] Lam KY, Loy CT. Analysis of rotating laminated cylindrical shells by different thin shell theories, Journal of Sound and Vibration. .1995,196(1):23-35.
    [42] Lee Y.S.,Kim Y.W.,Vibrations analysis of rotating composite cylindrical shells with orthogonal stiffeners,Computers and Structures,1998,69:271-281.
    [43] Lee Y.S.,Kim Y.W.,Effect of boundary conditions on natural frequencies for rotating composite cylindrical shells with orthogonal stiffeners,Advanced Engineering Software,1999,30:649-655.
    [44] Kassegne S.K.,Reddy J.N.,Local behavior of discretely stiffened composite plates and cylindrical shells,Composite Structures,1998,41:13-26.
    [45] Zhao X,Liew K.M.,Ng T.Y.,Vibration of rotating cross-ply laminated circular cylindrical shells with stringer and ring stiffeners,International Journal of Solids andStructures,2002,39:529-545.
    [46] Zhang XM, Liu GR, Lam KY. Frequency analysis of cylindrical panels using a wave propagation approach. Applied Acoustic,2001:527-543.
    [47] 张雨,向锦武. 复合材料层合厚圆柱壳高阶理论的改进及其应用. 复合材料学报.2002,19(4):87-91.
    [48] Timarci T, Soldatos KP. Comparative dynamic studies for sym-metric cross-ply circular cylindrical shells on the basis of a unitied shear deformable shell theory [J]. Journal of Sound and Vibration, 1995,187(4):609-624.
    [49] Lam KY, Ng TY, Wu Q. Vibration analysis of thick laminated composite cylindrical shells [J]. AIAA J,1999,38(6):1102-1107.
    [50] Liu M L, To C W S. Free vibration analysis of laminated composite shell structures using hybrid strain based layerwise finite elements. Finite Elements in Analysis and Design 2003,40(1):83-120.
    [51] Werner Hufenbach , Carsten Holste, Lothar Kroll. Vibration and damping behaviour of multi-layered composite cylindrical shells. Composite Structure. 2002,58:165-174.
    [52] Rakesh Kumar; Kant, Tarun; Garg, Ajay Kumar. Free vibration of composite and sandwich laminates with a higher-order facet shell element, Composite Structures,2004,65(3-4):405-418.
    [53] 郭兆璞,陈浩然,项晨等. 空间复合材料加筋板的流固耦合振动分析,中国造船,1994,4:50-49.
    [54] 项晨,陈浩然,郭兆璞.复合材料加筋结构的流固耦合振动及动响应分析,复合材料学报,1996,13(3):100-104.
    [55] Lee Y S, Choi M H Kim J H. Free vibrations of laminated composite cylindrical shells with an interior rectangular plate. Journal of Sound and Vibration 2003,265:795–817.
    [56] 张涛,加筋板非线性动态响应、屈曲及分叉,华中科技大学博士学位论文, 2003.
    [57] Balamurugan V., Ganapathi M. and Varadan T.K, Nonlinear dynamic instability of laminated composite plates using finite element method, Composite Structure. 1996,60:125-130.
    [58] Kapania R K, Byun C. Vibration of imperfect laminated panels under complex preloads. Ini J Nonlinear Mech. 1992,27(1):51-62.
    [59] 刘人怀, 王墦. 复合材料层合扁球壳的非线性强迫振动。力学学报,1997,29(2):236-241.
    [60] Kolli M. and Chandrashekhara K., Non-linear static and dynamic analysis of stiffened laminate plates, Int. J. Non-linear Mech., 1997,32(1):89-101.
    [61] 张承宗. 考虑剪切变形的任意铺设复合材料圆柱壳线性力学响应问题的一般解析界. 船舶力学, 2000, 4(1):24-35.
    [62] 江松青,加筋板壳弹塑性动响应及动力屈曲研究,华中理工大学博士学位论文, 1999.
    [63] Kim Y.W., Lee Y.S., Transient analysis of ring-stiffened composite cylindrical shells with both edges clamped. Journal of Sound and Vibration, 2002, 252 (1):1-17.
    [64] G.Sinha, M.Mukhopadhyay, Transient dynamic response of arbitrary stiffened shells by the FEM. Journal of Vibration and Acoustics, 1995,117:11-16.
    [65] 万志敏,杜星文,谢志民.玻璃/环氧圆柱壳的冲击响应与稳定性分析,复合材料学报.2001,18(4):82-86.
    [66] 唐文勇,陈铁云.迭层复合材料圆柱曲板的非线性动力响应分析[J],上海交通大学学报。1998,32(7):128-131.
    [67] A.A.Smerdov, A computational study in optimum formulations of optimization problems on laminated cylindrical shells for buckling I. shells under axial compression[J]. Composites Science and Technology, 2000,60:2057-2066.
    [68] Nosier A and Reddy J.N., A study of non-linear dynamic equation of higher-order shear deformation theories[J]. International Journal Non-Linear Mechanics, 1991,26(2):233-249.
    [69] Nosier A and Reddy J.N., On vibration and bucking of symmetric laminated plates according to shear deformation theories[J]. Acta Mech, 1992, 94(3-4): 123-169.
    [70] Kapania R K, Stoumbos T J G. Geometrically nonlinear impact response of thin laminated imperfect cylindrical panels. Composite Engineering. 1994, 4(4): 397-416.
    [71] Reddy J N. Geometrically nonlinear transient analysis of laminated doubly curved shells. Int J Non-linear Mech, 1985,20(2):79-90.
    [72] 王天霖,唐文勇,张圣坤. 半解析法求解复合材料圆柱壳的非线性动力响应. 上海交通大学学报. 2005,39(11):1852-1855.
    [73] Mao renjie, Williams F W. nonlinear analysis of cross-ply thick cylindrical shells under axial compression. Int J Solids structures. 1998,35(17):2151-2171
    [74] Krishnamurthy K S, Mahajan P. .Impact response and damage in laminated composite cylindrical shells. Composite Structures, 2003,59 (1):15-36.
    [75] Barut A, Mafenci E, Tessler A. Nonlinear analysis of laminates through a mindlin-type shear deformable shallow element. Computer Methods in Applied Mechanics and engineering. 1997,142:155-173.
    [76] Naidu N V S, Sinha P K. Nonlinear transient analysis of laminated composite shells in hygrothermal environments. Composite Structures 2006, 72: 280-288
    [77] To C W S, Liu M L. Geometrically nonlinear analysis of layerwise anisotropic shell structures by hybrid strain based lower order elements. Finite Elements in Analysis and Design 2001,37:1-34.
    [78] 宋丽茹,岳建军,刘土光. 轴向冲击下非线性弹性圆柱壳轴对称响应仿真. 计算机仿真. 2004,21(7):61-64.
    [79] 江理平 . 圆柱扁壳的非线性动力响应的样条加权残值分析 . 上海力学 . 1999,20(3):297-301.
    [80] Karman, Tsien H S. The buckling of thin cylindrical shells under axial compression. Journal of the Aerospace Sciences. 1941,8:303-312.
    [81] Yamaki N. Elastic stability of circular cylindrical shells. Elsevier Science Publishers. B. V.
    [82] Stein M. The effect on the buckling of perfect cylinders of prebuckling deformations and stress induced by edge support. NASA TN D-1510(1962).
    [83] Stein M. The influence of prebuckling deformations and stress in the buckling of perfect cylinders. NASA TRR-190(1964).
    [84] Koiter W T. On the stability of elastic equilibrium. PhD Thesis, Delft, H J Paris.
    [85] 陈铁云,沈惠申 结构的屈曲. 上海:上海科学技术文献出版社. 1993.
    [86] 沈惠申. 近海平台管状构件弹性稳定性. 上海交通大学博士学位论文,1986
    [87] 沈惠申,陈铁云. 圆柱薄壳在外压作用下屈曲的边界层理论. 应用数学和力学, 1988, 9:515-527.
    [88] Shen H S. Postbuckling of shear deformable cross-ply laminated cylindrical shells under combined external pressure and axial compression. International Journal of Mechanical Sciences. 2001;43:2943–2523.
    [89] 王震鸣,范赋群,吴代华. 复合材料及其结构的力学进展. 武汉:武汉工业大学出版社. 1992.
    [90] Lessia. A W. A review of laminated composite plate buckling. Appl. Mech.Rev.1987,40(5):575-591.
    [91] 邹志庆. 不同边界条件正交各项异性中厚板的振动与稳定性分析. 应用力学学报, 1992, 9(2):1-6.
    [92] Reddy J N. A general nonlinear third-order theory of plates with moderate thickness. Iny J Non-linear Mech. 1990,25(4):677-686.
    [93] 周承调. 复合材料圆柱壳稳定性理论的进展. 罗祖道, 王震鸣. 复合材料力学进展. 北京, 北京大学出版社. 1992:261-295.
    [94] Cheng S, Ho B P C. Stability of heterogeneous aeolotropic cylindrical shells under combined loading. AIAA Journal. 1963,1:892-898.
    [95] Ho B P C, Cheng S. Some problems in stability of heterogeneous aeolotropic cylindrical shells under combined loading. AIAA Journal. 1963,1:1603-1607.
    [96] Tasi J, Feldman A, Stang D A. The buckling strength of filament wound cylinders under axial compression. 1965,NASA CR-226.
    [97] Tennyson R C. Buckling of laminated composite cylinders: a review. Composites , 1975,6:17-24.
    [98] Khot N S. Buckling and postbuckling behavior of composite cylindrical shells under axial compression. AIAA Journal. 1970,8:229-235.
    [99] Khot N S, Venkaya V B. effect of fiber orientation on initial postbuckling behavior and imperfection sensitivity of composite cylindrical shells, AFFDL -TR-70-175(1970).
    [100] Jones R M. Mechanics of Composite Materials. Hemisphere. New York1975.
    [101] Abu Farsakh G A, Lusher J K. Buckling of glass-reinforced plastic cylindrical shells under combined axial compression and external pressure. AIAA journal, 1985,23:1946-1951.
    [102] Soldators KP. Nonlinear analysis of transverse shear deformable laminated composite cylindrical shells Part 1& 2.[J]. ASME Journal of Pressure Vessel Technology, 1992, 114:105-109.
    [103] Anastasiadis SJ, Tabiei A, Simitses GJ. Instability of moderately thick, laminated, cylindrical shells under combined axial compression and pressure[J]. Composite Structures 1994, 27:367–78.
    [104] Reddy JN, Savoia M. Layer-wise shell theory for post-buckling of laminated circular cylindrical shells. AIAA. 1992, 30:2148–2154.
    [105] Eslami M,R, Shariyat M. Layerwise of theory for dynamic buckling and post-buckling of laminated cylindrical shells[J]. AIAA,1998, 36:1874-1882.
    [106] Eslami M,R, Shariyat M. A higher-order theory for dynamic buckling and post-buckling analysis of laminated cylindrical shells[J]. ASME Journal of Pressure Vessel Technology, 1999, 121:94-102.
    [107] 王柯晟,刘国强,朱晓莹.含初始缺陷的加强复合材料圆柱壳非线性屈曲分析. 机械设计与制造. 2004,2:63-65.
    [108] 何煌. 编织复合材料圆柱壳的稳定性分析. 中国人民解放军国防科学技术大学硕士论文,2003.
    [109] Shen H S. Postbuckling analysis of stiffened laminated cylindrical shells under combined external pressure and axial compression. International Journal of Mechanical Sciences. 1998;20:738–751.
    [110] Shen H S. Postbuckling analysis of imperfect stiffened laminated cylindrical shells under combined external pressure and thermal loading. International Journal of Mechanical Sciences. 1998;40:339–355.
    [111] 王毅,罗永峰,沈惠申. 各向异性复合材料圆柱薄壳轴压下的屈曲性能. 同济大学学报. 2002,30(6):673-679.
    [112] 张建武,徐延海,吴金松. 反对称正交铺层剪切圆柱壳在轴压下的屈曲分析. 上海交通大学学报.2002,36(3):411-415.
    [113] 沈惠申. 复合材料层合剪切圆柱曲板在侧压作用下的后屈曲. 应用数学和力学. 2003,24(4):357-366.
    [114] 沈惠申. 热-压电效应对轴压混合层合圆柱曲板后屈曲的影响. 应用数学和力学. 2004,25(1):22-34.
    [115] 魏德敏,杨桂通.复合材料迭层板非线性动力稳定性. 应用数学和力学 2004, 25(11):1113-1116.
    [116] 徐凯宇,周哲伟,钱伟长. 各项异性层合圆柱壳的亚谐分叉. 上海大学学报1997,3(2):88-92.
    [117] Bisagni C. Experimental buckling of thin composite cylinders in compression[J]. AIAA 1999, 47(2):276–285.
    [118] Bisagni C, Numerical analysis and experiment correlation of composite shell buckling and post-buckling. Composites Part B: engineering 2000;31 655-667.
    [119] Bisagni C, Cordisco P. Testing of stiffened composite cylindrical shells in thepostbuckling range until failure. AIAA J 2004;42(9):1806-1817.
    [120] Bisagni C, Cordisco P. An experimental investigation into the buckling and post-buckling of CFRP shells under combined axial and torsion loading. Composite Structures 2003,60(4):391-402.
    [121] Miller A C, Lowell D T, Seferis J C. The evolution of an aerospace material, Influence of design, manufacturing and in-service performance, Composite Structures. 1994,27:193-206.
    [122] Troshin V P. Effect of longitudinal delamination in a laminar cylindrical shell on the critical external pressure. Composite materials. 1983,17(5):563-567.
    [123] Sallam S, Simitsesd G L, Delamination buckling of laminated cylindrical shells under axial compression. Composite Structures, 1987,7(2):83-101.
    [124] Kardomates G A, Cheng C B. Thin film modeling of delamination buckling in pressure loaded laminated cylindrical shell. AIAA J. 1992,30(8):2119-2123.
    [125] Chattopadhyay A. Gu H Z. Modeling of delamination buckling in composite cylindrical shells with a new higher-order theory. Composite Science and Technology. 1995,54(2):223-232
    [126] Gu H Z. Chattopadhyay A. Delamination buckling in. and postbuckling of composite cylindrical shells. AIAA J. 1995,36(6):1279-1286
    [127] 李道奎,周建平,雷勇军. 脱层壳屈曲的一阶剪切理论. 国防科技大学学报. 2000,22(5):1-6.
    [128] 李道奎, 周建平. 含环向贯穿脱层的轴压圆柱层壳屈曲分析 I--基本方程与定解条件. 复合材料学报. 2002,19(1):74-79.
    [129] 李道奎, 周建平. 含环向贯穿脱层的轴压圆柱层壳屈曲分析 I—算例分析. 复合材料学报. 2002,19(1):80-84.
    [130] 李道奎,周建平,唐国金. 含内埋矩形脱层复合材料圆柱壳屈曲分析的混合变量条形传递函数方法. 计算力学学报. 2005,22(3):262-267.
    [131] 李四平 , 聂建国 , 黄玉盈 . 脱层屈曲的高阶摄动解 . 力学季刊 . 2005,26 (3) :502-505
    [132] 李四平,聂建国,钱稼茹等.复合材料脱层屈曲的摄动解. 固体火箭技术,2000, 23(1):53-57.
    [133] Peak S D, Springer G S. The behavior delamination in composite plates analytical and experimental results. Journal of composite materials. 1991,25: 907-929.
    [134] 胡宁,胡斌,姚振汉. 含脱层的复合材料层板屈曲分析中的接触问题. 力学学报. 1998,30(6):700-710.
    [135] 李三平, 叶天麒. 复合材料脱层板的三维非线性有限元屈曲分析. 机械科学与技术. 1998,17(1):35-38.
    [136] 李跃宇. 受弯脱层层板胡屈曲有限元分析. 力学季刊. 2000,21(3):377-380.
    [137] 朱菊芬,郑罡,武金瑛. 层合板壳脱层屈曲的有限元分析. 应用数学和力学. 2000,21(3):301-306.
    [138] Zhu J fen, Zhang G, Howson W P. Reference surface element modeling of composite plate/shell delamination buckling and postbuckling. Composite Structures. 2003,61:255-364.
    [139] Shun F H, Shu M H. Post-buckling behavior of composite laminates with two delaminations under uniaxial compression. Composite Structures. 2005,(68), 157-165
    [140] Tafreshi A. Efficient modelling of delamination buckling in composite cylindrical shells under axial compression. Composite Structures. 2004, (64):511-520
    [141] Tafreshi A. Delamination buckling and postbuckling in composite cylindrical shells under combined axial compression and external pressure. Composite Structures. 2006.(72):401-418.
    [142] Remmers J J C, Borst R D. Delamination buckling of fibre-metal laminates. Composite Structures. 2001.(61):2207-2213.
    [143] Alfano G.. Crisfield M A. Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. International Journal for Numerical Methods in Engineering.2001, 50:1701–1736,
    [144] Bruno D, Greoco F,Lonetii P. A 3D delamination modelling technique based on plate and interface theories for laminated structures. European Journal of Mechanics A/Solids. 2005,24:127-149.
    [145] Krueger R, Brien T K. A shell(3D) modeling technique for the analysis of delaminated composite laminates. Composites: Part A. 2001,32:25-44.
    [146] Mahapatra D Y, Gopalakrishnan S. Spectral finite element analysis of coupled wave propagation in composite beams with multiple delaminations and strip inclusions. International Journal of Solids and Structures. 2004,41:1173-1208.
    [147] Wells G. N, Sluys L J A new method for modeling cohesive cracks using finite elements. Int. J. Number. Methods Engineering. 2001, (50):2667-2682.
    [148] Larsson R A discontinuous shell-interface element for delamination analysis of laminated composite structures. Computer. Methods in Applied. Mechanics. Engineering. 2004,(193):3173-3194.
    [149] 乔纳斯,朱卡斯,碰撞动力学,张志云等译。北京,兵器工业出版社,1987。
    [150] 张力,徐明君,孟春玲. 汽车复合材料制动缸体的试验模态分析. 工程材料应用. 2005,32(10):49-51.
    [151] 闻荻江, 张力, 张恒. 聚合物基复合材料发动机体的模态试验分析. 农业工程学报. 2005,21(2):22-25.
    [152] 陈美霞. 敷设阻尼材料的有限长双壳体声辐射理论及数值分析. 华中科技大学博士学位论文, 2004.
    [153] 万志敏, 桂良进, 谢志民, 杜星文玻璃-环氧圆柱壳吸能特性的试验研究. 复合材料学报. 1999,16(2):15-20.
    [154] 宋宏伟,万志敏,杜星文. 复合圆柱管撞击吸能特性实验研究. 实验力学2000,15(4):408-415.
    [155] 周荣星,李炜等. 多轴向经编增强复合材料低速冲击下能量吸收特性的研究. 东华大学学报(自然科学版). 2002,28(5):34-38.
    [156] Yau S S, Chou T W, Ko F K. Flexural and axial compressive failures of three dimensionallly braided composite I-beams. Composites, 1986,17(3):227-232.
    [157] Surya R K, Abdel A. Longitudinal and transverse module and strength s of low angle 3-D braided composites. Journal of Composite Materials. 1996,30 (8):885-905.
    [158] Ramakrishna S. Effect of fabric pre-stretching on the tensile properties of knitted fabric composites. Advanced Composites Letters. 1998,7(3):7-91.
    [159] Leong K H, Nguyen M. The effects of deforming knitted glass fabrics on the basic composite mechanical properties. Journal of Materials Science. 1999, 34(10):2377-2387.
    [160] Haan J D, Peijs T. Mechanical properties of flexible knitted composites. Advanced Composites Letters. 1996,5(1):9-13.
    [161] Ramakrishna S, Cuong N K. Tensile properties of plain weft knitted glass fiber fabric reinforced epoxy composites. Journal of Reinforced Plastics and Composite. 1997,16(10):946-966.
    [162] 李嘉禄, 肖丽华, 董孚允. 立体多向编织结构对复合材料性能的影响. 复合材料学报, 1996, 13 (3): 71- 75.
    [163] 陈利,刘景艳,马振杰等. 三维多向编织复合材料压缩性能的试验研究. 固体火箭技术. 2006,29(1):62-66
    [164] 郑锡涛,叶天麒,郭稳学. 三维编织复合材料拉伸性能试验研究. 机械科学与技术. 2004,23(6):681-683.
    [165] 王波, 矫桂琼, 陶亮, 潘文革. 三维编织复合材料拉压性能的实验研究. 实验力学. 2002,17(3):302-306
    [166] 卢子兴, 胡奇. 三维编织复合材料压缩力学性能的实验研究. 复合材料学报. 2003,20(6):67-72
    [167] 张善元, 李珠等. 充液金属薄壁圆柱壳轴向压缩屈曲性能实验研究. 工程力学增刊,1997:12-15.
    [168] Bisagni C, Cordisco, P. Post-buckling and collapse experiments of stiffened composite cylindrical shells subjected to axial loading and torque[J]. Composite Structures 2006, 73: 138–149.
    [169] 杜文星,宋宏伟.圆柱壳冲击动力学及耐撞性设计[M].北京: 科学出版社, 2003.
    [170] Flügge W. Die stabilitaet der Kreiszylinderschale[J]. Ingeniur-Archiv.1932, 3:463-506.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700